Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.

Podobne dokumenty
Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

Defi f nicja n aprę r żeń

1. PODSTAWY TEORETYCZNE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

TENSOMETRIA ZARYS TEORETYCZNY

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

A A A A A A A A A n n

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

Analiza stanu naprężenia - pojęcia podstawowe

3. Macierze i Układy Równań Liniowych

Wprowadzenie do WK1 Stan naprężenia

Macierze. Rozdział Działania na macierzach

Integralność konstrukcji w eksploatacji

4. Elementy liniowej Teorii Sprężystości

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Zadania egzaminacyjne

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

DYNAMIKA RAM WERSJA KOMPUTEROWA

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

Algebra liniowa z geometrią

Spis treści. Wstęp Część I STATYKA

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia

Stateczność ramy. Wersja komputerowa

3. Wykład Układy równań liniowych.

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozwiązywanie układów równań liniowych

Metody numeryczne Wykład 4

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Zaawansowane metody numeryczne

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

9. PODSTAWY TEORII PLASTYCZNOŚCI

5. Rozwiązywanie układów równań liniowych

Twierdzenia o wzajemności

Kilka spraw praktycz-

Analiza matematyczna i algebra liniowa Macierze

Układy równań i nierówności liniowych

Matematyka stosowana i metody numeryczne

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Mechanika teoretyczna

Temat: Mimośrodowe ściskanie i rozciąganie

Mechanika i wytrzymałość materiałów BILET No 1

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

Baza w jądrze i baza obrazu ( )

Wprowadzenie do Scilab: macierze

Układy równań liniowych. Krzysztof Patan

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

Macierze Lekcja I: Wprowadzenie

Liczba godzin Liczba tygodni w tygodniu w semestrze

Geometria w R 3. Iloczyn skalarny wektorów

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki

Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).

Wytrzymałość Materiałów

1 Macierze i wyznaczniki

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

3. FUNKCJA LINIOWA. gdzie ; ół,.

1. PODSTAWY TEORETYCZNE

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

8. PODSTAWY ANALIZY NIELINIOWEJ

w stanie granicznym nośności

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

O MACIERZACH I UKŁADACH RÓWNAŃ

Wykład 5. Metoda eliminacji Gaussa

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

Metody i analiza danych

Stateczność ramy - wersja komputerowa

J. Szantyr Wykład 10 Stan naprężenia w płynie

Geometria analityczna

8. WIADOMOŚCI WSTĘPNE

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Transkrypt:

MES 2 Wprowadzenie do MES Everything important is simple! Podstawowe zasady MES Dzielimy konstrukcję na proste fragmenty (analogia klocki Lego, cegły), które nazywamy elementami skończonymi (ES). ES są połączone w węzłach Rozwiązujemy zagadnienie dla każdego ES, czyli ustalamy (zwykle w sposób bardzo przybliżony) relacje pomiędzy siłami a przemieszczeniami w węzłach Rozwiązujemy całe zagadnienie poprzez na przykład zadowalanie warunków równowagi oraz warunków brzegowych w węzłach. W wyniku tego wyznaczamy przemieszczenia w węzłach Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp. Część I Naprężenia ważne dla inżynierów Naprężenia w konstrukcji Dla konstrukcji w równowadze obciążenia zewnętrzne reakcji w zamocowaniu Każda konstrukcja służy przewodnikiem obciążenia od jednej części do drugiej Dla równowagi pozostałej części konstrukcji w przekroju musi działać obciążenie ze strony części odrzuconej Naprężenie (jak i siła) jest wektorem. W każdym przekroju można go rozłożyć na składowe: normalną i styczną. Mamy jedną składową styczną w przypadku płaskiego modelu konstrukcji oraz dwie składowych w przypadku modelu przestrzennego. Składowe normalne i styczne są w jakimś sensie analogiem współrzędnych punktu. Co zmieniła optymalizacja topologiczna Kolejność rozwoju produktu kiedyś... Pomysł Rysunek techniczny (CAD) Obliczenia (CAE) Produkcja (CAM)...i teraz Obliczenia (CAE) Pomysł Model D (CAD) Obliczenia (CAE) Produkcja (Druk D, CAM) Kolejność prac przy optymalizacji istniejącej konstrukcji - obudowa sprężarki VW

Materiały Altair W tym miejscu były bardzo ciekawe przykłady z dziedziny optymalizacji topologicznej. Naprężenia z tytułami Nazewnictwo Składnia używana do naprężeń to σ AB, gdzie A oś prostopadła do przekroju σ yy B kierunek naprężenia σ yx Uwagi σ xx σ xy σ xx σ xy. w D w każdym punkcie mamy naprężenia normalne σ xx,σ yy,σ zz oraz 6 stycznych σ xy,σ xz,...,σ zy y x σ yx σ yy 2. Z warunków równowagi (moment obrotowy 0) wynika, żeσ xy σ yx. W D analogicznie σ xz σ zx, σ yz σ zy.. Często dla naprężeń stycznych zamiast σ używa się τ, czyli σ xy τ xy Naprężenia z tytułami ważne dla inżyniera 6.0. 5--206 I.Rokach, 2005 206 2

y x σ Naprężenia główne, 2D σ (albo σ ) maksymalne naprężenie normalne (czyli rozciągające lub ściskające) w danym punkcie. W kierunku prostopadłym do niego działaσ 2 (σ 22 ) minimalne naprężenie normalne. W obydwóch tych przekrojach brak naprężeń stycznych. y x σ 2 Naprężenia główne, D Analogiczne naprężenia σ > σ 2 > σ działają na prostopadłych płaszczyznach w danym punkcie. Naprężenia główne i ich kierunki są ważnym wynikiem obliczeń dla każdego inżyniera i dlatego są wyznaczane przez każdy program MES. W SWS dla nich używa się następujących oznaczeń: σ naprężenie pierwsze główne, σ 2 naprężenie długie główne, σ naprężenie trzecie główne. Kierunki tych naprężeń można zobaczyć wyświetlając wyniki w postaci wektorowego pola naprężeń. W przypadku jednoosiowego rozciągania kryterium plastyczności jest prosty σ σ Y, gdzie σ Y granica plastyczności. Dla przypadku wieloosiowego obciążenia istnieje wiele kryteriów, najbardziej popularny z których to kryterium von Misesa (9) σ eff σ Y, gdzie σ eff 2 (σ σ 2 ) 2 +(σ σ ) 2 +(σ 2 σ ) 2 Naprężenia zredukowane lub efektywne są najważniejszym wynikiem analizy dla konstrukcji metalowych. W SWS, jak i w innych programach, jest to domyślny wynik analizy statycznej. Mówiąc precyzyjnie, nie jest to naprężenie, bo nie jest ani wektorem, ani tensorem. Jest to raczej miara (jak indeks giełdowy) intensywności naprężeń w danym punkcie. Relację pomiędzy MES a wytrzymałością M M Σσ P M Σσ P M Px 2 M Px x P Σp P Celem analizy MES jest wyznaczenie rozkładu naprężeń w dowolnym przekroju konstrukcji. Zwykle ten rozkład jest dokładniejszy od przewidywań wytrzymałości materiałów. Wspólnymi dla wyników MES i wytrzymałości są siły wypadkowe i momenty w przekrojach. Uwaga! Jeżeli z najprostszej analizy wytrzymałościowej (np. σ P/A) wynika, że średni poziom naprężeń w przekroju przekracza dopuszczalną wartość, to nie ma sensu robić analizę MES w nadziei, że jej wyrok będzie inny. x 2 6.0. 5--206 I.Rokach, 2005 206

Część II Podstawowe operacje na wektorach i macierzach Podstawowe operacje na wektorach Po co nam te wektory i macierze? Wiele zagadnień inżynierskich (w tym MES) sprowadza się do rozwiązywania układów równań liniowych x +x 2 +x 0 22x +222x 2 +2x 20 x +x 2 +x 0 Rozwiązując taki układ realnie wykonujemy operacje tylko na liczbach x +x 2 +x 0 0 22x +222x 2 +2x 20 x +x 2 +x 0 0x +0x 2 +0x 00 22x +222x 2 +2x 20 x +x 2 +x 0 (2)+() 0x +0x 2 +0x 00 22x +222x 2 +2x 20 (22+)x +(222+)x 2 +(2+)x 20+0 0x +0x 2 +0x 00 22x +222x 2 +2x 20 55x +225x 2 +5x 50 Z powodów ściśle pragmatycznych oddzielamy liczby (czyli to, co jest istotne w układzie równań) od niewiadomych nazwy których nie są istotne. Np. zamiast x,x 2,x można użyća,b,c. x 0 22 222 2 (?) x 2 20 0 Definicja 2 wektorów a (a, a 2,..., a n ), b (b, b 2,..., b n ) x Mnożenie wektora przez skalar λa (λa, λa 2,..., λa n ) Przykład a (,2,) λ 0 λa (0,20,0) Dodawanie lub odejmowanie wektorów a±b (a ±b, a 2 ±b 2,..., a n ±b n ) UWAGA! Wektory muszą składać się z jednakowej ilości elementów Przykład a (,2,) b (0,20,0) a+b (,22,) Iloczyn skalarny wektorów 6.0. 5--206 I.Rokach, 2005 206 4

ab a b + a 2 b 2 +... + a n b n n a i b i UWAGA! Wektory muszą składać się z jednakowej ilości elementów Przykład a (,2,) b (0,20,0) ab 0+2 20+ 0 40 Podstawowe operacje na macierzach Definicja kilku macierzy [ ] [ ] a a A 2 a b b B 2 b a 2 a 22 a 2 b 2 b 22 b 2 c c 2 C c 2 c 22 c c 2 Mnożenie macierzy przez skalar [ ] λa λa λa 2 λa λa 2 λa 22 λa 2 Dlaczego jest tak samo jak w przypadku wektorów? Bo wektor jest macierzą (-wierszową lub -kolumnową) Dodawanie lub odejmowanie macierzy [ ] a ±b A±B a 2 ±b 2 a ±b a 2 ±b 2 a 22 ±b 22 a 2 ±b 2 UWAGA! Macierze muszą mieć jednakowe wymiary Transponowanie macierzy (a ij a ji ) A [ ] a a 2 a A a 2 a 22 a T 2 Realnie jest to obracanie macierzy wokół przekątnej Mnożenie macierzy a a 2 a 2 a 22 a a 2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a 2i c i a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a c +a 2 c 2 +a c a 2i c i a i c i2 a 2i c i2 6.0. 5--206 I.Rokach, 2005 206 5

A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a c 2 +a 2 c 22 +a c 2 a 2i c i a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a 2i c i a 2 c +a 22 c 2 +a 2 c a i c i2 a 2i c i2 A C [ ] c a a 2 a c 2 c a 2 a 22 a 2 c 22 2 c c 2 a i c i a i c i2 a 2i c i a 2i c i2 a 2 c 2 +a 22 c 22 +a 2 c 2 UWAGA! Ilość kolumn macierzy A musi być równa ilości wierszy macierzy C Macierzowy zapis iloczynu skalarnego ab a b +...+a n b n [a... a n ] b.. b n Odwracanie macierzy 0... 0 a a aa AA 0... 0 I, gdzie I........ 0 0... Warunki:. Macierz A musi być kwadratowa 2. A 0 Właściwości macierzy jednostkowej I AI IA A xi Ix x a x +a 2 x 2 +a x b Układ równań a 2 x +a 22 x 2 +a 2 x b 2 można zapisać jako a x +a 2 x 2 +a x b a a 2 a a 2 a 22 a 2 a a 2 a x x 2 x b b 2 b 6.0. 5--206 I.Rokach, 2005 206 6

Pozwiązywanie układu równań liniowych poprzez odwracanie macierzy. Ax b, gdzie A jest macierzą kwadratową ( A 0), x i b są wektorami kolumnowymi 2. A Ax A b. Ix A b 4. x A b Szczególne rodzaje macierzy Macierz symetrycznaa ij a ji A A T 0 2 2 2 ZALETA Przechowujemy w pamięci tylko połowę macierzy (dolny lub górny trójkąt) Macierz pasmowa (rzadka) 0 2 0 0 0 2 0 0 0 2 2 0 0 0 2 0 0 0 4 ZALETA Przechowujemy w pamięci tylko pasmo lub jego połowę (w przypadku macierzy symetrycznej) Zaleta MES Macierze otrzymywane w MES zwykle są symetryczne i pasmowe Część III Łagodne wprowadzenie do MES Dwie sprężyny Najprostszy ES sprężyna () x i f i k j f j u i u j Podstawowe parametry Węzły: i, j Sztywność: k (N/m, kg/mm) Przemieszczenia w węzłach: u i, u j (m, mm) Siły w węzłach:f i,f j (N, kg) 6.0. 5--206 I.Rokach, 2005 206 7

Relacja siła przemieszczenia f k(u j u i ) k, gdzie u j u i Warunek równowagi f i +f j 0 f j f i f Równania równowagi w każdym z węzłów (2 jednakowych równania) f i f k(u j u i ) ku i ku j () f j f k(u j u i ) ku i + ku j (2) Ten sam układ równań w postaci macierzowej [ ][ ] [ k k ui k k k u j albo ku f, gdzie k macierz sztywności elementu ][ ui ] u j [ fi f j ] () u wektor przemieszczeń f wektor obciążenia Właściwości macierzy sztywności. k jest macierzą symetryczną 2. k 0. Co to oznacza matematycznie i fizycznie? Warto odnotować, że wystarczy zamocować jeden z końców sprężyny, żeby każde z równań () i (2) miało rozwiązanie. Np. jeżeli u i 0 () f k 0 ku j, u j f/k Układ z dwóch sprężyn F 2 F F 2 F x k F 2 k 2 2 F F u u 2 u f f 2 f 2 f 2 2 Dla każdej ze sprężyn [ ][ ] [ ] k k u f k k u 2 f 2 [ ][ ] [ ] k2 k 2 u2 f 2 k 2 k 2 u gdzief e i wewnętrzna siłą, działającą w węźle o lokalnym numerze i w ES numere Ogólny układ równań Warunek równowagi układu: w każdym węźle siła zewnętrzna (F i ) jest równa sumie sił wewnętrznych (f e j ) f 2 2 (4) (5) F f, F 2 f 2 +f 2, F f 2 2 co daje albo KU F k k 0 k k +k 2 k 2 u u 2 F F 2 (6) 0 k 2 k 2 u F 6.0. 5--206 I.Rokach, 2005 206 8

Ogólny układ równań - inna metoda Rozszerzamy macierzy sztywności każdego z ES. Dla pierwszego elementu równania w postaci macierzowej i tradycyjnej k k 0 u f k k 0u 2 f 2 0 0 0 u 0 k u k 2 u 2 +0u f k u +k 2 u 2 +0u f 2 0u +0u 2 +0u 0 Tu kolorem szarym pokazano sztucznie dołożone elementy zerowe. Dla drugiego elementu 0 0 0 u 0 0 k 2 k 2 u 2 f 2 0 k 2 k 2 u f 2 2 Po dodaniu tych dwóch układów stronami otrzymujemy ten sam wynik, co wcześniej. k k 0 0 0 0 u f 0 k k 0+ 0 k 2 k 2 u 2 f 2 + f 2 0 0 0 0 k 2 k 2 u 0 f 2 2 UWAGA: Numeracja węzłów jest istotna! x k F k 2 2 F F 2 u u u 2 Nowe macierze elementów i nowy układ równań k 0 k 0 0 0 k 0 0 0 k 2 0 k 2 k 2 Nowy układ równań k 0 k 0 k 2 k 2 k 0 k u F 0 k 2 k 2 u 2 F 2 k k 2 k +k 2 u F Przykładowe zadanie x k P k 2 2 u u 2 u Załóżmy, że u 0, F 2 F P. Musimy wyznaczyć przemieszczenia u 2, u oraz siłę reakcji F. Uwaga: mamy układ równań z niewiadomymi, po w każdym wierszu k k 0 k k +k 2 k 2 0 u 2 F P (7) 0 k 2 k 2 u P P k 0 k u 2 +0u F k 0+(k +k 2 )u 2 k 2 u P 0 0 k 2 u 2 +k 2 u P k u 2 F [ ][ ] [ (k +k 2 ) k 2 u2 P k 2 k 2 u P] 6.0. 5--206 I.Rokach, 2005 206 9

[ (k + k 2) k 2 k 2 + k 2 k 2 k 2 ][ u2 u k u 2 F ] [ ] P+P P k u 2 F k u 2 2P k 2 u 2 +k 2 u P Rozwiązanie u 2 2P/k, u 2P/k +P/k 2, F 2P Schemat działania k 2 k 2 f f 2 k f 2 f 2 k 2 2 P u u 2 u 2 u 2 2 k u f k 2 u 2 f 2 Wyznaczamy k i f f k 2 f 2 f k 2 2 2 [k ] [k 2 ] P u u 2 u 2 u k u f k 2 u 2 f 2 Wyznaczamy siły w elementach u 0, F? u 2? u? Ku F Wyznaczamy F,u 2,u A jak jest na prawdę? D model MES (oś) MES (powierchnia) Rozkład naprężeń osiowych w środku i na powierzchni konstrukcji Łatwo zobaczyć, że przewidywania klasycznej wytrzymałości są prawidłowe na jakieś odległości od strefy gwałtownej zmiany kształtu konstrukcji. Zwykle strefa ta ma długość od 0,5 do jednego promienia odpowiedniej części cylindra. Gdyby w tej strefie naprężenia łagodnie zmieniały bym się od wyższych dla cienkiego cylindra ku niższym dla grubego cylindra nic złego we wzorach wytrzymałości bym nie było. Niestety w wierzchołku karbu mamy strefę wysokich naprężeń, która pozostanie tam nawet jeżeli go zaokrąglimy. Właśnie w takich strefach powstają pęknięcia. (Nieco) bardziej skomplikowany przykład Opis zagadnienia 6.0. 5--206 I.Rokach, 2005 206 0

x k k 2 P k 4 2 Dane wyjściowe k 00 N/mm,k 2 200 N/mm,k 00 N/mm, u 0,P 400 N,u 4 mm Co wyznaczamy?. Przemieszczenia w węzłach 2, 2. Reakcje w węzłach, 4. Siły wewnętrzne we wszystkich sprężynach Macierze sztywności Macierze sztywności elementów [ 00 00 k 00 00 ] k 2 [ ] 200 200 200 200 k [ ] 00 00 00 00 Globalna macierz sztywności 00 00 0 0 K 00 00 + 200 200 0 0 200 200 + 00 00 0 0 00 00 Ogólny układ równań Wyjściowy układ równań 00 00 0 0 00 00 200 0 0 200 00 00 0 0 00 00 0 u 2 u F 0 P 400 F 4 Końcowy układ równań [ ][ ] [ ] 00 200 u2 0 200 00 u 400+00 00u 2 F 00u +00 F 4 [ ][ ] [ ] 00 200 u2 0 200 00 u 400+00 00u 2 F 00u +00 F 4 00u 2 F [ ][ ] [ ] 2 u2 0 2 u 5 2, + 00( u ) F 4 00u 2 F [ ][ ] [ 2 u2 0 5 0 u 0] 00( u ) F 4 6.0. 5--206 I.Rokach, 2005 206

Rozwiązanie Przemieszczenia i reakcje u 2 0/5 2 mm, u u 2 /2 mm F 00u 2 200 N, F 4 00( u ) 200 N -200 N 400 N -200 N 2 2 mm mm 4 mm Siły w elementach. Sprawdzenie poprawności obliczonych wartości reakcji: 400-200-2000 2. Dla każdej sprężyny: ściskana czy rozciągana?. Sprężyna nr jest rozciągana siłą 200 N. Dlaczego? 4. Sprężyna nr jest ściskana siłą 200 N. Dlaczego? [ ][ ] [ ] 200 200 u2 f 2 5. Dla sprężyny nr 2: 200 200 u f 2 2 f 2 f 2 2 200(u 2 u ) 200 (2 ) 200 N Procedura agregacji jeszcze raz P k k 2 2 x k +k 2 k k 2 0 0 k k 0 0 0 k 2 0 k 2 +k +k 4 k k 4 0 0 k k 0 0 0 k 4 0 k 4 k 4 k u 0 u u 4 5 4 2P P F 2 0 2P F 5 Literatura. Bendsøe, M.P., Sigmund, O. Topology optimization. In: Optimization of Structural and Mechanical Systems, Ed.:Arora J.S.,World Scientific, 2007. 2. Huang, X., Xie, Y.M., Evolutionary Topology Optimization of Continuum Structures, Wiley, 200.. Yijun Liu. Introduction to finite element method. Lecture Notes. University of Cincinnati, 998. 6.0. 5--206 I.Rokach, 2005 206 2