4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami stałmi. Jeżeli ciężar właściw onacm pre γ, a ojętość rł pre, to całkowit ciężar ora ciężar elementu ojętości rł możem wraić worami: γ, d γ d. Po podstawieniu tc ależności do worów (4.5) ora (4.6) i skróceniu pre stał cnnik γ otrmam: d r r d d,,, (4.11) d. (4.1) Osarem całkowania jest tutaj cała ojętość rł. Z otrmanc worów wnika, że położenie środka ciężkości (środka mas) rł jednorodnc ależ tlko od ic kstałtu geometrcnego. W wnacaniu środków ciężkości pomocne jest następujące twierdenie, którego dowód poostawiam telnikowi. Jeżeli rła jednorodna ma płascnę, oś lu środek smetrii, to środek ciężkości tej rł ędie leżał na płascźnie, osi lu w środku smetrii. Prkład 4.1. Wnacć położenie środka ciężkości jednorodnego ostrosłupa foremnego o podstawie kwadratu o oku i wsokości (rs. 4.3). Rowiąanie. Ponieważ oś jest osią smetrii, środek ciężkości ędie leżał na tej osi, cli 0. Wstarc atem wnacć jedną współrędną treciego woru (4.1).
d O Rs. 4.3. Wnacanie środka ciężkości ostrosłupa d. (a) W mianowniku tego woru wstępuje ojętość ostrosłupa: 3. () W celu wnacenia całki wstępującej w licniku woru (a) ostrosłup podielim na element d w postaci cienkic płtek kwadratowc, równoległc do podstaw, o oku i gruości d. Ojętość tak prjętego elementu d d. Bok krawędi elementu najdiem proporcji wnikającej rsunku:., stąd ( )
Mam więc: d ( ) d. (c) Po podstawieniu worów (c) i () do (a) i wkonaniu całkowania otrmam sukaną współrędną środka ciężkości: ( ) 0 d 4. 3
4... Środek ciężkości powiercni jednorodnej Takie rł, jak cienkie płt, lac, powłoki itp., którc gruość jest nikomo mała w porównaniu poostałmi wmiarami, ędiem nawali powiercniami materialnmi. Jeżeli ciężar jednostki powiercni jest stał, d to powiercnię taką nawam powiercnią jednorodną. d ciężar d jednostki powiercni onacm pre γ, powiercnię całkowitą O pre, a powiercnię elementarną pre d (rs. 4.4), to możem napisać: Rs. 4.4. Wnacanie położenia środka ciężkości powiercni γ, d γ d. Po podstawieniu tc ależności do worów (4.6) i po skróceniu licnika i mianownika pre γ const otrmam wor na współrędne środka ciężkości powiercni jednorodnej: d d,,. (4.13) Wstępujące w tc worac całki są całkami powiercniowmi rociągniętmi na całą powiercnię. Jeżeli powiercnia jednorodna jest figurą płaską i leż na płascźnie np., to współrędna 0 ora d d d,. (4.14) Punkt o współrędnc określonc worami (4.14) nawam środkiem ciężkości figur płaskiej.
4..3. Środek ciężkości linii jednorodnej W astosowaniac tecnicnc cęsto spotkam rł, takie jak drut, pręt, lin itp., którc dwa wmiar są nikomo małe w porównaniu długością. Brł te nawam liniami materialnmi, tn. prjmujem, że cała masa jest rołożona wdłuż linii środków d B prekrojów poprecnc. Jeżeli ciężar jednostki długości jest stał, to d taką linię nawam linią A jednorodną. Po onaceniu ciężaru jednostki O długości pre, a długości linii γ AB (rs. 4.5) pre ciężar całkowit linii i ciężar elementu długości ędą wrażał wor: γ, d γ d. Rs. 4.5. Wnacanie położenia środka ciężkości linii jednorodnej Postępując analogicnie jak w prpadku powiercni jednorodnej e worów (4.6), otrmam wor na współrędne środka ciężkości linii jednorodnej: gdie jest długością linii. d d,, d, (4.15)