Metoda oddzia lywania konfiguracji (CI)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda oddzia lywania konfiguracji (CI)"

Transkrypt

1 Metoda oddzia lywania konfiguracji (CI) Spinorbitale: obsadzone φ a i wirtualne φ r : ɛ a ɛ HOMO, ɛ r ɛ LUMO ê r a wykonuje podstawienie φ a φ r, np. ê 7 2 φ 1 φ 2 φ 3... φ N = φ 1 φ 7 φ 3... φ N Operator wzbudzeń dwukrotnych ê rs ab = êr a ês b wykonuje np. podstawienie: ê φ 1 φ 2 φ 3... φ N = φ 7 φ 2 φ 9... φ N Wyznaczniki jednowzbudzone: Φ r a = êr a Φ 0, gdzie Φ 0 to funkcja referencyjna Wyznaczniki dwukrotnie Φ rs ab = êrs ab Φ 0 i trójkrotnie Φ rst abc = êrst abc Φ 0 wzbudzone Funkcja CI to kombinacja liniowa Φ 0 oraz wyznaczników wzbudzonych Φ I : Ψ = c 0 Φ 0 + I c I Φ I W praktyce funkcje falowe metody CI mga być jednowzbudzone (CIS), jednoi dwuwzbudzone (CISD) a także uwzgledniaj ace wszystkie wzbudzenia aż do potrójnych (CISDT) i poczwórnych (CISDTQ). S=single, D=double, T=triple, Q=quadruple (excitations)

2 Najważniejsze warianty metody CI Metoda CIS: Ψ = c 0 Φ 0 + ar c a r Φr a Jeśli Φ 0 jest wyznacznikiem HF to otrzymujemy zerowa energie korelacji ze wzgledu na bardzo ważne Twierdzenie Brillouina Φ r aĥφ 0dτ = 0 lub Φ r a ĤΦ 0 = 0, notacja : Ψ 1 Ψ 2 dτ Ψ 1 Ψ 2 Metoda CIS daje jednak czesto sensowne przybliżenia do energii wzbudzeń elektronowych Metoda CISD: Ψ = c 0 Φ 0 + c a r Φr a + ar a<b r<s Jest dziś bardzo rzadko stosowana ze wzgledu na brak ekstensywności energii. Podobnie jest w przypadku nieco tylko dok ladniejszej metody CISDT oraz w przypadku znacznie dok ladniejszej metody CISDTQ Metoda FCI Ψ = c 0 Φ 0 + I c I Φ I c ab rs Φrs ab uwzgl ednia wszystkie wyznaczniki ( M N ) jakie można skonstruować dla N elektronów przy użyciu bazy M orbitali. Jest najdok ladniejsza i najdroższa.

3 Funkcj e Równania metody CI Ψ = c 0 Φ 0 + c a r êr a Φ 0 + ar a<b można też zapisać nasteepuj aco: Ψ = (c 0 + c a r êr a + ar a<b r<s gdzie Ĉ to jest operator CI: Ĉ = ar c a r êr a + a<b r<s r<s c ab rs êrs ab Φ 0 + c ab rs êrs ab + ) Φ 0 = (c 0 + Ĉ)Φ 0 c ab rs êrs ab + = Ĉ 1 + Ĉ 2 + Wspó lczynniki c 0, c a r, cab rs,... etc. znajdujemy metod a wariacyjna minimalizujac funkcjona l energii: E[c 0, Ĉ] = Ψ ĤΨ Ψ Ψ gdzie Ψ = (c 0 + Ĉ)Φ 0. Wspó lczynniki c 0, c a r, cab rs,... etc. oraz energie uk ladu znajduje sie wtedy diagonalizujac macierz: H IJ = Φ I ĤΦ J gdzie przez Φ I oznaczamy wyznaczniki Φ 0, ê r a Φ 0, ê rs ab Φ 0,... etc.

4 Równania metody CI, c.d. Wartości w lasne macierzy H IJ, oznaczmy je przez E I, stanowia górne ograniczenie dok ladnych wartości w lasnych równania Schrödngera, czyli prawdziwych wartości energii czasteczki E I E i E I Jest to tzw. twierdzenie MacDonalda - bardzo ważne w praktyce. W praktyce operator Ĉ obcinamy np. do wzbudzeń K-krotnych: Ĉ = Ĉ 1 + Ĉ Ĉ K. Dok ladność wariantów metody CI Metoda CI Operator Ĉ Skalowanie B l ad FH B l ad H 2 O CID Ĉ 2 n CISD Ĉ 1 + Ĉ 2 n CISDT Ĉ 1 + Ĉ 2 + Ĉ 3 n CISDTQ Ĉ 1 + Ĉ 2 + Ĉ 3 + Ĉ 4 n FCI Ĉ 1 + Ĉ 2 + Ĉ Ĉ 10 n! Baza DZP. B l ad w millihartree, 1 mhartree = kcal/mol.

5 Rachunek zaburzeń Møllera-Plesseta (teoria MP) Wady teorii CI: powolna zbieżność ze wzrostem krotności K uwzgl ednianych wzbudzeń brak konsystencji rozmiarowej dla gdy K < N brak ekstensywności energii korelacji dla kryszta lów i polimerów (energia korelacji rośnie jak n, gdzie n jest liczba atomów w uk ladzie) Wad tych nie ma teoria MP. W teorii tej dzielimy Hamiltonian nastepuj aco: gdzie Ĥ = Ĥ(λ) = Ĥ 0 + λŵ N Ĥ 0 = ˆf( r i ) i=1 jest suma operatorów Focka dla wszystkich elektronów a Ŵ = Ĥ Ĥ 0. Istotne jest to że: Ĥ 0 Φ 0 = E 0 Φ 0 gdzie Φ 0 jest funkcja HF a E 0 jest suma energii orbitalnych E 0 = a ɛ a oraz to że Ŵ jest operatorem dwuczastkowym Ŵ = ij g( r i, r j ).

6 Teoria MP, c.d. Po podstawieniu Ĥ Ĥ(λ) do pe lnych równań CI (równań FCI) operator Ĉ i energia E staja sie funkcjami λ i moga być rozwiniete w szereg (Taylora): Ĉ(λ) = Ĉ (0) + λĉ (1) + λ 2 Ĉ (2) + E(λ) = E (0) + λe (1) + λ 2 E (2) + Wstawiajac te rozwiniecia do równań FCI można bardzo latwo pokazać że: Ĉ (0) = 0 E (0) + E (1) = Φ 0 ĤΦ 0 = E HF Ĉ (1) = a<b E (2) = Φ 0 Ŵ Ĉ (1) Φ 0 r<s ab rs ɛ a + ɛ b ɛ r ɛ s ê rs ab gdzie pq rs = pq rs pq sr to antysymetryzowana ca lka dwuelektronowa pq rs = φ p ( r 1) φ q ( r 1 2) r 1 r 2 φ r( r 1 ) φ s ( r 2 ) dτ 1 dτ 2

7 Teoria MP (czyli MPPT lub MBPT), dokończenie Wstawiajac operator Ĉ (1) do wzoru na E (2) otrzymujemy energie teorii MP2: E (2) = ab rs 2 ɛ a<b r<s a + ɛ b ɛ r ɛ s Jest to najważniejszy i najprostszy wzór na energi e korelacji elektronowej. Czas obliczeń MP2 skaluje sie jak n 5 z rozmiarem uk ladu n. Poprawka E (2) i wszystkie wyższe poprawki teorii MP sa ekstensywne. E (2) wyprowadzili fizycy (Møller i Plesset) w 1930 r, E (3) - Bartlett i Silver w 1974, E (4) - Wilson i Silver w 1979, E (5) - Kucharski i Bartlett w 1986 r. Ogólny przepis (twierdzenie o diagramach zwiazanych) - Goldstone w 1957 r. Teoria Operator Ĉ Skalowanie B l ad FH B l ad H 2 O MP2 Ĉ 2 n MP3 Ĉ 2 n MP4 -E (4) (Ĉ 3 ) Ĉ 1, Ĉ 2 n MP4 Ĉ 1, Ĉ 2, Ĉ 3 n MP5 Ĉ 1, Ĉ 2, Ĉ 3 n MP6 Ĉ 1, Ĉ 2, Ĉ 3, Ĉ 4 n

8 Teoria sprz eżonych klasterów, coupled-cluster (CC) theory Sa przyk lady rozbieżności teori MP. Potrzeba wiec teorii nieperturbacyjnej, lepszej od CI. Taka teoria jest teoria CC. Teoria CI jest nieekstensywna ponieważ operator 1 + Ĉ jest nieekstensywny. Okazuje si e, że logarytm operatora 1+Ĉ jest ekstensywny! G lówna idea teorii CC polega na tym aby obliczać nie Ĉ ale operator ˆT = ln(1 + Ĉ). ˆT = ln(1 + Ĉ) = Ĉ 1 2 Ĉ Ĉ3 + ˆT jest dobrze zdefiniowany bo szereg ten jest zawsze zbieżny (bo Ĉ N+1 = 0). Oczywiście 1 + Ĉ = exp( ˆT ) = 1 + ˆT + 1 2! ˆT ! ˆT 3 + ˆT = ˆT 1 + ˆT 2 + ˆT ˆT N Skoro Ψ = (1 + Ĉ) Φ 0 to można napisać Ψ = e ˆT Φ 0 Jest to tzw. eksponencjalna reprezentacja funkcji falowej ( exponential Ansatz )

9 Teoria sprz eżonych klasterów, dokończenie Wstawiajac funkcje e ˆT Φ 0 do równania Schrödingera otrzymamy: (Ĥ E) e ˆT Φ 0 = 0 Mnożac to równanie przez e T ˆ otrzymujemy równanie: e ˆT (Ĥ E) e ˆT Φ 0 = 0 Równanie to rozwiazujemy metoda Galerkina-Pietrova czyli rzutujac je na Φ 0 oraz na wszystkie funkcje wzbudzone Φ I. Dostajemy wówczas: E = Φ 0 e ˆT Ĥe ˆT Φ 0 Φ I e ˆT Ĥe ˆT Φ 0 = 0 Wszystkie poziomy teorii CC sa ekstensywne. Najważniejsze sa poziomy CCSD ( ˆT = ˆT 1 + ˆT 2 ) oraz CCSD(T) gdy wk lad wzbudzeń trójkrotnych ( ˆT 3 ) uwzgledniony jest nieiteracyjnie i dodany do energii CCSD ( gold standard ). Teorii CCSD i CCSD(T) nie stosuje sie gdy T 1 jest duże, T 1 / N > 0.02 (diagnostyka T 1 ) Teoria Operator ˆT Skalowanie B l ad FH B l ad H 2 O CCD ˆT 2 n CCSD ˆT 1 + ˆT 2 n CCSD(T) ˆT 1 + ˆT 2, ˆT 3 n CCSDT ˆT 1 + ˆT 2 + ˆT 3 n CCSDTQ ˆT 1 + ˆT 2 + ˆT 3 + ˆT 4 n

10 Teoria wieloreferencyjnego oddzia lywania konfiguracji - MRCISD Najpierw obliczamy funkcj e MCSCF Ψ 0 = L c L Φ L a nast epnie uwzgl edniamy wszystkie wzbudzenia jedno- i dwukrotne z każdego wyznacznika Φ L : Ψ = Ψ 0 + L Ĉ L Φ L, (operator Ĉ L generuje wzbudzenia pojedyncze i podwójne z wyznacznika Φ L ). Uwzgl edniamy każdy wyznaczniki Slatera tylko jeden raz i diagonalizujemy Hamiltonian w tak uzyskanej bazie (bez reoptymalizacji orbitali). Energie MRCISD nie sa konsystentne rozmiarowo ale sa czesto bardzo dok ladne. Metoda MRCISD nadaje si e szczególnie do obliczeń dla stanów wzbudzonych oraz dla reaktywnych powierzchni energii potencjalnej. Obliczenia MRCISD sa bardzo kosztowne i trudne.

Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y)

Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y) Notatki do wyk ladu XII Korelacja elektronowa Nazwa korelacja elektronowa wywodzi si e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa niezależne jeśli ρ(x, y) = ρ 1 (x) ρ 2 (y) Oznacza

Bardziej szczegółowo

Uwzględnienie energii korelacji w metodach ab initio - przykłady

Uwzględnienie energii korelacji w metodach ab initio - przykłady Uwzględnienie energii korelacji w metodach ab initio - przykłady Funkcje falowe (i funkcje bazy) jawnie skorelowane - zależa jawnie od odległości międzyelektronowych r ij = r i r j Funkcje falowe w postaci

Bardziej szczegółowo

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Wyk lad 6 Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Uk lady modelowe czastka swobodna czastka na barierze potencja lu czastka w pudle oscylator harmoniczny oscylator Morse

Bardziej szczegółowo

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a

Bardziej szczegółowo

RACHUNEK ZABURZEŃ. Monika Musiał

RACHUNEK ZABURZEŃ. Monika Musiał RACHUNEK ZABURZEŃ Monika Musiał Rachunek zaburzeń jest podstawową obok metody wariacyjnej techniką obliczeniową stosowaną do rozwiązywania równania Schrödingera. Idea metody zaburzeniowej sprowadza się

Bardziej szczegółowo

Hierarchia baz gaussowskich (5)

Hierarchia baz gaussowskich (5) Hierarchia baz gaussowskich (5) Bazy split-valence czyli VDZ, VTZ, etc. (np. bazy Pople a 6-31G, 6-311G, etc) Bazy split-valence spolaryzowane VDZP, VTZP, etc. Bazy bazy Dunninga (konsystentne korelacyjnie)

Bardziej szczegółowo

Korelacja elektronowa

Korelacja elektronowa Korelacja elektronowa oraz metody jej uwzgl edniania oparte na funkcji falowej Mariusz Radoń 04.04.2017 11.04.2017 Wymiana i korelacja kulombowska W metodzie HF Elektrony o jednakowych spinach nie moga

Bardziej szczegółowo

Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych

Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych Justyna Cembrzyńska Zakład Mechaniki Kwantowej Uniwersytet

Bardziej szczegółowo

METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI)

METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) lub ĤΨ i = E i Ψ i Ψ i = K r=0 c riφ r ĤΨ = EΨ Ψ = c o Φ o + ia ca i Φ a i + ijab cab ij Φ ab ij + ijkabc cabc ijk Φ abc ijk + Funkcje Φ r (Φij..

Bardziej szczegółowo

METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L

METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie e- nergii korelacji

Bardziej szczegółowo

Metody obliczeniowe chemii teoretycznej

Metody obliczeniowe chemii teoretycznej Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia.   mm CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

jawnie od odleg lości miedzyelektronowych r ij = r i r j Funkcje falowe w postaci kombinacji liniowej wielu wyznaczników.

jawnie od odleg lości miedzyelektronowych r ij = r i r j Funkcje falowe w postaci kombinacji liniowej wielu wyznaczników. Notati do wy ladu XII Przy lady metod ab iitio uwzglediaj acych orelacje eletroowa Fucje falowe jawie sorelowae - zależa jawie od odleg lości miedzyeletroowych r ij = r i r j Fucje falowe w postaci ombiacji

Bardziej szczegółowo

METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI. Monika Musia l

METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI. Monika Musia l METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI Monika Musia l Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie

Bardziej szczegółowo

Teoria funkcjona lu g

Teoria funkcjona lu g Notatki do wyk ladu XII (z 1.01.015) Uwaga! Strony 1-14 sa w wiekszości powtórzeniem stron z Notatek do wyk ladu XI z 15.1.014 Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość

Bardziej szczegółowo

Teoria funkcjona lu g Density Functional Theory (DFT)

Teoria funkcjona lu g Density Functional Theory (DFT) Teoria funkcjona lu g estości Density Functional Theory (DFT) Cz eść slajdów tego wyk ladu pochodzi z wyk ladu wyg loszonego przez dra Lukasza Rajchela w Interdyscyplinarnym Centrum Modelowania Matematycznego

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

Metoda Hartree-Focka (Hartree ego-focka)

Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika Slatera,

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

W lasności elektryczne moleku l

W lasności elektryczne moleku l W lasności elektryczne moleku l Hamiltonian dla czasteczki w jednorodnym polu elektrycznym E ma postać: Ĥ(E) = Ĥ + E ˆµ x gdzie zak ladamy, że pole jest zorientowane wzd luż osi x a ˆµ x jest operatorem

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m

Bardziej szczegółowo

Notatki do wyk ladu IV (z 27.10.2014)

Notatki do wyk ladu IV (z 27.10.2014) Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba

Bardziej szczegółowo

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V (z 03.11.014) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu IV (z 1.11.01) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa opisujac a stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

Prof. dr hab. Leszek Meissner Toruń, 24 września 2018 r. Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń

Prof. dr hab. Leszek Meissner Toruń, 24 września 2018 r. Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń Prof. dr hab. Leszek Meissner Toruń, 24 września 2018 r. Instytut Fizyki Uniwersytet Mikołaja Kopernika 87-100 Toruń Ocena rozprawy doktorskiej magister Aleksandry Tucholskiej zatytułowanej Momenty przejścia

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ

Bardziej szczegółowo

Nowe modele obliczeniowe wieloreferencyjnej metody sprzężonych klasterów sformułowanej w przestrzeni Hilberta.

Nowe modele obliczeniowe wieloreferencyjnej metody sprzężonych klasterów sformułowanej w przestrzeni Hilberta. Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Zamknięcie przewodu doktorskiego Katarzyna Szopa Nowe modele obliczeniowe wieloreferencyjnej metody sprzężonych klasterów sformułowanej w przestrzeni

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa Notatki do wyk ladu VI (z 18.11.2013) Symbol termu: 2S+1 L (1) L -liczba kwantowa ca lkowitego orbitalnego momentu pedu Duże litery S, P, D, F, itd. dla L=0, 1, 2, 3, itd. 2S+1 - multipletowość; S - liczba

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Chemia teoretyczna (023) 1. Informacje ogólne koordynator modułu dr hab. Monika Musiał, prof. UŚ rok akademicki

Bardziej szczegółowo

Układy wieloelektronowe

Układy wieloelektronowe Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające

Bardziej szczegółowo

Teoria funkcjonału gęstości

Teoria funkcjonału gęstości Teoria funkcjonału gęstości Łukasz Rajchel Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego Uniwersytet Warszawski lrajchel1981@gmail.com Wykład dostępny w sieci: http://tiger.chem.uw.edu.pl/staff/lrajchel/

Bardziej szczegółowo

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia Monika Musia l Uk lad zamkniȩtopow lokowy: N elektronów; N 2 elektronowa: Ψ = 1 N! orbitali. Funkcja falowa N- φ 1 (1)α(1)

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp

Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp dr inż. Paweł Scharoch, dr Jerzy Peisert Instytut Fizyki Politechniki Wrocławskiej, 03.02.2005r. Streszczenie: wyjaśnienie pojęcia

Bardziej szczegółowo

Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych

Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych Wstęp Krzywa energii potencjalnej 1 to wykres zależności energii potencjalnej cząsteczek od długości wiązania (czyli od wzajemnej

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Kondensat Bosego-Einsteina okiem teoretyka

Kondensat Bosego-Einsteina okiem teoretyka Kondensat Bosego-Einsteina okiem teoretyka Krzysztof Sacha Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński Plan: Kondensacja Bosego-Einsteina. Teoretyczny opis kondensatu. Przyk lady.

Bardziej szczegółowo

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I Wyk lad 3 Uk lady modelowe I Hamiltonian, równania Schrödingera hamiltonian Ĥ(x) = ˆT (x) = 2 d 2 2m dx 2 równanie Schrödingera zależne od czasu stany stacjonarne 2 2 Ψ(x, t) Ψ(x, t) 2m x 2 = i t dψ E

Bardziej szczegółowo

Stany wysokospinowe w teorii sprzężonych klasterów w połączeniu z metodą równań ruchu dla układów podwójnie zjonizowanych

Stany wysokospinowe w teorii sprzężonych klasterów w połączeniu z metodą równań ruchu dla układów podwójnie zjonizowanych Wszczęcie przewodu doktorskiego Proponowany temat pracy: Stany wysokospinowe w teorii sprzężonych klasterów w połączeniu z metodą równań ruchu dla układów podwójnie zjonizowanych Łukasz Lupa Opiekun naukowy:

Bardziej szczegółowo

Korelacja elektronowa w metodzie elongacji

Korelacja elektronowa w metodzie elongacji March 28, 2006 1 2 3 4 5 6 Waskie gard la metody jednowyznacznikowe wyznaczanie ca lek dwuelektronowych potrzebnych do budowy macierzy Focka: formalnie O(N 4 ), asymptotycznie O(N 2 ) diagonalizacja macierzy

Bardziej szczegółowo

Chemia kwantowa makroczasteczek dla III roku biofizyki; kurs WBt-ZZ28

Chemia kwantowa makroczasteczek dla III roku biofizyki; kurs WBt-ZZ28 Chemia kwantowa makroczasteczek konspekt wyk ladu dla III roku biofizyki; kurs WBt-ZZ28 Mariusz Radoń (ostatnia aktualizacja: 5 czerwca 2017) Z uwagi na roboczy charakter niniejszych notatek moga sie w

Bardziej szczegółowo

Teoria funkcjona lu g

Teoria funkcjona lu g Notatki do wyk ladu XI Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość funkcji falowej jest niezb edna? Ψ(1,, 3,..., N) dla uk ladu N-elektronowego zależy od 4N zmiennych (dla

Bardziej szczegółowo

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu.

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu. Notatki do wyk ladu VI Stany atomu wieloelektronowego o określonej energii. Konfiguracja elektronowa atomu - zbiór spinorbitali, wykorzystywanych do konstrukcji funkcji falowej dla danego stanu atomu;

Bardziej szczegółowo

Uk lady modelowe II - oscylator

Uk lady modelowe II - oscylator Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

wartość oczekiwana choinki

wartość oczekiwana choinki wartość oczekiwana choinki Plan seminarium cośo równaniu Schrödingera analityczne metody rozwiązywania algorytm & obliczenia Schrödinger w studni koniec choinka ortogonalna Coś o równaniu Schrödingera

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych

Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych Grupa, cia lo Zadanie 1. Jakie w lasności w zbiorze liczb naturalnych, ca lkowitych, wymiernych, rzeczywistych maj dzia lania a b = a b, a b = a 2 + b 2, a b = a+b, a b = b. 2 Zadanie 2. Pokazać, że (R

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

u nk = n c nn u n 0 wyznacza siȩ empirycznie (elementy przejść) lub próbuje oszacować w obliczeniach typu ab initio Rachunek zaburzeń Löwdina

u nk = n c nn u n 0 wyznacza siȩ empirycznie (elementy przejść) lub próbuje oszacować w obliczeniach typu ab initio Rachunek zaburzeń Löwdina Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane) to ich wzajemny wp lyw musi być uwzglȩdniony wariacyjnie - w I rzȩdzie RZ dla stanow zdegenerowanych

Bardziej szczegółowo

Rotacje i drgania czasteczek

Rotacje i drgania czasteczek Rotacje i drgania czasteczek wieloatomowych Gdy znamy powierzchnie energii potencjalnej V( R 1, R 2,..., R N ) to możemy obliczyć poziomy energetyczne czasteczki. Poziomy te sa w ogólności efektem: rotacji

Bardziej szczegółowo

Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie

Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie Notatki do wyk ladu X (z 08.12.2014) Metoda Hückla Uproszczona wersja metody orbitali molekularnych (MO) w przybliżeniu liniowej kombinacji orbitali atomowych (LCAO) stosowana do opisu struktury elektronowej

Bardziej szczegółowo

{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r

{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r to w pobliżu dna (lub szczytu) pasma (k k 0 ) zależność E(k) jest paraboliczna ale z mas a m m 0 Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane)

Bardziej szczegółowo

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest

Bardziej szczegółowo

Matematyczne Metody Chemii I Zadania

Matematyczne Metody Chemii I Zadania Matematyczne Metody Chemii I Zadania Mariusz Radoń, Marcin Makowski, Grzegorz Mazur Zestaw Zadanie. Pokazać, że wyznacznik dowolnej macierzy unitarnej jest liczbą o module. Zadanie. Pokazać, że elementy

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu.

Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu. Wizualizacja Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu. Graficzny obraz schematu DEA w obliczeniach energii

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Wyk lad 3 Wyznaczniki

Wyk lad 3 Wyznaczniki 1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Skrypt do wyk ladu. Teoria sprz eżonych klasterów i jej zastosowanie do w lasności molekularnych

Skrypt do wyk ladu. Teoria sprz eżonych klasterów i jej zastosowanie do w lasności molekularnych Skrypt do wyk ladu Teoria sprzeżonych klasterów i jej zastosowanie do w lasności molekularnych Tatiana Korona Pracownia Chemii Kwantowej Wydzia l Chemii Uniwersytet Warszawski (wersja 2.1d) 3 grudnia 2012

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

Diagonalizacja, problem w lasny, równanie wiekowe

Diagonalizacja, problem w lasny, równanie wiekowe Diagonalizacja, problem w lasny, równanie wiekowe Procedura diagonalizacji macierzy A o wymiarze n n (np. macierzy Hessianu) a 11 a 12... a 1n a 21 a 22... a 2n A =.... a n1 a n2... a nn polega na znalezieniu

Bardziej szczegółowo

Uklady modelowe III - rotator, atom wodoru

Uklady modelowe III - rotator, atom wodoru Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Algorytm określania symetrii czasteczek

Algorytm określania symetrii czasteczek O czym to b Podzi 21 września 2007 O czym to b O czym to b Podzi 1 2 3 O czym to b Podzi W lasności symetrii hamiltonianu: zmniejszenie z lożoności obliczeń i wymagań pami eciowych, utrzymanie tożsamościowych

Bardziej szczegółowo