1. PODSTAWY TEORETYCZNE
|
|
- Sabina Olszewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 1. PODSTAWY TEORETYCZNE PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami i ruchem ciał sprężystych. Ciało sprężyste jeżeli doznaje oddziaływań czynników zewnętrznych (siły, momenty, temperatura, itp.), to efektem tego działania jest deformacja ciała (przemieszczenia, odkształcenia). Po zdjęciu obciążeń ciało wraca do stanu pierwotnego. Oddziaływania, przy których ciało zachowuje się sprężyście mają pewne granice. Przekroczenie tych granic powoduje nieodwracalne zmiany. Po odjęciu przyczyny (czynnik zewnętrzny) pozostają trwałe odkształcenia - takie ciało nazywamy ciałem plastycznym. Po przekroczeniu granicy oddziaływań sprężystych mogą wystąpić tak duże deformacje, że struktura ciała zostaje zniszczona (np.: pękanie) - takie ciała nazywamy kruchymi. 1.. Definicje 1) Ciała traktujemy jako ciągłe continuum materialne (brak pęcherzy, pustek, pęknięć, itp.). Możemy określić gęstość ρ w każdym punkcie ciała. M p = lim V V (1.1) Masa całej bryły wynosi: M = p dv (1.) V Stan naturalny jest to stan do którego wraca ciało po zdjęciu obciążeń. Ciała jednorodne w każdym punkcie posiada takie same cechy. Ciała izotropowe zmiana własności ciała nie zależy od kierunku. ) Siły masowe - związane z masą (objętością) - siła masowa jednostkowa p - całkowita siła masowa
2 1. PODSTAWY TEORETYCZNE P= p dv (1.3) V 3)Siły powierzchniowe działają na powierzchnię (także wzajemne oddziaływania międzycząsteczkowe) - siła powierzchniowa jednostkowa f - całkowita siła powierzchniowa F= f ds (1.4) s F f = lim s 0 S (1.5) 1.3. Elementy rachunku wektorowego i tensorowego. Skalar jest to wielkość, która zależy od miejsca, nie zależy natomiast od przyjętego układu współrzędnych; do jego opisu wystarczy tylko jedna wartość. Zjawiska opisywane skalarowo to np.:temperatura, masa, objętość, długość, itp. Wektor układ trzech wielkości skalarnych, które są zmiennicze w zależności od układu współrzędnych; określamy przez wartość, kierunek i zwrot. Przykładem wektora jest prędkość. Tensor wielkość, którą w przestrzeni opisujemy za pomocą 9 składowych (identyfikacja punktu w przestrzeni potrzeba 3 przecinających się płaszczyzn = 3 wektory 9 składowych). 3 0 =1 tensor o walencji (rząd) 0 skalar (temperatura) 3 1 =3 tensor o walencji 1 wektor 3 =9 tensor o walencji tensor (naprężenie) 3 3 =7 tensor o walencji =81 tensor o walencji 4 przemieszczenie jest wektorem naprężenie jest tensorem odkształcenie jest tensorem osi. wersor e 1 wektor jednostkowy o kierunku i zwrocie pokrywającym się z kierunkiem i zwrotem Każdy wektor można zapisać za pomocą tensorów: A=A 1 e 1 A e A 3 e 3 (1.6)
3 1. PODSTAWY TEORETYCZNE 3 Umowa sumacyjna (Einsteina). Jeżeli w jednomianie (postać iloczynowa) ten sam indeks powtarza się dwa razy to sumujemy po tym wskaźniku, np.: 3 a i b i =a 1 b 1 a b a 3 b 3 = a i b i (1.7) i=1 A=A i e i (1.8) 1.4. Iloczyn skalarny A α B Rys Iloczyn skalarny A B=c (1.9) A B= A B cos (1.10) Iloczyn skalarny wersorów e i, e j dla i = j wynosi 1, gdyż cosinus kąta α=0 zawartego pomiędzy nimi wynosi 1, a ich długość jest jednostkowa: e i e j = e 1 e 1 = e e = e 3 e 3 =1 (1.11) Iloczyn skalarny wersorów e i e j dla i j wynosi 0, gdyż cosinus kąta α=90 zawartego pomiędzy nimi wynosi 0: e i e j = e 1 e = e e 1 = e e 3 = e 3 e = e 1 e 3 = e 3 e 1 =0 (1.1) e i e j = ij (1.13) Symbol δ ij nosi nazwę delty Kroneckera i jest tensorem o walencji : ij =[ ] (1.14) 0 0
4 1. PODSTAWY TEORETYCZNE 4 ij = { 1 dla i= j 0 dla i j (1.15) A B= A i e i B j e j =A i B j e i e j =A i B j ij =A i B i (1.16) 1.5. Iloczyn wektorowy C α B Rys. 1.. Iloczyn wektorowy A A B= C (1.17) C = A B sin (1.18) Powyższy wzór opisuje nam również pole powierzchni równoległoboku rozpiętego na wektorach A i B. Pomiędzy iloczynami wersorów zachodzą następujące zależności: 1) Wynikające z prawoskrętnego układu współrzędnych: e 1 e = e 3 (1.19) e e 1 = e 3 (1.0) ) Wynikające z tego, że sinus kąta α=0, zawartego pomiędzy wersorami e i e j dla i = j, wynosi 0: e 1 e 1 = 0 (1.1) Iloczyn wektorowy nie podlega prawu przemienności: A B B A (1.) Iloczyn wektorowy nie podlega prawu łączności, co zapisujemy:
5 1. PODSTAWY TEORETYCZNE 5 A B C A B C (1.3) Korzystając z powyższych zależności możemy zapisać wzór na współrzędne iloczynu wektorowego: C= A B= A 1 e 1 A e A 3 e 3 B 1 e 1 B e B 3 e 3 = = A B 3 A 3 B e 1 A 3 B 1 A 1 B 3 e A 1 B A B 1 e 3 W tym miejscu możemy dokonać podziału na rodzaje zapisów: 1) Zapis absolutny Przykład: A B=c (iloczyn skalarny) A B= C (iloczyn wektorowy) ) Zapis wskaźnikowy Przykład: A B=A i B i (iloczyn skalarny) Dla iloczyny wektorowego mamy: Korzystamy z symbolu permutacyjnego Ricciego (Levi-Civity) e ijk (tensor o walencji 3 7 kombinacji): e ijk= { 0 gdy indeksy się powtarzają 1 gdy permutacja jest parzysta 1 gdy permutacja jest nieparzysta (1.4) 1 3 Rys Permutacja parzysta 1 3 Rys Permutacja nieparzysta
6 1. PODSTAWY TEORETYCZNE 6 Dzięki czemu uzyskujemy: C i =e ijk A j B k (1.5) 3) Zapis macierzowy Interpretacja zapisu macierzowego dla iloczynu wektorowego: 1 e e 3 C=det[ e A 1 A A 3] 3 (1.6) B 1 B B 1.6. Tensor Mnożenie tensorowe daje w efekcie diadę. A B=T (1.7) Diada: A i e i B j e j =A i B j e i e j =A i B j e i e j (1.8) Tensor jest to operator który każdemu wektorowi przypisuje inny wektor: T a= A i B j e i e j a 1 e 1 a e a 3 e 3 = b (1.9) A 1 B 1 [ e 1 e 1 a 1 e 1 e 1 e 1 a e e 1 e 1 a 3 e 3 ]=A 1 B 1 a 1 e 1 (1.30) Przykład: Na podstawie zapisu T a określić współrzędne wektora b (podać ogólną formę w zapisie wskaźnikowym). T ij a k =A i B j a k e i jk (1.31)
7 1. PODSTAWY TEORETYCZNE 7 b i =A i B j a j 1.7. Transformacja układu współrzędnych 3 ' 3' A 1 e ' Rys Transformacja układu e 1 e i =1 1' ' 3' 1' 1 3 α 1'1 α 1' α 1'3 α '1 α ' α '3 α 3'1 α 3' α 3'3 Tab Cosinusy kierunkowe Operujemy cos kątów: i ' j =cos i ', j (1.3)
8 1. PODSTAWY TEORETYCZNE 8 1' 1 1' 1' 3 =1 (1.33) Tensor cosinusów kierunkowych tworzy macierz transformacji: 1' 1 1' 1' 3 [ D]=[ ' 1 ' 3] ' 3 (1.34) 3' 1 3' 3' Właściwości macierzy transformacji w zapisie wskaźnikowym: Macierz transformacji jest macierzą ortogonalną co oznacza: 1) Wiersze (kolumny) macierzy ortogonalnej są parami ortogonalne czyli mnożenie ich przez siebie daje 0: k ' i l ' i =0 dla k ' l ' (1.35) np: 1' 1 ' 1 1' ' 1' 3 ' 3 =0 lub: k ' i k ' j =0 dla i j (1.36) np: 1' 1 1' ' 1 ' 3' 1 3' =0 ) Suma kwadratów elementów każdego wiersza (kolumny) jest równa jedności: np.: 1' 1 1' 1' 3 =1 1' 1 ' 1 3' 1 = Prawa transformacji Wektor Dany jest wektor A w zapisie globalnym. Wektor ten można zapisać wskaźnikowo w układzie podstawowym i w układzie obróconym: A=A j e j A=A i ' (1.37) (1.38) Wersor układu obróconego ma postać:
9 1. PODSTAWY TEORETYCZNE 9 e 1' = 1' 1 e 1 1' e 1' 3 e 3 co wskaźnikowo zapisujemy: Podobnie możemy zapisać wersor układu podstawowego: e i ' = i ' j e j (1.39) e j = i ' j (1.40) Ponieważ mamy do czynienia cały czas z tym samym wektorem stwierdzenie: A zatem prawdziwe jest Podstawiamy do wzoru (1.38) wzór (1.37): A j e j = A i ' (1.41) A j i ' j =A i ' (1.4) Aby dwa wektory były sobie równe ich współrzędne muszą być sobie równe. Zatem: Jest to prawo transformacji wektora. Zgodnie z umową sumacji można go rozpisać: A i ' =A j i ' j (1.43) A i ' = A 1 i ' 1 A i ' A 3 i ' 3 Jeżeli jakaś wielkość transformuje się zgodnie z tym prawem to ta wielkość jest wektorem. Diada: w układzie podstawowym: 1.8..Tensor =T ij e i e j (1.44) W układzie obróconym: =T i ' j ' e j ' (1.45) Podobnie jak wcześniej możemy zapisać wskaźnikowo wersory: e i = i ' i Podstawiamy powyższe zależności do wzoru (1.44).Otrzymujemy: (1.46) e j = j ' j e j '
10 1. PODSTAWY TEORETYCZNE 10 T ij i ' i j ' j e j ' e i ' =T i ' j ' e j ' Z powyższego zapisu wynika: Jest to prawo transformacji tensora. Zgodnie z umową sumacyjną można je rozpisać: T i ' j ' =T ij i ' i j ' j (1.47) T i ' j ' =T i1 i ' i T i i ' i j ' T i3 i ' i T i ' j ' =T 11 i ' 1 T 1 i ' T 31 i ' 3 T 1 i ' 1 j ' T i ' j ' T 3 i ' 3 j ' T 13 i ' 1 T 3 i ' T 33 i ' 3 Obiekt, którego współrzędne transformują się według tego prawa nazywamy tensorem. a) Tensor symetryczny: b) Tensor skośnie symetryczny: Typy tensorów: T ij =T ji (1.48) T ii =0 (1.49) T ij = T ji (1.50) Symetryzacja i ukośnienie tensorów. Każdy tensor można przedstawić jako sumę tensora symetrycznego i ukośnego: T ij =T ij T [ij ] (1.51) T ij T [ij] - tensor symetryczny - tensor ukośny T ij = 1 T ij T ji T [ij ] = 1 T ij T ji (1.5) (1.53) np.:
11 [ ]=[ PODSTAWY TEORETYCZNE ] [ ] i) Tensor izotropowy: Tensor, którego współrzędne nie zmieniają się przy dowolnej transformacji układu. Tensorem izotropowym jest każdy skalar, delta Kroneckera, symbol Lewi-Civity. Zad: Udowodnić że d ij test tensorem izotropowym. Rozwiązanie: Mamy udowodnić że współrzędne d ij nie zależą od układu odniesienia czyli że: ij = i ' j ' niezależnie od wybranej macierzy transformacji. Zgodnie z prawem transformacji tensorów możemy zapisać: i ' j ' = i ' i j ' j ij = = i ' 1 11 i ' 1 j ' 1 i ' 1 13 i ' 1 i ' j ' i ' 3 i ' 3 31 i ' 3 j ' 3 i ' 3 33 Po dokonaniu redukcji otrzymamy: i ' j ' = i ' 1 i ' j ' i ' 3 1. Dla i'=j' otrzymamy: i ' i ' = i ' 1 i ' i ' 3 a to z własności macierzy transformacji wynosi 1.. Dla i' j' otrzymamy:
12 1. PODSTAWY TEORETYCZNE 1 ij ' = i ' 1 i ' j ' i ' 3 = = i ' k j ' k a to z własności macierzy transformacji wynosi 0. Zatem i ' j ' = { 1 dla i= j 0 dla i j = ij Udowodniliśmy zatem że współrzędne delty Kroneckera nie zależą od układu odniesienia, czyli jest to tensor izotropowy.
[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
Bardziej szczegółowoAnaliza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
Bardziej szczegółowo1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
Bardziej szczegółowoPODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II
Wykład II I. Algebra wektorów 2.1 Iloczyn wektorowy pary wektorów. 2.1.1 Orientacja przestrzeni Załóżmy, że trójka wektorów a, b i c jest niekomplanarna. Wynika z tego, że żaden z tych wektorów nie jest
Bardziej szczegółowo6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Bardziej szczegółowoDefi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoWprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory
Bardziej szczegółowo3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Bardziej szczegółowoMechanika teoretyczna
Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem
Bardziej szczegółowo15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoMetody matematyczne fizyki
Metody matematyczne fizyki Tadeusz Lesiak Wykład I Wektory Wektory w geometrii i algebrze Historycznie pierwszy był opis geometryczny: B Wektor = uporządkowana para punktów = ukierunkowany odcinek linii
Bardziej szczegółowoGEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Bardziej szczegółowo2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Bardziej szczegółowoMechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga.
Mechanika i Wytrzymałość Materiałów Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Przedmiot Mechanika (ogólna, techniczna, teoretyczna): Dział fizyki
Bardziej szczegółowoTENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
Bardziej szczegółowoKINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Bardziej szczegółowoAlgebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Bardziej szczegółowoDefinicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
Bardziej szczegółowo7. RÓWNANIA TEORII SPRĘŻYSTOŚCI
7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 1 7. 7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 7.1. Wprowadzenie Równania Lamego wyrażają się wzorem: u i 1 u j, j i0 (7.1) gdzie: u i jest funkcją biharmoniczną u j,j υ - dylatacja
Bardziej szczegółowoRachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
Bardziej szczegółowoGeometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Bardziej szczegółowoSTAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
Bardziej szczegółowoPYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
Bardziej szczegółowoRACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Bardziej szczegółowoDB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Bardziej szczegółowo1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych
Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,
Bardziej szczegółowoMechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Bardziej szczegółowoIloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Bardziej szczegółowo3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Bardziej szczegółowo4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
Bardziej szczegółowoCo to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Bardziej szczegółowoAlgebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Bardziej szczegółowoMacierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
Bardziej szczegółowoFizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało
Bardziej szczegółowoZadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej
Bardziej szczegółowo1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Bardziej szczegółowoUOGÓLNIONE PRAWO HOOKE A
UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej
Bardziej szczegółowoJan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
Bardziej szczegółowoMODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji
Bardziej szczegółowoIII.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.
III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem
Bardziej szczegółowo4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoTEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP)
TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) Wstęp. Podstawy matematyczne. Tensor naprężenia. Różniczkowe równania równowagi Zakład Mechaniki Budowli PP Materiały pomocnicze do TSP (studia niestacjonarne,
Bardziej szczegółowoSTAN ODKSZTAŁCENIA 2.1. WEKTOR PRZEMIESZCZENIA
Część. STAN ODKSZTAŁCENIA. STAN ODKSZTAŁCENIA.. WEKTOR PRZEMIESZCZENIA Rozważymy ciało odkształcalne wypełnione szczelnie materią (rys..). Pod wpływem czynników zewnętrznych (sił powierzchniowych, sił
Bardziej szczegółowoWprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Bardziej szczegółowoOPISY PRZESTRZENNE I PRZEKSZTAŁCENIA
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia
Bardziej szczegółowoRozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
Bardziej szczegółowoStan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:
Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane
Bardziej szczegółowoi = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Bardziej szczegółowoWyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
Bardziej szczegółowoMECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Bardziej szczegółowoTensory mały niezbędnik
28 października 2013 Rozkład wektora V na współrzędne: α = (0x, V ), β = (0y, V ), γ = (0z, V ). Rozkład wektora r, r = (x, y) na współrzędne w dwóch różnych układach współrzędnych. x = x cos θ + y sin
Bardziej szczegółowospis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
Bardziej szczegółowo3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Bardziej szczegółowoPole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowoWektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Bardziej szczegółowoZadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Bardziej szczegółowo1 Działania na macierzach
1 Działania na macierzach Dodawanie macierzy Dodawać można tylko macierze o tych samych wymiarach i robi to się następująco: [ 1 3 4 5 6 ] + [ 0 3 1 3 7 8 ] = [1 + 0 + 3 3 + 1 4 3 5 + 7 6 + 8 ] = [1 5
Bardziej szczegółowoElementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
Bardziej szczegółowoA A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
Bardziej szczegółowocx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Bardziej szczegółowoWykład 6. Typowe dwie sytuacje, gdy problem ruchu obrotowego jest problemem samym w sobie, to:
Wykład 6 Zajmiemy się dzisiaj bryłą sztywną. Bryłę sztywną możemy rozpatrywać jako zbiór wielu punktów materialnych, między którymi działają siły mające bardzo głębokie minima potencjału, co oznacza praktycznie,
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Bardziej szczegółowoPodstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Bardziej szczegółowoPokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Bardziej szczegółowoMacierze i Wyznaczniki
dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz
Bardziej szczegółowo9. PODSTAWY TEORII PLASTYCZNOŚCI
9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co
Bardziej szczegółowoMechanika. Wykład Nr 1 Statyka
1 Mechanika Wykład Nr 1 Statyka literatura, pojęcia podstawowe, wielkości fizyczne, działania na wektorach, rodzaje obciążeń, więzy i reakcje, aksjomaty statyki, środkowy układ sił redukcja i warunek równowagi,
Bardziej szczegółowoAnaliza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Bardziej szczegółowoGeometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Bardziej szczegółowoAby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
Bardziej szczegółowoA,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Bardziej szczegółowoGeometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Bardziej szczegółowoWYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11
WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim
Bardziej szczegółowoZadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Bardziej szczegółowoWykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów
Bardziej szczegółowoAnaliza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoMechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoTadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Bardziej szczegółowoALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
Bardziej szczegółowoMATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Przy
Bardziej szczegółowoDr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach
Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem
Bardziej szczegółowoPrzykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
Bardziej szczegółowoMATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Bardziej szczegółowomacierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Bardziej szczegółowo