Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS"

Transkrypt

1 MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0). Krok 1. Wstępna siatka Robimy wstępną (zwykle domyślną) siatkę, sprawdzamy jej jakość, przeprowadzamy obliczenia i robimy wstępną analizę wyników: 1. Sprawdzenie poprawności umocowania/obciążenia przez analizę reakcji oraz ogólnego wyglądu konstrukcji odkształconej. Jeżeli są błędy wracamy do kroku 0 2. Czy dalsza analiza ma sens? Jeżeli wynik (naprężenia, ugięcie, itp.) wyraźnie przekracza dopuszczalny poziom, to dalsza analiza traci sens i trzeba zmienić samą konstrukcję 3. Za pomocą wskaźników błędu oceniamy dokładność rozwiązania oraz wyznaczamy strefy, w których gęstość siatki ma być zmieniona 4. Decyzja czy dalsze obliczenia są konieczne i możliwe? Kroki 2-N. Osiągnięcie wyników zbieżnych o wysokiej dokładności Jednym z celów tych kroków jest eliminacja elementów modelu (np. karbów) powodujących rozbieżność wyników 1. Generujemy nową siatkę o zmienionej gęstości, sprawdzamy jej jakość, ew. zmieniamy siatkę 2. Przeprowadzamy obliczenia, oceniamy dokładność wyników (wskaźnik błędu, różnica pomiędzy wynikami po uśrednianiu węzłowym i elementowym, itp.) 3. W przypadku rozbieżności zmieniamy model, w przypadku osiągnięcia zbieżności kończymy obliczenia Część II Uproszczenia modelu 1. Elementy prostsze od 3D Typy modeli elementów konstrukcji Generalne zasady 1. Żyjemy w świecie 3D, każdy element konstrukcji ciało 3D 2. Czy musimy w MES wszystko modelować używając elementów 3D? Niekoniecznie. 3. Opis geometrii ciała zawsze wymaga 3 niezależnych wymiarów, opis pól naprężeń/odkształceń może być prostszy. W MES modelujemy fizykę, nie geometrię! Model MES model CAD. Jeżeli w jakieś części konstrukcji dominują naprężenia w jednym kierunku, to ją można modelować za pomocą prostych typów elementów. 4. Używanie elementów uproszczonych (wszystkie poza 3D) zawsze oznacza połączenie rozwiązania analitycznego z numerycznym. 5. Czy można uparcie używać tylko elementy 3D (a la SimulationXpress, DesignCheck)? Skutki: duży czas obliczeń, niska dokładność, brak uniwersalnych algorytmów generacji siatek 3D dla wszystkich typów elementów.

2 6. Podstawowe zasady modelowania w MES: 1) Upraszczamy; 2) Upraszczamy; 3) Upraszczamy... W literaturze angielskojęzycznej często rozróżnia się elementy skończone podobne do obiektów rzeczywistych (3D i płaskie) i niezawierające dziwnych stopni swobody (rotations) od bardziej sztucznych (pręty, belki, powłoki). Pierwsze noszą nazwę solid elements, czyli elementy-ciała, drugie structural elements, czyli elementy konstrukcyjne. Elementy fizyczne (Solid Elements) Element przestrzenny 1. Brak uproszczeń od strony równań równowagi. Elementy tego typu są autentycznymi elementami 3D 2. W każdym węźle mamy 3 stopnie swobody: przemieszczenia w kierunku X,Y,Z 3. Wyniki są w 100% wynikami numerycznymi 4. Wady tych elementów: bardzo długi czas obliczeń, duże wymagania sprzętowe 5. Zastosowanie: konstrukcję klockowate (trzy wymiary podobne), złącza 6. Dodatkowe uproszczenia: usuwanie zaokrągleń, faz, małych otworów, itp. Płaski stan naprężeń (plane stress) Obciążenie (ściskanie lub rozciąganie) działa tylko w jednej płaszczyźnie modelu W kierunku prostopadłym mamy zerowe naprężenia oraz niezerowe odkształcenia. To pozwala uprościć równania równowagi Wyniki są częściowo numeryczne (przemieszczenia i naprężenia w płaszczyźnie przekroju), częściowo analityczne (zerowe naprężenia normalne i styczne) W każdym węźle mamy 2 stopnie swobody: przemieszczenia w kierunku X,Y na płaszczyźnie Zastosowanie: bardzo ograniczone, często typowo naukowe, pojedyncze części Płaski stan odkształceń (plane strain) y x W płaskim stanie odkształceń mamy brak odkształceń w jednej z płaszczyzn modelu (w danym przypadku ε xx = 0). Odpowiednia składowa naprężeń (σ xx ) jest niezerowa. Obszar zastosowań jest bardzo podobny do p.s.n. Osiowa symetria (axisymmetric) I.Rokach,

3 1. W przypadku symetrii osiowej konstrukcji i obciążenia modelujemy połowę przekroju konstrukcji wzdłuż osi 2. W każdym węźle mamy 2 stopnie swobody: przemieszczenia w kierunku promieniowym i osiowym 3. Wyznaczamy odkształcenia i naprężenia w płaszczyźnie przekroju oraz obwodowe (prostopadłe do płaszczyzny przekroju) 4. Zastosowanie w technice: bardzo szerokie Cechy elementów fizycznych W elementach fizycznych płaskich występuje połączenie rozwiązania numerycznego z dodatkiem teoretycznym. p.s.n.: σ xx = σ xy = σ xz = 0; p.s.o.: ε xx = γ xy = γ xz = 0; osiowa symetria: ε θθ = u/r, γ rθ = γ zθ = 0 Jedynym typem obciążenia jest obciążenie realne: siła lub przemieszczenie przyłożone do powierzchni lub do całej objętości ciała. Brak obciążeń wypadkowych ( kumulacyjnych ) typowych dla elementów konstrukcyjnych (siła skupiona, moment, itp). Elementy konstrukcyjne (Structural Elements) Pręt (lina, kabel) Definicja 1. Element konstrukcji, w którym jeden z wymiarów (np x) jest wielokrotnie większy od pozostałych (x y, z) 2. Element jest raczej prostolinijny (wykrzywiony = belka), obciążenie rozciąganie lub (z ograniczeniami) ściskanie. 3. Element ten sprowadza obiekt 3D do obiektu 1D (osi). W najprostszym przypadku ma 1 stopień swobody w węźle (przemieszczenie osiowe). Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do osi pręta działa tylko jeden typ obciążenia siła osiowa. Przy braku obciążenia rozłożonego siła osiowa jest jednakowa dla całego pręta. Ściema W każdym przekroju naprężenie = siła / pole (σ = F/A). O ile relacja σ = F/A nie jest warunkiem koniecznym do używania prętów, ona realnie dość często ma miejsce. Wtedy możemy powiedzieć, że rozkład naprężeń w pręcie faktycznie nie zależy od współrzędnych y, z. W takim przypadku nie ma sensu modelować pręt, jako ciało 3D. Fundamentalna cecha pręta sprowadzenie naprężeń w przekroju do siły osiowej. Równanie równowagi dla pręta zawiera tylko siłę osiową. Tylko ją wyznacza program MES i wyznacza dokładnie. Stałe naprężenie w każdym przekroju nie jest wymagane od elementu konstrukcji, który modelujemy prętem. To może być łańcuch, taśma perforowana, I.Rokach,

4 Istotnym jest to, że modelowany element zachowuje się, jak pręt (kabel, lina) w skali całej konstrukcji. Wskaźnik błędu używany do oceny dokładności naprężeń (obliczanie różnicy naprężeń na granicach ES) w przypadku konstrukcji prętowych działa raczej jakościowo. Skok naprężeń na granicy pomiędzy grubym i cienkim prętami sugeruje raczej błąd samego modelu a nie błąd gęstości siatki. W złączu kilku prętów ani siły osiowe, ani naprężenia nie muszą być jednakowe. F F Modele 2D a szczególnie 3D mogą być sztucznie niestabilne Podsumowując można stwierdzić, że: Wybór elementów prętowych oznacza nasze przekonanie, że w tym elemencie konstrukcji dominuje siła osiowa MES w miarę poprawnie wyznacza tylko tę siłę. Wzór na naprężenia to już dodatek zewnętrzny. Belka Definicja 1. Element konstrukcji, w którym jeden z wymiarów (np x) jest wielokrotnie większy od pozostałych (x y, z). SWS zakłada x 10 max(y, z) 2. Dominujące obciążenie zginanie. Może być wykrzywiony. 3. W każdym węźle mamy 6 stopni swobody: 3 przemieszczenia i 3 obroty Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do osi x obciążenie sprowadza się do: max 3 momentów, siły poprzecznej i siły osiowej. Ściema Przekrój belki po obciążeniu pozostaje prostopadły do osi obojętnej (tylko przy braku siły poprzecznej). Ściema Naprężenia normalne w przekroju zmieniają się liniowo. Realnie to jest najprostsza aproksymacja, czasem dość dokładna, czasem (belki mocno wykrzywione) nie. Podobnie jak w przypadku pręta, tu my zakładamy, że podstawową współrzędną, od której zależy pole naprężeń w belce jest x (kierunek wzdłuż osi). Zależności (bardzo uproszczone) naprężeń od pozostałych współrzędnych są brane z teorii. F σ sr = o + M Wnioski praktyczne 1. Przestrzenny rozkład naprężeń normalnych w belce sprowadza się do 1 siły osiowej F o (podobnie jak w pręcie reprezentuje czyste rozciąganie) i 1 (2D) lub 2 (3D) momentów M (reprezentują odchylenie naprężeń od średniej wartości i powstałe wskutek tego zginanie). 2. Analogicznie 1 (2D) lub 2 (3D) siły poprzeczne i moment skrętny reprezentują sumę (dokładniej 3 różne całki po powierzchni przekroju) naprężeń stycznych. 3. Fundamentalna cecha belki sprowadzenie naprężeń w przekroju do momentu(ów) gnącego(ych), momentu skrętnego, siły osiowej i sił(y) poprzecznej(ych). Równanie równowagi dla belki zawiera tylko te składowe. Tylko je wyznacza program MES i wyznacza (dla sił i momentów skupionych w węzłach) dokładnie I.Rokach,

5 Wypaczenie lub deplanacja (warping) przekroju przy skręcaniu Rys z TMG-A_89 Zjawisko to dotyczy tylko profili otwartych (ceownik, teownik, itp.), szczególnie cienkościennych. W wyniku jego kąt skrętu przekroju zmienia się nieliniowo wzdłuż osi belki. Nie dotyczy profili wypełnionych i zamkniętych Moment M pokazany na rysunku powodujący deplanację nazywa się bimomentem i ma nietypowy wymiar (w SI Nm 2 ) Naprężenia w elementach belkowych Można zmusić program MES do obliczenia naprężeń w belkach (SWS robi to), ale będą to naprężenia wyznaczone ze wzorów analitycznych ( obcych dla MES). Wskaźniki błędu używana do oceny dokładności rozwiązania ponownie nie pracują w przypadku połączenia belek. M M Ostateczne podsumowanie Element belkowy jest nieporównanie bardziej skomplikowanym (ale i znacznie dokładniejszym) niż element prętowy Używanie elementów wymaga od inżyniera sporej wiedzy i doświadczenia. Jeżeli program nie pomaga projektantowi (np. w obliczaniu offsetów), to pomylić się bardzo łatwo. W takiej sytuacji warto jeszcze raz przeliczyć konstrukcję, używając jakościowo inny model (np. powłokowy). Powłoka shell lub płyta plate Definicja 1. Element konstrukcji, w którym dwa z wymiary (np x, y) są większe od trzeciego (x, y z) 2. Dominujące obciążenie zginanie. W przypadku dominacji rozciągania (cienkie powłoki) zamiast terminu powłoka używa się membrana. Zwykle membrana płaski stan naprężeń I.Rokach,

6 3. Płyta jest płaska, powłoka wykrzywiona (powierzchnia rury). W większości programów MES używa tylko elementów powłokowych. W wielu programach plate oznacza uproszczony element, w którym działają tylko momenty i brak sił osiowych. 4. W każdym węźle 6 stopni swobody (3 przemieszczenia, 3 obroty) Uproszczenia dotyczące pola naprężeń Prawda W każdym przekroju prostopadłym do płaszczyzny środkowej obciążenie sprowadza się do momentu gnącego, siły poprzecznej i siły osiowej. Ściema Naprężenia normalne w przekroju zmieniają się liniowo. Podobnie jak w przypadku belek to jest najprostsza aproksymacja, czasem dość dokładna, czasem nie. Uwagi praktyczne W odróżnieniu od belek, dla powłok w wielu programach da się policzyć naprężenia w dowolnym punkcie i wyświetlić ich rozkład w 3D. Podobnie jak w prętach i belkach równania równowagi powłok nie zawierają naprężeń. Podstawowe parametry: momenty i siły. Ich program wyznacza bezpośrednio, naprężenia nie. Podsumowanie dla najbardziej opornych Elementy fizyczne Nazwa Do elementów fizycznych (ang. solid element) należą elementy płaskie, które modelują płaski stan naprężeń, płaski stan odkształceń oraz symetrię osiową Cechy Tylko 2 stopnia swobody w każdym węźle Dlaczego nie 3D Rozwiązanie odpowiedniego zagadnienia za pomocą modelu 3D nie da żadnej nowej informacji w porównaniu do wyników modelu uproszczonego Zalety Upraszczają model, przyspieszają obliczenia Wady Połączenie elementów różnych typów (np. płaskich i 3D) w ramach jednego modelu jest skomplikowane lub niemożliwe Elementy konstrukcyjne Nazwa Do elementów konstrukcyjnych (ang. structural element) należą pręty, belki i powłoki Cechy Elementy belkowe i powłokowe mają 6 stopni swobody w każdym węźle, prętowe 3 stopnie Dlaczego nie 3D Rozwiązanie odpowiedniego zagadnienia za pomocą modelu 3D zwykle jest bardzo czasochłonne lub praktycznie niemożliwe Zalety Bardzo upraszczają model, drastycznie przyspieszają obliczenia lub je umożliwiają, relatywnie łatwo Wady Joints hell, wieloznaczne warunki umocowania i obciążenia Wykład został opracowany w LATEXe za pomocą klasy BEAMER, graficznego pakietu PGF/TikZ i pakietu do tworzenia wykresów PGFPLOTS I.Rokach,

Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).

Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). Krok

Bardziej szczegółowo

Kolejność postępowania w prostej analizie MES w SWS

Kolejność postępowania w prostej analizie MES w SWS MES-1 10 Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). Krok 1. Wstępna

Bardziej szczegółowo

Elementy belkowe i. Brak źródeł koncentracji naprężeń (chyba, że jest możliwość ich uwzględnienia).

Elementy belkowe i. Brak źródeł koncentracji naprężeń (chyba, że jest możliwość ich uwzględnienia). MES1 11 powłokowe Elementy belkowe i Część I Elementy belkowe Kiedy używamy modeli belkowe? Elementy konstrukcyjne, w których jeden z wymiarów jest wielokrotnie (> 4 razy) większy od innych i zginanie

Bardziej szczegółowo

Podsumowanie trzech podstawowych modeli używanych w wytrzymałości materiałów Nazwa teorii. Podstawowe wyniki

Podsumowanie trzech podstawowych modeli używanych w wytrzymałości materiałów Nazwa teorii. Podstawowe wyniki Elementy belkowe i powło- MES-1 11 kowe Część I Elementy belkowe Podsumowanie trzech podstawowych modeli używanych w wytrzymałości materiałów Nazwa teorii Prętów Wałów Belek Rodzaj odkształcenia Rozciąganie,

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? MES 4 Zbieżność. Wskaźniki błędu 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi (3

Bardziej szczegółowo

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? MES 4 błędu Zbieżność. Wskaźniki 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi (3

Bardziej szczegółowo

CIENKOŚCIENNE KONSTRUKCJE METALOWE

CIENKOŚCIENNE KONSTRUKCJE METALOWE CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami

Bardziej szczegółowo

Osiadanie kołowego fundamentu zbiornika

Osiadanie kołowego fundamentu zbiornika Przewodnik Inżyniera Nr 22 Aktualizacja: 01/2017 Osiadanie kołowego fundamentu zbiornika Program: MES Plik powiązany: Demo_manual_22.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania

Bardziej szczegółowo

MES Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

MES Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? Zbieżność. Wskaź- MES1 05 niki błędu 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Kilka spraw praktycz-

Kilka spraw praktycz- Kilka spraw praktycz- MES2 2 nych Część I Uproszczenia, cd. Symetria konstrukcji Zasada nr. Uwzględniamy symetrię rakz -displ. y-displ.=z-displ. z z y y z y rak z-displ. rak z-displ. W tym przypadku wystarczy

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

ZGINANIE PŁASKIE BELEK PROSTYCH

ZGINANIE PŁASKIE BELEK PROSTYCH ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej

Bardziej szczegółowo

8. WIADOMOŚCI WSTĘPNE

8. WIADOMOŚCI WSTĘPNE Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują

Bardziej szczegółowo

Zbieżność. Wskaźniki błędu MES Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

Zbieżność. Wskaźniki błędu MES Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? MES-1 05 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi (3 stopnie w skali Richtera),

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Wprowadzenie do WK1 Stan naprężenia

Wprowadzenie do WK1 Stan naprężenia Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2) Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 7 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonego kątownika

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki

Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Informacje ogólne Podpora ograniczająca obrót pasa ściskanego słupa (albo ramy) może znacząco podnieść wielkość mnożnika obciążenia,

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

ZASTOSOWANIE ELEMENTÓW POWŁOKOWYCH ZGINANA PŁYTA I BELKA CIENKOŚCIENNA.

ZASTOSOWANIE ELEMENTÓW POWŁOKOWYCH ZGINANA PŁYTA I BELKA CIENKOŚCIENNA. ZASTOSOWANIE ELEMENTÓW POWŁOKOWYCH ZGINANA PŁYTA I BELKA CIENKOŚCIENNA. 1. Wprowadzenie Elementy powłokowe są elementami płata powierzchniowego w przestrzeni i są definiowane za pomocą ich warstwy środkowej

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

Kilka spraw prak- Uproszczenia, cd. Symetria konstrukcji. Zasada nr 1. Uwzględniamy symetrię. Nawet jeżeli jej nie ma:-)

Kilka spraw prak- Uproszczenia, cd. Symetria konstrukcji. Zasada nr 1. Uwzględniamy symetrię. Nawet jeżeli jej nie ma:-) Kilka spraw prak- MES-2 5 tycznych Część I Uproszczenia, cd. Symetria konstrukcji Zasada nr. Uwzględniamy symetrię. Nawet jeżeli jej nie ma:-) Kiedy możemy zastosować symetrię automatycznie Model ma być

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna) PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Mechanika techniczna i wytrzymałość materiałów Rok akademicki: 2012/2013 Kod: STC-1-105-s Punkty ECTS: 3 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Poziom studiów:

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem

Bardziej szczegółowo

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1 Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Symulacja Analiza_rama

Symulacja Analiza_rama Symulacja Analiza_rama Data: 29 czerwca 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o modelu... 2

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ.

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. Cw1_Tarcza.doc 2015-03-07 1 DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. 1. Wprowadzenie Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Wytrzymałość Materiałów II Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 1 S 0 4 44-0 _0 Rok: II Semestr:

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

ĆWICZENIE 6 Kratownice

ĆWICZENIE 6 Kratownice ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Obsługa programu Soldis

Obsługa programu Soldis Obsługa programu Soldis Uruchomienie programu Po uruchomieniu, program zapyta o licencję. Można wybrać licencję studencką (trzeba założyć konto na serwerach soldisa) lub pracować bez licencji. Pliki utworzone

Bardziej szczegółowo

Symulacja Analiza_wytrz_kor_ra my

Symulacja Analiza_wytrz_kor_ra my Symulacja Analiza_wytrz_kor_ra my Data: 19 września 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o

Bardziej szczegółowo

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności Informacje ogólne Założenia dotyczące stanu granicznego nośności przekroju obciążonego momentem zginającym i siłą podłużną, przyjęte w PN-EN 1992-1-1, pozwalają na ujednolicenie procedur obliczeniowych,

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

Zginanie proste belek

Zginanie proste belek Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach

Bardziej szczegółowo

Symulacja Analiza_stopa_plast

Symulacja Analiza_stopa_plast Symulacja Analiza_stopa_plast Data: 31 maja 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o modelu...

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga.

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Mechanika i Wytrzymałość Materiałów Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Przedmiot Mechanika (ogólna, techniczna, teoretyczna): Dział fizyki

Bardziej szczegółowo

Symulacja Analiza_moc_kosz_to w

Symulacja Analiza_moc_kosz_to w Symulacja Analiza_moc_kosz_to w Data: 16 czerwca 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o modelu...

Bardziej szczegółowo

8. Metody rozwiązywania układu równań

8. Metody rozwiązywania układu równań 8. Metody rozwiązywania układu równań [K][u e ]=[F e ] Błędy w systemie MES Etapy modelowania metodami komputerowymi UKŁAD RZECZYWISTY MODEL FIZYCZNY MODEL DYSKRETNY Weryfikacja modelu fiz. Weryfikacja

Bardziej szczegółowo

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Wytrzymałość Materiałów I Kod ECTS Status przedmiotu: obowiązkowy MBM 1 S 0 3 37-0_0 Język wykładowy:

Bardziej szczegółowo

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM. Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo