13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)
|
|
- Eleonora Marszałek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He i jonów helopodobnych (H, Li +, Be ++,...). Jądro o ładunku Q = Ze spoczywa w początku układu współrzędnych. Rys Układ helopodobny. Równanie Schrödingera niezależne od czasu HΨ(r 1,r 2 ) = EΨ(r 1,r 2 ). (13.1) Hamiltonian układu helopodobnego: H = H 1 + H 2 + U 12, (13.2)
2 2 Rozdział 13. Układy kilku cząstek w mechanice kwantowej H j = h2 2m 2 j κze2 r j, (j = 1, 2) (13.3) jest hamiltonianem układu wodoropodobnego o ładunku jądra +Ze. κ = 1 4πε 0, r j = r j, r 12 = r 1 r 2. Znajdziemy rozwiązania metodą rachunku zaburzeń 1. rzędu, którą następnie uogólnimy do postaci metody wariacyjnej. Korzystamy z rozwiązań dla atomu wodoropodobnego H j ψ µ (r j ) = E µ ψ µ (r j ). (13.4) ψ µ (r j ) = ψ nlm (r j ) (13.5) są znanymi funkcjami falowymi elektronu w polu jądra o ładunku +Ze. Uwzględniamy zakaz Pauliego dla elektronów. Konstrukcja dwuelektronowej funkcji falowej: (1) w ramach przybliżenia jednoelektronowego jako wyznacznik Slatera (2) metoda bezpośrednia z wykorzystaniem własności spinowych funkcji falowych układu dwóch elektronów Rachunek zaburzeń 1. rzędu dla układu helopodobnego Pełna funkcja falowa dla układu dwóch elektronów Zgodnie z rachunkiem zaburzeń Wtedy równanie własne Φ(1, 2) = Ψ(r 1,r 2 )χ(σ 1,σ 2 ). (13.6) Ψ(r 1,r 2 ) = ψ µ (r 1 )ψ ν (r 2 ) (13.7) (H 1 + H 2 )ψ µ (r 1 )ψ ν (r 2 ) = (E µ + E ν )ψ µ (r 1 )ψ ν (r 2 ) (13.8) dla niezaburzonej wartości własnej energii E 0 = E µ + E ν. (13.9)
3 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 3 Wprowadzamy funkcje własne dopasowane do zaburzenia. Ψ ± (r 1,r 2 ) = 1 2 [ψ µ (r 1 )ψ ν (r 2 ) ± ψ µ (r 2 )ψ ν (r 1 )]. (13.10) 2 1/2 z unormowania funkcji falowej do jedynki + symetryczna (względem przestawienia elektronów) przestrzenna funkcja falowa antysymetryczna przestrzenna funkcja falowa Poprawka do energii układu helopodobnego w 1. rzędzie rachunku zaburzeń + odpowiada stanowi singletowemu odpowiada stanowi trypletowemu Całkowita energia układu w 1. rzędzie zaburzeń E (1) s,t = C ± A (13.11) E (1) = E µ + E ν + C ± A (13.12) całka kulombowska C = df d 3 r 1 d 3 r 2 ψ µ (r 1 ) 2 ψ ν (r 2 ) 2κe2 r 12 (13.13) jest energią kulombowską oddziaływania z sobą dwóch ładunków jednoimiennych o gęstościach e ψ µ 2 i e ψ ν 2. całka wymienna A = df d 3 r 1 d 3 r 2 ψ µ(r 1 )ψ ν(r 2 ) κe2 r 12 ψ ν (r 1 )ψ µ (r 2 ) (13.14) jest energią oddziaływania wymiennego, nie posiadającą klasycznego odpowiednika.
4 4 Rozdział 13. Układy kilku cząstek w mechanice kwantowej Rys Poziomy energetyczne atomu helu Metoda wariacyjna dla układu helopodobnego Dla stanu podstawowego atomu helu przestrzenna funkcja falowa Ψ 0 (r 1,r 2 ) = ψ 1s (r 1 )ψ 1s (r 2 ), (13.15) funkcja falowa stanu podstawowego jonu wodoropodobnego o ładunku jądra Q = +Ze ψ 1s (r) = 1 πa 3 Z e r/a Z (13.16) promień Bohra jonu wodoropodobnego a Z = h2 Zmκe 2 (13.17) Modyfikujemy promień Bohra a Z za pomocą parametru wariacyjnego ζ. Dokonujemy zamiany Wariacyjna funkcja falowa układu a Z α = a Z ζ = h 2 ζzmκe 2. (13.18) Ψ var (r 1,r 2 ) = 1 πα 3e (r 1+r 2 )/α = ψ 1s (r 1 )ψ 1s (r 2 ), (13.19) ψ 1s (r) = 1 ( ) ζ 3 1//2 πα 3 e r/α = e ζr/a Z. (13.20) πa 3 Z
5 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 5 Szukamy E = Ψ var H Ψ var = H 1 + H 2 + U 12 (13.21) H j = T j + V j (13.22) Jeżeli funkcja falowa nie zależy od kątów, to dostajemy R Z rydberg efektywny Ry rydberg wodorowy T j = ζ 2 R Z (13.23) R Z = κ2 Z 2 me 4 2 h 2 = Z 2 Ry (13.24) Wartość oczekiwana energii potencjalnej elektronu w polu jądra V j = 2ζR Z (13.25) Wartość oczekiwana energii potencjalnej oddziaływania elektron-elektron Ostatecznie E = Własności rozwiązania: [ U 12 = 5 ζ 4 Z R Z (13.26) 2(ζ 2 2ζ) ] ζ R Z (13.27) Z (1) Jeżeli ζ = 1, to (13.27) podaje energię układu obliczoną w 1. rzędzie rachunku zaburzeń. (2) Jeżeli dopuścimy zmienność ζ, to musimy znaleźć minimum funkcji E(ζ). Warunek E ζ = 0 prowadzi do ζ = 1 5. Po podstawieniu do (13.27) otrzymujemy 16Z ( E min = ) 2 R Z (13.28) 16Z Energię wiązania układu definiujemy jako W = E 0 E. (13.29) Energia układu helopodobnego po oderwaniu od niego jednego elektronu Układ kwantowy jest stabilny, jeżeli W > 0. E 0 = R Z = Z 2 Ry (13.30)
6 6 Rozdział 13. Układy kilku cząstek w mechanice kwantowej Cząsteczka wodoru Rys Cząsteczka wodoru. Hamiltonian molekuły H 2 (z zaniedbaniem ruchu jąder) H = H 0 + H, (13.31) H 0 = h2 2m ( ) κe2 r 1a κe2 r 2b (13.32) H = κe2 κe2 + κe2 + κe2 r 1b r 2a r 12 R. (13.33) Do opisu molekuły H 2 w stanie podstawowym zastosujemy metodę Heitlera- Londona. Równanie własne hamiltonianu H 0, czyli dwóch nieoddziaływujących z sobą atomów wodoru przy czym w stanie podstawowym Wprowadzamy oznaczenia H 0 ψ µ (r 1a )ψ ν (r 2b ) = E 0 µνψ µ (r 1a )ψ ν (r 2b ), (13.34) E 0 1s,1s = H 0 = 2Ry = E h (hartree). (13.35) ψ 1s (r 1a ) = a(1), ψ 1s (r 2b ) = b(2), ψ 1s (r 2a ) = a(2), ψ 1s (r 1b ) = b(1) ψ 1s (r) = (πa 3 B) 1/2 e r/a B. (13.36) Wprowadzamy przestrzenną część funkcji falowej dla cząsteczki H 2 jako Φ ± = 1 2 (ϕ 1 ± ϕ 2 ), (13.37)
7 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 7 ϕ 1 = a(1)b(2), ϕ 2 = a(2)b(1) Jeżeli zaniedbamy spiny jąder, to część spinowa funkcji falowej dla molekuły H 2 jest taka sama jak dla układu helopodobnego. Mamy zatem jeden stan singletowy dla S = 0 i m S = 0 oraz trzy stany trypletowe dla S = 1 i m S = 1, 0, 1 Definujemy: całkę przekrywanię (nakładania, nieortogonalności). S = df a(1) b(1) = d 3 r 1 a(r 1a )b(r 1b ) = d 3 r 1 ψ 1s (r 1 r a )ψ 1s (r 1 r b ). (13.38) energią kulombowską C = df ϕ 1 H ϕ 1 = κe 2 d 3 r 1 d 3 r 2 a 2 (r 1a )b 2 (r 2b ) ( 1 R ) r 12 r 1b r 2a (13.39) energię wymienną A df = ϕ 1 H ϕ 2 = κe 2 d 3 r 1 d 3 r 2 a(r 1a )b(r 2b )a(r 2a )b(r 1b ) ( 1 R ) (13.40) r 12 r 1b r 2a W rezultacie wartości oczekiwane energii dane są E s,t = E 0 + E s,t (13.41) poprawka do energii dwóch swobodnych atomów wodoru wynosi + odpowiada singletowi odpowiada stanom trypletowym E s,t = C ± A 1 ± S 2, (13.42) Podstawiając za a i b funkcję ψ 1s można wyliczyć całki S,C,A. Poprawka do energii (13.42) jest funkcją odległości proton-proton R i ma sens energii potencjalnej oddziaływania pomiędzy atomami wodoru E s,t = E s,t(r) (13.43)
8 8 Rozdział 13. Układy kilku cząstek w mechanice kwantowej Rys Energia potencjalna oddziaływania atom-atom w molekule H 2. Minimalna energia potencjalna E (R) dla R = R 0 jest energią wiązania W molekuły wodoru, czyli W = E min(r 0 ). (13.44)
Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ
Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu
JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:
do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Układy wieloelektronowe
Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Oddziaływania w magnetykach
9 Oddziaływania w magnetykach Zjawiska dia- i paramagnetyzmu są odpowiedzią indywidualnych (nieskorelowanych) jonów dia- i paramagnetycznych na działanie pola magnetycznego. Z drugiej strony spontaniczne
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Model wiązania kowalencyjnego cząsteczka H 2
Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Zadania z mechaniki kwantowej
Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Model Bohra budowy atomu wodoru - opis matematyczny
Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej.
1 Chemia kwantowa. Pytania egzaminacyjne. 21/211: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny - interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest licza
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a
Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Teoria funkcjonału gęstości
Teoria funkcjonału gęstości Łukasz Rajchel Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego Uniwersytet Warszawski lrajchel1981@gmail.com Wykład dostępny w sieci: http://tiger.chem.uw.edu.pl/staff/lrajchel/
Zasady obsadzania poziomów
Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa
Atom helu w nierelatywistycznym podejściu kwantowym. Przygotował Tomasz Urbańczyk
Atom helu w nierelatywistycznym podejściu kwantowym Przygotował Tomasz Urbańczyk 1 Plan seminarium Atom wodoru przypomnienie Separacja równania Schrodingera na część radialną i część kątową Rozwiązania
Atomy wieloelektronowe
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Wykład 16: Atomy wieloelektronowe
Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział
Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp
Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp dr inż. Paweł Scharoch, dr Jerzy Peisert Instytut Fizyki Politechniki Wrocławskiej, 03.02.2005r. Streszczenie: wyjaśnienie pojęcia
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych
Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:
Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m
KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE
1 2 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 2 wiedza Symbole efektów kształcenia K_U01 2 umiejętności K_K01 11 kompetencje
Cząsteczki. 1.Dlaczego atomy łącz. 2.Jak atomy łącz. 3.Co to jest wiązanie chemiczne? Jakie sąs. typy wiąza
Cząsteczki 1.Dlaczego atomy łącz czą się w cząsteczki?.jak atomy łącz czą się w cząsteczki? 3.Co to jest wiązanie chemiczne? Co to jest rząd d wiązania? Jakie sąs typy wiąza zań? Dlaczego atomy łącz czą
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
1. Przesłanki doświadczalne mechaniki kwantowej.
1 Pytania egzaminacyjne: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny- interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest liczba wybijanych elektronów
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.
VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 13 8 stycznia 2018 A.F.Żarnecki Podstawy
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu
Podstawy chemii obliczeniowej
Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
Podstawy chemii obliczeniowej
Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Wykład 27. Elementy współczesnej fizyki atomów i cząsteczek.
1 Wykład 7 Elementy współczesnej fizyki atomów i cząsteczek. 1.1 Atom wodoru w mechanice kwantowej. Znalezienie poziomów energetycznych elektronu w atomie wodoru (a także układów wodoropodobnych: jonu
Notatki do wyk ladu IV (z 27.10.2014)
Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba
WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE
WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być
Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy
Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa
Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,
Chemia Ogólna wykład 1
Chemia Ogólna wykład 1 Materia związki chemiczne cząsteczka http://scholaris.pl/ obojętne elektrycznie indywiduum chemiczne, złożone z więcej niż jednego atomu, które są ze sobą trwale połączone wiązaniami
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Spektroskopia magnetyczna
Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,
Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader
Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda
Chemia teoretyczna I Semestr V (1 )
1/ 6 Chemia Chemia teoretyczna I Semestr V (1 ) Osoba odpowiedzialna za przedmiot: dr hab. inż. Aleksander Herman. 2/ 6 Wykład Program Podstawy mechaniki kwantowej Ważne problemy modelowe Charakterystyka
BUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
struktura atomowa 9 grudnia 2016 struktura atomowa
9 grudnia 2016 układ okresowy 1869 - układ Mendelejewa (60 znanych pierwiatków), układ według mas atomowych, z periodycznie powtarzającymi się własnościami chemicznymi, przewidział istnienie: galu (odkrycie
Załącznik Nr 5 do Zarz. Nr 33/11/12
Załącznik Nr 5 do Zarz. Nr 33/11/12 Z1-PU7 WYDANIE N1 Strona 1 z 5 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CHEMIA TEORETYCZNA 2. Kod przedmiotu: - 3. Karta przedmiotu ważna od roku akademickiego:
Teoria funkcjona lu g
Notatki do wyk ladu XI Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość funkcji falowej jest niezb edna? Ψ(1,, 3,..., N) dla uk ladu N-elektronowego zależy od 4N zmiennych (dla
S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych
Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Symetrie w fizyce cząstek elementarnych
Symetrie w fizyce cząstek elementarnych Odkrycie : elektronu- koniec XIX wieku protonu początek XX neutron lata 3 XX w; mion µ -1937, mezon π 1947 Lata 5 XX w zalew nowych cząstek; łączna produkcja cząstek
Metoda Hartree-Focka (Hartree ego-focka)
Notatki do wyk ladu V Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika Slatera,
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?
TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie
Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)
Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a
Elementy fizyki kwantowej. Obraz interferencyjny. Motto. Funkcja falowa Ψ. Notatki. Notatki. Notatki. Notatki. dr inż.
Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Obraz interferencyjny De Broglie
Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.
Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ
c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe
TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest
26 Okresowy układ pierwiastków
26 Okresowy układ pierwiastków Przyjmując procedurę Hartree ego otrzymujemy poziomy numerowane, jak w atomie wodoru, liczbami kwantowymi (n, l, m) z tym, że degeneracja ze względu na l na ogół już nie
wartość oczekiwana choinki
wartość oczekiwana choinki Plan seminarium cośo równaniu Schrödingera analityczne metody rozwiązywania algorytm & obliczenia Schrödinger w studni koniec choinka ortogonalna Coś o równaniu Schrödingera
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów
Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni
Postulaty mechaniki kwantowej
Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Fizyka atomowa r. akad. 2012/2013
r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu
Wykład 27 Wersja robocza. Elementy współczesnej fizyki atomów i cząsteczek.
Wykłady z fizyki Piotr Posmykiewicz 1 Wykład 7 Wersja robocza. Elementy współczesnej fizyki atomów i cząsteczek. 7.1 Atom wodoru w mechanice kwantowej. Znalezienie poziomów energetycznych elektronu w atomie
II.1 Serie widmowe wodoru
II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii
Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano.
Chemia teoretyczna to dział chemii zaliczany do chemii fizycznej, zajmujący się zagadnieniami związanymi z wiedzą chemiczną od strony teoretycznej, tj. bez wykonywania eksperymentów na stole laboratoryjnym.
Metody obliczeniowe chemii teoretycznej
Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Modelowanie, wybór i budowa modelu procesu. Modelowanie matematyczne. Maszyny matematyczne. Modelowanie fizyczne. Energia w reakcjach.
Modelowanie, wybór i budowa modelu procesu. Modelowanie służy do poznania danego procesu, po przez zastąpienie go uproszczonym układem, który odzwierciedla jedynie wybrane cechy procesu. Analizę informacji
Elementy fizyki kwantowej. Obraz interferencyjny. Funkcja falowa Ψ. Funkcja falowa Ψ... Notatki. Notatki. Notatki. Notatki. dr inż.
Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 013/14 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Obraz interferencyjny
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Atomy wieloelektronowe i cząsteczki
Atomy wieloelektronowe i cząsteczki 1 Atomy wieloelektronowe Wodór ma liczbę atomową Z=1 i jest prostym atomem. Zawiera tylko jeden elektron i jeden proton stąd potencjał opisuje oddziaływanie kulombowskie
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
V. RÓWNANIA MECHANIKI KWANTOWEJ
V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych
Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin
Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka
na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0
Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego
Wykład 3: Atomy wieloelektronowe
Wykład 3: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział