Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
|
|
- Elżbieta Markiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnik Gdńsk Wydził Elektrotechniki i Automtyki Ktedr Inżynierii Systemów Sterowni Teori sterowni Sterowlność i obserwowlność liniowych ukłdów sterowni Zdni do ćwiczeń lbortoryjnych termin T Oprcownie: Kzimierz Duzinkiewicz, dr hb. inż. Robert Piotrowski, dr inż.
2 Wskzówki:. Jko mteriły pomocnicze nleży trktowć mteriły wykłdowe z przedmiotów Teori sterowni, Modelownie i identyfikcj orz Modelownie i podstwy identyfikcji z I stopni studiów.. Przed wykonniem tej części zdni zpoznj się lub przypomnij sobie funkcje dostępne w środowisku MATLAB/Simulink, które mogą być użyteczne przy rozwiązywniu podnych niżej zdń. List tych funkcji podn zostł n końcu niniejszego zestwu zdń (Dodtek ). Zdnie Dne są ukłdy opisne równnimi różniczkowymi postci: I). d y t dt dy t y t k u t dt y y II). d y t d y t dy t 9 y t 5 u t dt dt dt y y y III). d y t dy t du t b c b c y t u t dt dt dt dy t y t y t dt y y y Wykonj poniższe poleceni: ) Nrysuj schemty blokowe przedstwionych modeli systemów, wybierz możliwe zmienne stnu. b) Przedstw opis systemów w przestrzeni stnu (równni stnu i równnie wyjści). Podj postcie mcierzy A, B, C orz D. c) Oblicz wrtości liczbowe mcierzy A, B, C orz D. Dl wykonni tej części zdni skorzystj z funkcji dostępnych w środowisku MATLAB. Dne: I) k,,5,, II) jk podne w równnich, III)., b, c 5.
3 d) Korzystjąc z odpowiednich poleceń środowisk MATLAB znjdź opis trnsmitncyjny wielominowy i z pomocą zer, biegunów orz wzmocnieni sttycznego. Potrktuj znlezione opisy, jko definicje nowych systemów. Dokonj konwersji otrzymnych opisów do opisu w przestrzeni stnu. Czy otrzymne w tym punkcie opisy są identyczne z otrzymnymi w punktch b i c? e) Korzystjąc ze środowisk MATLAB npisz m-plik tworzący mcierz obserwowlności i sterowlności ukłdu (dwom sposobmi, z pomocą elementrnych opercji n mcierzch orz z pomocą poleceń: obsv i ctrb) i sprwdzjący obserwowlność i sterowlność ukłdu. Wykonj to dl mcierzy otrzymnych w punkcie c orz d. Czy otrzymne wyniki są identyczne? Zdnie Dne są nstępujące ukłdy: I). x () x (t) - u(t) x () x (t) y(t) -5 II). u[k] 5 z - x x [k] z - x x [k] 6 y[k] - -
4 III). 8 u(t) x () x () x () x (t) x (t) x (t) y(t) IV). x [k] z - x u[k] z - x x [k] 5 z - x x [k] y[k] -9 V). x () u (t) x (t) y (t) -, x () x (t) u (t) x () x (t) x () x (t) 5 y (t) -,5
5 Wykonj poniższe poleceni: ) Przedstw opis systemów w przestrzeni stnu (równni stnu i równnie wyjści) określjąc numeryczne postcie mcierzy A, B, C orz D. b) Korzystjąc z odpowiednich poleceń środowisk MATLAB znjdź opis trnsmitncyjny wielominowy i z pomocą zer, biegunów orz wzmocnieni sttycznego. Potrktuj znlezione opisy, jko definicje nowych systemów. Dokonj konwersji otrzymnych opisów do opisu w przestrzeni stnu. Czy otrzymne w tym punkcie opisy są identyczne z otrzymnymi w punkcie? c) Korzystjąc ze środowisk MATLAB npisz m-plik tworzący mcierz obserwowlności i sterowlności ukłdu (dwom sposobmi, z pomocą opercji n mcierzch orz z pomocą poleceń: obsv i ctrb) i sprwdzjący obserwowlność i sterowlność ukłdu. Wykonj to dl mcierzy otrzymnych w punkcie orz b. Czy otrzymne wyniki są identyczne? Zdnie Dl systemu ZLK wykonj nstępujące poleceni: ) Wyprowdź zlineryzowny, stcjonrny model systemu dl stnu równowgi: belk w ~ położeniu poziomym ( t ), kulk w położeniu stłym ~ p t p, ~ p t const p ) ( b) Korzystjąc z wyników uzysknych w punkcie orz przykłdowych dnych liczbowych dl systemu ZLK i m p.5 zproponuj model przestrzeni stnu dl systemu ZLK (wybór zmiennych stnu i określenie mcierzy A, B, C i D). c) Dl zproponownej w punkcie b relizcji systemu w przestrzeni stnu otrzymj jego digonlną postć knoniczną. d) Odpowiedz n pytnie, czy system ZLK jest sterowlny? Spróbuj to zrobić korzystjąc nie tylko z jednej metody. Podj mtemtyczne szczegóły udzielonej odpowiedzi. Uzsdnij otrzymne wyniki ptrząc n fizyklną nturę problemu. e) Określ knoniczną postć sterowlności dl systemu ZLK. Skomentuj strukturę uzysknej postci. Wydj sąd n temt sterowlności systemu ZLK ptrząc n digonlną postć knoniczną jego relizcji uzyskną w punkcie c. Porównj ten sąd z uzysknym w punkcie d. f) Odpowiedz n pytnie, czy system ZLK jest obserwowlny? Spróbuj to zrobić korzystjąc nie tylko z jednej metody. g) Określ knoniczną postć obserwowlności dl systemu ZLK. Wydj sąd n temt obserwowlności systemu ZLK ptrząc n digonlną postć knoniczną jego relizcji uzyskną w punkcie c. Porównj ten sąd z uzysknym w punkcie f. 5
6 Zdnie Dl systemu ZLK wykonj nstępujące poleceni: ) Wyprowdź zlineryzowny, stcjonrny model systemu dl niestbilnego stnu równowgi odpowidjącego zerowemu odchyleniu whdł b) Korzystjąc z wyników uzysknych w punkcie orz przykłdowych dnych liczbowych dl systemu ZLK zproponuj modele przestrzeni stnu dl systemu ZLK (wybór zmiennych stnu i określenie mcierzy A, B, C i D) dl nstępujących przypdków: i. jedno-wejście, jedno-wyjście: wejście f t, wyjście t ii. jedno-wejście, wiele-wyjść: jedno wejście iii. wiele-wejść, wiele wyjść: dw wejści ; f t i dw wyjści t i t w ; f t i t, dw wyjści t i t w. c) Dl zproponownej w punkcie b. relizcji systemu w przestrzeni stnu dl przypdku i. otrzymj jej digonlną postć knoniczną. d) Odpowiedz n pytnie, czy system ZLK jest sterowlny dl kżdego z przypdków wymienionych w punkcie b? Spróbuj to zrobić korzystjąc nie tylko z jednej metody. Podj mtemtyczne szczegóły udzielonej odpowiedzi. Uzsdnij otrzymne wyniki ptrząc n fizyklną nturę problemu. e) Określ knoniczną postć sterowlności dl systemu ZLK tylko dl przypdku i. z punktu b. Skomentuj strukturę uzysknej postci. f) Odpowiedz n pytnie, czy system ZLK jest obserwowlny dl kżdego z przypdków wymienionych w punkcie b? Spróbuj to zrobić korzystjąc nie tylko z jednej metody. g) Określ knoniczną postć obserwowlności dl systemu ZLK tylko dl przypdku i. z punktu b. Zdnie 5 Dl systemu ZLK wykonj nstępujące poleceni: ) Korzystjąc z modelu wejście wyjście orz przykłdowych dnych liczbowych dl systemu ZLK zproponuj modele przestrzeni stnu dl systemu ZLK (wybór zmiennych stnu i określenie mcierzy A, B, C i D) dl nstępujących przypdków: i. jedno-wejście, jedno-wyjście: wejście - npięcie twornik v A t, wyjście przemieszczenie kątowe włu obciążeni t ; ii. jedno-wejście, jedno-wyjście: wejście - npięcie twornik kątow włu obciążeni t ; L L v A t, i wyjście prędkość b) Dl zproponownej w punkcie. relizcji systemu w przestrzeni stnu dl przypdku i. otrzymj jej digonlną postć knoniczną. 6
7 c) Odpowiedz n pytnie, czy system ZLK jest sterowlny dl kżdego z przypdków wymienionych w punkcie? Spróbuj to zrobić korzystjąc nie tylko z jednej metody. Podj mtemtyczne szczegóły udzielonej odpowiedzi. Uzsdnij otrzymne wyniki ptrząc n fizyklną nturę problemu. d) Określ knoniczną postć sterowlności dl systemu ZLK dl obydwu przypdków z punktu. Skomentuj strukturę uzysknej postci. Wydj sąd n temt sterowlności systemu ZLK z przypdku i. ptrząc n digonlną postć knoniczną jego relizcji uzyskną w punkcie b. Porównj ten sąd z uzysknym w punkcie c. e) Odpowiedz n pytnie, czy system ZLK jest obserwowlny dl kżdego z przypdków wymienionych w punkcie? Spróbuj to zrobić korzystjąc nie tylko z jednej metody. f) Określ knoniczną postć obserwowlności dl systemu ZLK dl obydwu przypdków. z punktu. Wydj sąd n temt obserwowlności systemu ZLK z obu przypdków ptrząc n digonlną postć knoniczną jego relizcji uzyskną w punkcie b. Porównj ten sąd z uzysknym w punkcie e. Zdnie 6 Dl podnych niżej systemów jedno-wejście, jedno-wyjście: x t x t. u t x t x t x t y t u t x t x t x t. x t x t u t x t 5 x t x t y t x t u t x t x t x t. x t x t u t x t x t x t x t y t t t t t x x u t x x 7
8 . x t x t x t x t u t x t x t x t x t y t t t t t x x u t x x ) Określ trnsmitncję H s w torze wejście wyjście. b) Określ knoniczną postć digonlną. c) Wydj sąd o sterowlności systemu. d) Oblicz knoniczną postć sterowlności systemu. e) Wydj sąd o obserwowlności systemu. f) Oblicz knoniczną postć obserwowlności; porównj ją z knoniczną postcią sterowlności z punktu d. 8
9 Dodtek A. Ogólne poleceni MATLAB size(nme) length(nme) eye(n) zeros(m,n) ones(m,n) t = t:dt:tf zwrc wymiry mcierzy nme zwrc wymir wektor nme tworzy mcierz jednostkową (digonlną) I n o wymirch n x n tworzy tblicę zer o wymirch m x n tworzy tblicę jedynek o wymirch m x n tworzy tblicę elementów równomiernie rozłożonych rozpoczynjąc od wrtości początkowej t i kończąc n wrtości tf z krokiem dt B. Opis systemu liniowego stcjonrnego w przestrzeni stnu MATLAB umożliwi cztery strukturlne formy opisu systemów liniowych stcjonrnych, trzy związne z dziedziną czsu i czwrtą związną z dziedziną częstotliwości. W dziedzinie czsu są to nstępujące:. opis w przestrzeni stnu ss określony mcierzmi A, B, C orz D systemu,. opis trnsmitncyjny wielominowy tf określony tblicmi współczynników wielominów licznik num orz minownik den trnsmitncji systemu,. opis trnsmitncyjny z pomocą zer, biegunów i wzmocnieni zpk określony tblicmi pierwistków licznik (zer) z, pierwistków minownik (biegunów) p orz wzmocnieniem sttycznym systemu k. Definicje systemów w kżdej z tych form podne są niżej SysNme = ss(a, B, C, D); SysNme = tf(num, den); SysNme = zpk(z, p, k); W pierwszym wyrżeniu w pozycji rgumentu D jest interpretowne jest jko mcierz zerow odpowiednich rozmirów. Kżde z tych poleceń może być wykorzystne do zdefiniowni systemu, jeżeli system liniowy SysNme zostł możn przeprowdzić ekstrkcję jego prmetrów: [num, den] = tfdt(sysnme); [z, p, k] = zpkdt(sysnme); [A, B, C, D] = ssdt(sysnme) Możliw jest konwersj z modeli przestrzeni stnu do modeli trnsmitncyjnych SysNme = ss(a,b,c,d); SysNmetf = tf(sysnme); SysNmezpk = zpk(sysnme) i ekstrkcj dnych tych modeli [num, den] = tfdt(sysnme, v ); [z, p, k] = zpkdt(sysnme, v ) Posidjąc model trnsmitncyjny wielominowy, możn też dokonć jego konwersji do modelu przestrzeni stnu: SysNmess = ss(sysnmetf) 9
10 C. Wrtości włsne, wielomin chrkterystyczny eig(a) poly(a) roots(den) znjduje wrtości włsne mcierzy A znjduje współczynniki wielominu chrkterystycznego systemu dl mcierzy A znjduje pierwistki wielominu chrkterystycznego Przykłdy użyci: Znlezienie współczynników wielominu chrkterystycznego: ChrPoly = poly(a); Znlezienie biegunów systemu: Poles = roots(chrpoly); Znlezienie wrtości włsnych systemu otwrtego: EigSO = eig(a); D. Przeksztłceni podobieństw, postcie knoniczne cnon ssss funkcj form knonicznych z kluczem modl dl digonlnej postci knonicznej funkcj przeksztłceni jednej relizcji systemu w przestrzeni stnu w inną Uzysknie knonicznej postci digonlnej według wzorów podnych n wykłdzie: [Tdcf, E] = eig(a); Adcf = inv(tdcf)*a*tdcf; Bdcf = inv(tdcf)*b; Cdcf = C*Tdcf; Ddcf = D; (dcf digonl cnonicl form) Uzysknie knonicznej postci digonlnej z wykorzystniem funkcji Cnon: [SysNmem, Tm] = cnon[sysnme, modl ]; Am = SysNmem.; Bm = SysNmem.b; Cm = SysNmem.c; Dm = SysNmem.d; E. Sterowlność P = ctrb(sysnme) obliczenie mcierzy sterowlności dl SysNme rnk(p) ctrbf oblicznie rzędu mcierzy P dekompozycj systemu n część sterowlną i niesterowlną (jeżeli jest niesterowlny) W środowisku MATLAB nie m klucz dl funkcji cnon dl obliczni knonicznej postci sterowlności. Mcierz trnsformcji możn obliczyć: T CCF PP CCF gdzie: P - mcierz sterowlności systemu opisywnego mcierzmi A i B
11 P CCF - odwrotn mcierz sterowlności systemu dnego w postci knonicznej sterowlności Mcierz P CCF m postć: P CCF n n gdzie, i są współczynnikmi wielominu chrkterystycznego systemu z mcierzą A. Po utworzeniu mcierzy T CCF dlsze postępownie może być nlogiczne, jk dl wyznczni knonicznej postci digonlnej (ogólnie jk dl wyznczni kżdej postci podobnej systemu) F. Obserwowlność Q = obsv(sysnme) obliczenie mcierzy obserwowlności dl SysNme obsvf cnon dekompozycj systemu n część obserwowlną i nieobserwowlną (jeżeli jest nieobserwowlny) funkcj form knonicznych z kluczem compnion dl knonicznej postci obserwowlności (nleży unikć stosowni ze względu n złe uwrunkownie obliczeń) Mcierz trnsformcji możn obliczyć: T Q Q gdzie: Q - mcierz obserwowlności systemu opisywnego mcierzmi A i C Q - mcierz obserwowlności systemu dnego w postci knonicznej obserwowlności Mcierz Q m postć: Q n n gdzie, i są współczynnikmi wielominu chrkterystycznego systemu z mcierzą A. Po utworzeniu mcierzy T dlsze postępownie może być nlogiczne, jk dl wyznczni knonicznej postci digonlnej (ogólnie jk dl wyznczni kżdej postci podobnej systemu).
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą
Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
DZIAŁ 2. Figury geometryczne
1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Metody Lagrange a i Hamiltona w Mechanice
Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt
Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy
Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Układy równań liniowych Macierze rzadkie
wr zesie ń SciLb w obliczenich numerycznych - część Sljd Ukłdy równń liniowych Mcierze rzdkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Pln zjęć. Zdnie rozwiązni ukłdu równń liniowych..
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
Wytrzymałość materiałów II
Wytrzymłość mteriłów II kierunek Budownictwo, sem. IV mteriły pomocnicze do ćwiczeń oprcownie: dr inż. Iren Wgner, mgr inż. Jont Bondrczuk-Siwick TREŚĆ WYKŁADU Sprężyste skręcnie prętów pryzmtycznych.
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony
Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE Ib ZAKRES PODSTAWOWY
. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje liczbę do odpowiedniego zbioru liczb stosuje cechy podzielności
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.
Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Kls technikum Przedmiotowy system ocenini wrz wymgnimi edukcyjnymi Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące (W). Wymienione
PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,
WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Energia aktywacji jodowania acetonu. opracowała dr B. Nowicka, aktualizacja D.
Ktedr Chemii Fizycznej Uniwersytetu Łódzkiego Energi ktywcji jodowni cetonu oprcowł dr B. Nowick, ktulizcj D. Wliszewski ćwiczenie nr 8 Zkres zgdnień obowiązujących do ćwiczeni 1. Cząsteczkowość i rzędowość
Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny
Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.
MATeMAtyka 2 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyk 2 Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy Kls 2 Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.
Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP Wyróżnione zostły
Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA
kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom podstawowy
Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile. LICZBY RZECZYWISTE Kl. I poziom podstwowy podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych
SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Określenie, wykres i własności funkcji homograficznej.
Ktrzyn Gwinkowsk Hnn Młeck VI L.O im J. Korczk W ZSO nr w Sosnowcu. SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM Temt: Określenie, wykres i włsności unkcji homogricznej. Cele lekcji: poznwcze:
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY Arkusz I Instrukcj dl zdjącego 1. Sprwdź, czy rkusz egzmincyjny zwier 8 stron (zdni 1 3). Ewentulny brk zgłoś przewodniczącemu zespołu ndzorującego
Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH
Wykłd z mtemtyki dl studentów Inżynierii Środowisk Wykłd. Litertur. Gewert M., Skoczyls Z.: Anliz mtemtyczn, Oficyn Wydwnicz GiS, Wrocłw, 0.. Jurlewicz T., Skoczyls Z.: Algebr liniow, Oficyn Wydwnicz GiS,
WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012
mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU
Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).
Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy
Algebra WYKŁAD 6 ALGEBRA 1
Algebr WYKŁAD 6 ALGEBRA Ogóln postć ukłdu równń liniowych Rozwżmy ukłd m równń liniowych z n niewidomymi m m n n mn n n n b b b m o współczynnikch ik orz b i. Mcierz ukłdu równń wymiru m n m postć A m
Laboratorium z metod numerycznych.
Lbortorium z metod numerycznych.. ĆWICZENIA Z PODSTAW OBSŁUGI MATHCAD- Uwg: Instrukcj do ćwiczeń sporządzon jest w progrmie MthCd, nleży wygenerowć w rmch ćwiczeni podobny dokument zwierjący: Opisy, Obliczeni,
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
Laboratorium z metod numerycznych. = ewaluacja (wyliczenie) wyrażenia - wyświetlenie wyniku
(C) - by &J. Wąs & L.Dutkiewicz & Lbortorium z metod numerycznych.. ĆWICZENIA Z PODSTAW OBSŁUGI MATHCAD- Uwg: Instrukcj do ćwiczeń sporządzon jest w progrmie MthCd, nleży wygenerowć w rmch ćwiczeni podobny
WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM
WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę
FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1
FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5
PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach
PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j
POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A
POLTECHNKA GDAŃSKA Wydził Elektrotechniki i Automtyki Ktedr Energoelektroniki i Mszyn Elektrycznych M O D E L O W A N E S Y M U L A C J A S Y S T E M Ó W M E C H A T O N K Kierunek Automtyk i obotyk Studi
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy
Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY
Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1
Temt Afiniczne odwzorownie płszczyzny n płszczyznę Krol Btor GGiIŚ, II rok, niestc. grp SPRAWOZDANIE DANE FORMALNO-PRAWNE:. Zleceniodwc: Akdemi Górniczo-Htnicz Wydził Geozdezji Górniczej i Inżynierii Środowisk.
Podstawy programowania obiektowego
1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 1. SUMY ALGEBRAICZNE rozpoznje jednominy i sumy lgebriczne
Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA
Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni
Matematyczne Podstawy Informatyki
Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy
Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne
Wprowadzenie: Do czego służą wektory?
Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny
Wymagania edukacyjne z matematyki
Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć
Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
Pogrubieniem oznczono wymgni, które wykrczją poz podstwę progrmową dl zkresu podstwowego. 1. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych
Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty
Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów
Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii
Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
3. Rozkład macierzy według wartości szczególnych
Rozkłd mcierzy wedłg wrtości szczególnych Wprowdzenie Przypomnimy podstwowe zleżności związne z zstosowniem metody nmnieszych kwdrtów do proksymci fnkci dyskretne Podstwowe równnie m nstępącą postć: +
O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI
ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa
Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik
Pojęcia Działania na macierzach Wyznacznik macierzy
Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to
Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego
- projektownie Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego Instrukcj Człowiek - njlepsz inwestycj Projekt współfinnsowny przez Unię Europejską w rch Europejskiego Funduszu Społecznego
Podstawy układów logicznych
Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
pieczątk WKK Kod uczni - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP WOJEWÓDZKI Drogi Uczniu, witj n III etpie konkursu mtemtycznego. Przeczytj uwżnie
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
Materiały diagnostyczne z matematyki poziom podstawowy
Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:
Matematyka stosowana i metody numeryczne
Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx
Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja
Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.
Załącznik nr 3 do PSO z matematyki
Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących
MATeMAtyka 2. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyk Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Próbny egzamin maturalny MARZEC 2017 schemat oceniania. Klucz odpowiedzi do zadań zamkniętych C A D C C B C C C D C B A A A C A B D D C A C A C
Próbny egzmin mturlny MARZEC 7 schemt ocenini Klucz odpowiedzi do zdń zmkniętych 4 5 7 8 9 4 5 7 8 9 4 5 C A D C C B C C C D C B A A A C A B D D C A C A C Schemt ocenini zdń otwrtych Zdnie. (-) x Rozwiąż
Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy
Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej
Podstawy środowiska Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Automatyki i Robotyki Podstawy środowiska Matlab Poniżej przedstawione jest użycie podstawowych poleceń w środowisku
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2017/18
Przedmiot: Mtemtyk Kls: 2 Nuczyciel: Justyn Pwlikowsk Tygodniowy wymir godzin: 4 Progrm nuczni: 378/2/2013/2015 Poziom: podstwowy Zkres mteriłu wrz z przybliżonym rozkłdem terminów prc klsowych, sprwdzinów
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową
METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO
MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 151-156, Gliwice 2006 METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO JÓZEF GACEK LESZEK BARANOWSKI Instytut Elektromechniki,