Aleksander Jakimowicz. Dynamika nieliniowa a rozumienie współczesnych idei ekonomicznych
|
|
- Stanisława Nadzieja Bukowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Aleksander Jakimowicz Dynamika nieliniowa a rozumienie wsółczesnych idei ekonomicznych
2 Plan rezenacji Dynamika ekonomiczna w rzesrzeni aramerów. Oczekiwania adaacyjne a oczekiwania racjonalne. Krzywa Phillisa. Dynamika ekonomiczna w rzesrzeni fazowej. Przesrzeń fazowa w modelu R.M. Goodwina. Wrażliwość sanu końcowego. Wykresy bifurkacyjne i dynamika. Ekonomeria a dynamika nieliniowa.
3 Warunek ocząkowy Trajekorie Przesrzeń aramerów Paramer konrolny a Arakory kodowane kolorem (warość wykładnika Launowa) Paramer konrolny b Zmienna a aramer. Przesrzeń aramerów Przykład dwuwymiarowej rzesrzeni aramerów: ekran komuera o rozdzielczości 55 (25 komórek) 1.Szukamy odowiedzi na yanie dokąd zmierza rajekoria o zadanej liczbie ieracji kodowanie kolorem odowiedniej komórki. 2.Im większa rozdzielczość, ym dokładniejsze badanie. 3.Isona jes akże długość każdej rajekorii im więcej ieracji, ym ewniejszy wynik.
4 Friedman: krzywa Phillisa wsara oczekiwaniami Monearyści rozarują krzywą Phillisa wsarą oczekiwaniami o osaci: x f u gdzie x o oczekiwana soa inflacji. Paramer a rerezenuje soień oddziaływania oczekiwań inflacyjnych na fakyczną soę inflacji i ma w modelu szczególne znaczenie. Klasyfikuje on różne ujęcia eoreyczne według kryerium zamienności celów oliyki gosodarczej. W unkcie równowagi, gdzie x = x (fakyczna soa inflacji równa się soie rzewidywanej), orzymujemy: x f 1 u a a x
5 Friedman: krzywa Phillisa wsara oczekiwaniami Warość a = 1 imlikuje brak długookresowej zamienności między bezrobociem i inflacją i odowiada rzyadkowi nauralnej soy bezrobocia zależność Phillisa jes wedy linią ionową. Dla a = 0 mamy zarówno sabilną wymienność krókookresową, jak i długookresową. Gdy 0 < a < 1, mamy zamienność długookresową, ale mniej korzysną niż w krókim okresie. Zgodnie z oglądami monearysów sodziewana inflacja dososowuje się do fakycznej soniowo, a roces formowania się oczekiwań ma charaker adaacyjny. Podmioy gosodarcze uczą się na odsawie doświadczenia, ich oczekiwania inflacyjne dososowane są do só inflacji wysęujących w rzeszłości, rzy czym koreka rzewidywań dokonywana jes w oarciu o ułamek osanio oełnionego błędu (c): x x 1 c x 1 x, 0 1 c
6 Friedman a Lucas Rober Lucas zakwesionował orawność odejścia monearysycznego oarego na oczekiwaniach adaacyjnych. Przyjmuje on funkcję zagregowanej odaży o osaci nasęującej: * y P P 0 gdzie y jes logarymem realnej rodukcji, a symbole P i P * oznaczają odowiednio logarymy fakycznego i rzewidywanego oziomu cen. Inflacja wywoła wzros realnej rodukcji, o ile rzecięne oczekiwania cenowe ukszałują się oniżej cen fakycznych. Włączenie do rozważań oczekiwań adaacyjnych nie wyklucza możliwości owsawania sysemaycznych odchyleń i siłą rzeczy nadal będzie isniała zarówno krókookresowa, jak i długookresowa wymienność między inflacją a realną rodukcją. Wobec ego założenie oczekiwań adaacyjnych daje wynik srzeczny z hioezą soy nauralnej. Osaecznie okazuje się, że jeśli niedoskonałe oczekiwania są jedynym źródłem szywności cen, o rzyjęcie racjonalnych oczekiwań równoważne jes isnieniu soy nauralnej. Gdy odmioy gosodarcze dysonują ymi samymi informacjami co władze, wedy racjonalne oczekiwania imlikują zanik nawe krókookresowej zamienności między inflacją a realną rodukcją.
7 Model emiryczny Przedmioem badań numerycznych jes model makroekonomiczny zawierający krzywą Phillisa wsarą oczekiwaniami adaacyjnymi oraz srzężenie zwrone od inflacji do bezrobocia działające za ośrednicwem oliyki monearnej: d f gdzie m jes soą wzrosu nominalnej x f u a x, 0, 0 a 1 odaży ieniądza, a wsółczynnik b d u rerezenuje elasyczność bezrobocia w x 1 x c x x, 0 c 1 sosunku do soy wzrosu ieniądza w ujęciu realnym. u f m x, u b 0 1 b u 1 u 2 u ,14 2 5,53 3 3,68 Lisey Zjednoczone Króleswo soa inflacji oddziałuje na decyzje sołeczeńswa doyczące konsumcji i oszczędności, sąd ma wływ na globalny oy, en zaś wyznacza wielkość rodukcji i soę bezrobocia.
8 c Kaskada chaosu Przesrzeń aramerów (a, c): b = 0,1 i m = 16, = Friedman = Lucas Model monearysyczny jes orawny dla małego c. Oczekiwania racjonalne nie są konieczne dla isnienia nauralnej soy bezrobocia. a
9 Wnioski: Zgodnie z odsawowym wierdzeniem monearyzmu, długookresowa wymienność między inflacją i bezrobociem jes możliwa ylko rzy założeniu, że racownicy sale ulegają iluzji ieniężnej. Wrowadzenie do rozważań oczekiwań adaacyjnych owinno znosić ę wymienność i rowadzić do koncecji nauralnej soy bezrobocia (a = 1). Oczekiwania adaacyjne uzasadniają isnienie soy nauralnej ylko wedy, gdy wsółczynnik ych oczekiwań jes sosunkowo mały. Orzymany rezula nie owierdza akże w całości hioezy Lucasa, że ylko racjonalne oczekiwania mogą wyłumaczyć isnienie soy nauralnej. W srzeczności z dokrynami obu szkół soi eż sabilność sanów równowagi dla warości a < 1, imlikujących wymienność długookresową, mniej korzysną od krókookresowej. Obniżanie się warości wsółczynnika oczekiwań inflacyjnych a owoduje dryf sysemu w kierunku krawędzi chaosu.
10 Zmienna fazowa y Przesrzeń fazowa Zmienna fazowa x Trajekorie Miejsce docelowe Arakor eriodyczny Punk w nieskończoności Arakor chaoyczny Każda oś ekranu komuera rerezenuje zmienną układu. Rozoczęcie obliczeń musi być orzedzone okryciem owierzchni ekranu siaką, kórej komórki są małymi kwadraami. Zazwyczaj im gęssza siaka, ym dokładniejsze będzie wyznaczenie zbiorów rzyciągania. Począkowo wszyskie komórki siaki są bezbarwne, nasęnie siaka jes esowana, co olega na zbadaniu, dokąd zmierza rajekoria unku środkowego każdego kwadracika. Każdy aki unk rerezenuje odrębny sosób zainicjowania orbiy. Gdy zosanie usalony san końcowy danej rajekorii, komórce nadawany jes kolor. Warunki ocząkowe Dynamika w rzesrzeni fazowej
11 Charakerysyka formalna modelu Goodwina y c k c k l y y y y c k l dochód narodowy, konsumcja, dk d inwesycje indukowane, inwesycje auonomiczne, konsumcja auonomiczna. y 2 1 * 1 y y 1 y O y A yy By G Ay a By by 1 y2 G d sin y y 2 1 c b
12 Równanie odsawowe d 2 d y 2 a y y d y by c y3 1 d d sin gdzie symbole a, b, c, d, oznaczają aramery. Równanie oisuje oscylaor z wymuszeniem jeden z najciekawszych nieliniowych sysemów dynamicznych w nauce. Paramer łumienia (a) odzwierciedla elasyczność gosodarki, sąd jego wływ na sysem może być ineresujący.
13 Przesrzeń fazowa modelu ze zbiorami rzyciągania jedenasu arakorów eriodycznych: unk w nieskończoności, dwa sabilne unky sałe, sześć sabilnych orbi o okresie 2 i dwie sabilne orbiy o okresie 4 380,0 y -380,0 y -18,0 18,0 (a = 43.95, b = c = 0.5, d = 27.4, ω = 1)
14 Wrażliwość sanu końcowego zjawisko wysęujące najczęściej w obecności frakalnych brzegów zbiorów rzyciągania, kóre olega na ym, że mała nieewność w określeniu warunku ocząkowego może sowodować dużą uraę zdolności określenia, do kórego arakora będzie zmierzał sysem. Efeky frakalnych brzegów zbiorów rzyciągania ojawiają się, gdy z sysemie isnieje nawe niewielki egzogeniczny szum.
15 Rynek z oczekiwaniami adaacyjnymi q q q d s d S D q a b s arc g c q Wzros odaży jes owolny zarówno dla niskich, jak i wysokich cen. W ierwszym rzyadku rzyczyną są koszy związane z uruchomieniem rodukcji i koszy sałe, naomias w drugim ograniczone zdolności rodukcyjne rzedsiębiorsw. 0 S w b w 1 arc g 1 a c b
16 6,0 Wnioski z wykresów bifurkacyjnych 2,0 0,45 0,18 w 0,68 (a) (b) 0,0 2,0 0,18 w c 0,68 W L 3,7 Złożona dynamika w normalnym obszarze racy rynku = douszczamy fak, że ludzie nie są doskonale racjonalni, ale unikają większych błędów. cw 0,18 0,68
17 Ekonomeria a dynamika nieliniowa Dynamika nieliniowa wskazuje, że doasowując jakikolwiek model o nieskończonej dokładności sochasyczny lub deerminisyczny do danych o skończonej z naury dokładności nie da się uniknąć niejednoznaczności. Więcej na en ema: McCauley J.L., Noninegrabiliy, chaos, and comlexiy, Physica A 1997,. 237, nr 3 4, s
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak E i E E i r r 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania Reguła poliyki monearnej
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) E i E E i r r ν φ θ θ ρ ε ρ α 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania
[ ] [ ] [ ] [ ] 1. Sygnały i systemy dyskretne (LTI, SLS) y[n] x[n] 1.1. Systemy LTI. liniowy system dyskretny
Cyfrowe rzewarzanie sygnałów --. Sygnały i sysemy dyskrene (LTI, SLS).. Sysemy LTI Pojęcie sysemy LTI oznacza liniowe sysemy niezmienne w czasie (ang. Linear Time - Invarian ). W lieraurze olskiej częściej
Dyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem
Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu
Niezawodność elemenu nienarawialnego. Model niezawodnościowy elemenu nienarawialnego. Niekóre rozkłady zmiennych losowych sosowane w oisie niezawodności elemenów 3. Funkcyjne i liczbowe charakerysyki niezawodności
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Zakłócenia w modelu DAD/DAS: Wzros produkcji poencjalnej; Zakłócenie podażowe o sile
PRÓBKOWANIE RÓWNOMIERNE
CPS 6/7 PRÓKOWANIE RÓWNOMIERNE Próbkowanie równomierne, Ujes rocesem konwersji sygnału analogowego (o czasie ciągłym) do osaci róbeku obieranych w równych odsęach czasu. Próbkowanie rzerowadza się orzez
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
KOOF Szczecin: www.of.szc.pl
IX OLIMPIADA FIZYCZNA (959/960). Soień III, zadanie doświadczalne D. Źródło: Komie Główny Olimiady Fizycznej; Aniela Nowicka: Olimiady Fizyczne IX i X. PZWS, Warszawa 965 (sr. 6 69). Nazwa zadania: Działy:
Makroekonomia 1 Wykład 14 Inflacja jako zjawisko monetarne: długookresowa krzywa Phillipsa
Makroekonomia 1 Wykład 14 Inflacja jako zjawisko monearne: długookresowa krzywa Phillipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handlu Zagranicznego Plan wykładu Krzywa Pillipsa: przypomnienie
Rozdział 3. Majątek trwały
Rozdział 3. Mająek rwały Charakerysyka i odział rodzajowy środków rwałych Środki rwałe są rzeczowymi składnikami mająku rwałego o znacznej warości, rwale użykowanymi w jednosce gosodarczej, wykorzysywanymi
Makroekonomia 1 Wykład 15 Inflacja jako zjawisko monetarne: długookresowa krzywa Phillipsa
Makroekonomia 1 Wykład 15 Inflacja jako zjawisko monearne: długookresowa krzywa Phillipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handlu Zagranicznego Plan wykładu Prawo Okuna Związek między bezrobociem,
WPROWADZENIE Podsawowe kierunki badań Zachowania klasyczne i dziwne Diagnosyka dziwnych zachowań Źródła zachowań chaoycznych Sysem pojęciowy Przykłady
KLASYFIKACJA ZACHOWAŃ WYBRANYCH UKŁADÓW DYNAMICZNYCH Wojciech MITKOWSKI Kaedra Auomayki Wydział Elekroechniki, Auomayki, Inormayki i Elekroniki Akademia Górniczo-Hunicza w Krakowie Zielona Góra, lisopada
Wykład 5. Kryzysy walutowe. Plan wykładu. 1. Spekulacje walutowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji
Wykład 5 Kryzysy waluowe Plan wykładu 1. Spekulacje waluowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji 1 1. Spekulacje waluowe 1/9 Kryzys waluowy: Spekulacyjny aak na warość
ROZDZIAŁ 8 WIELOSTABILNOŚĆ W NIELINIOWYM MODELU CYKLU KONIUNKTURALNEGO Z OCZEKIWANIAMI
Rober Kruszewski ROZDZIAŁ 8 WIELOSTABILNOŚĆ W NIELINIOWM MODELU CKLU KONIUNKTURALNEGO Z OCZEKIWANIAMI Wprowadzenie Głównym celem opracowania jes zbadanie wpływu prosego mechanizmu oczekiwań na dynamikę
dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW
Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
2. Próbkowanie równomierne
Cyrowe rzewarzanie sygnałów -- 3. Próbkowanie równomierne Wrowadzenie Próbkowanie równomierne, jes rocesem konwersji sygnału analogowego (o czasie ciągłym) do osaci róbek obieranych w równych odsęach czasu.
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Konsumpcja. Powyższe założenia sprawiły, że funkcja konsumpcji Keynesa przyjmuje postać: (1) gdzie a > 0, 0 < c < 1
Konsumcja Do tej ory omawialiśmy różne modele analizujące wływ różnych zmiennych na krótko o długookresową równowagę w gosodarce. Nie koncentrowaliśmy się jednak na szczegółowym badaniu zachowania oszczególnych
XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r.
Komisja Egzaminacyjna dla Akuariuszy XLI Egzamin dla Akuariuszy z 8 sycznia 7 r. Część II Maemayka ubezieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 1 minu Warszawa, 9 aździernika
Makroekonomia 1 Wykład 14 Naturalna stopa bezrobocia i krzywa Philipsa
Makroekonomia Wykład 4 Naralna sopa bezrobocia i krzywa hilipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handl Zagranicznego Oryginalne badanie hilipsa A. W. hilips (LSE, 958: obserwacja empiryczna
HETEROGENICZNE OCZEKIWANIA A KONKURENCJA DOSKONAŁA. MODEL MATEMATYCZNY
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 35, T. 2 Rober Kruszewski Szkoła Główna Handlowa w Warszawie HETEROGENICZNE OCZEKIWANIA A KONKURENCJA DOSKONAŁA. MODEL MATEMATYCZNY STRESZCZENIE
DYNAMIKA PŁYNÓW. Przepływ płynów Strumień płynu Płyn idealny Linie prądu Równanie ciągłości strugi Prawo Bernoulli ego Zastosowania R.C.S. i PR.B.
DYNAMIKA PŁYNÓW Przeływ łynów rumień łynu Płyn idealny Linie rądu Równanie ciągłości srugi Prawo Bernoulli ego Zasosowania R.C.. i PR.B. PRZEPŁYW PŁYNÓW Przedmioem badań dynamiki łynów (hydrodynamiki i
Urządzenia i Układów Automatyki Instrukcja Wykonania Projektu
KAEDRA ENERGOELEKRYKI POLIECHNIKI WROCŁAWSKIEJ Urądenia i Układów Auomayki Insrukcja Wykonania Projeku Auory: rof. dr hab. inż. Eugenius Rosołowski dr inż. Pior Pier dr inż. Daniel Bejmer Wrocław 5 I.
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA
Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
WZROST GOSPODARCZY A BEZROBOCIE
Wojciech Pacho & WZROST GOSPODARCZ A BEZROBOCIE Celem niniejszego arykułu jes pokazanie związku pomiędzy ezroociem a dynamiką wzrosu zagregowanej produkcji. Poszukujemy oowiedzi na pyanie czy i jak silnie
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne
Makroekonomia 1 Wykład 13 Naturalna stopa bezrobocia i krzywa Phillipsa
Makroekonomia Wykład 3 Nauralna sopa bezrobocia i krzywa hillipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handlu Zagranicznego Oryginalne badanie hillipsa A. W. hillips (LSE, 958: obserwacja empiryczna
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono
WPŁYW CEN ROPY NAFTOWEJ NA PRODUKCJĘ I INFLACJĘ W WYBRANYCH PAŃSTWACH UNII EUROPEJSKIEJ 1
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/, 5, sr. 48 59 WPŁYW CEN ROPY NAFTOWEJ NA PRODUKCJĘ I INFLACJĘ W WYBRANYCH PAŃSTWACH UNII EUROPEJSKIEJ Andrzej Geise Kaedra Ekonomerii i Saysyki, Uniwersye
ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
ROZDZIAŁ 12 MIKROEKONOMICZNE PODSTAWY MODELI NOWEJ EKONOMII KLASYCZNEJ
Kaarzyna Szarzec ROZDZIAŁ 2 MIKROEKONOMICZNE PODSTAWY MODELI NOWEJ EKONOMII KLASYCZNEJ. Uwagi wsępne Program nowej ekonomii klasycznej, w kórej nazwie podkreślone są jej związki z ekonomią klasyczną i
Mikroekonomia, cz. III. Wykład 1
Mikroekonomia, cz. III Wykład 1 Równowaga Równowaga na rynku danego dobra x (doskonale konkurencyjnym) oznacza unkt, w którym rzy danej cenie (cenie równowagi) wielkość oytu zrównuje się z wielkością odaży
MAKROEKONOMIA 2. Wykład 1. Informacje wstępne. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 1. Informacje wsępne Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Zasady zaliczenia przedmiou i jego organizacja. Plan ramowy wykładu, czyli co wiemy po Makroekonomii
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE
Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego
cx siła z jaką element tłumiący działa na to ciało.
Drgania układu o jedny sopniu swobody Rozparzy układ składający się z ciała o asie połączonego z nierucoy podłoże za poocą eleenu sprężysego o współczynniku szywności k oraz eleenu łuiącego o współczynniku
4. MODELE ZALEŻNE OD ZDARZEŃ
4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę
1. Sygnały i systemy dyskretne (LTI, SLS) (1w=2h)
Cyfrowe rzewarzanie sygnałów Jace Rezmer --. Sygnały i sysemy dysrene (LI, SLS (w=h.. Sysemy LI Pojęcie sysemy LI oznacza liniowe sysemy niezmienne w czasie (ang. Linear ime - Invarian. W lieraurze olsiej
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak
Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy
INWESTYCJE. Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak
INWESTYCJE Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak Inwesycje Inwesycje w kapiał rwały: wydaki przedsiębiorsw na dobra używane podczas procesu produkcji innych dóbr Inwesycje
Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Inwestycje. Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak
Inwesycje Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak CIASTECZOWY ZAWRÓT GŁOWY o akcja mająca miejsce w najbliższą środę (30 lisopada) na naszym Wydziale. Wydarzenie o związane jes z rwającym od
MAKROEKONOMIA 2. Wykład 2. Dynamiczny model DAD/DAS. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 2. Dynamiczny model DAD/DAS Dagmara Mycielska Joanna Siwińska - Gorzelak Plan wykładu Uwzględnienie dynamiki w modelu AD/AS. Modelowanie wpływu zakłóceń lub zmian polityki gospodarczej
I. KINEMATYKA, DYNAMIKA, ENERGIA
iagoras.d.l I. KINEMATYKA, DYNAMIKA, ENERGIA KINEMATYKA: Ruch i soczynek są względne w zależności od wyboru układu odniesienia ciało w ym samym momencie może znajdować się w ruchu lub być w soczynku (n.
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Założenia metodyczne optymalizacji ekonomicznego wieku rębności drzewostanów Prof. dr hab. Stanisław Zając Dr inż. Emilia Wysocka-Fijorek
Założenia meodyczne opymalizacji ekonomicznego wieku rębności drzewosanów Prof. dr hab. Sanisław Zając Dr inż. Emilia Wysocka-Fijorek Plan 1. Wsęp 2. Podsawy eoreyczne opymalizacji ekonomicznego wieku
VII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Mikroekonomia. Wykład 2
Mikroekonomia Wykład 2 1 Podatki ośrednie (od srzedaży) Podatki ośrednie (obrotowy, akcyza, VAT, itd.) owodują, że cena, jaką łaci nabywca, czyli konsument (P D ) jest wyższa od ceny, którą otrzymuje dostawca,
Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim
WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni
BAYESOWSKI MODEL TOBITOWY Z ROZKŁADEM t STUDENTA W ANALIZIE NIESPŁACALNOŚCI KREDYTÓW 1
Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie Jerzy Marzec BAYEOWKI MODEL TOBITOWY Z ROZKŁADEM TUDENTA W ANALIZIE NIEPŁACALNOŚCI KREDYTÓW 1 1. Wrowadzenie Głównym
WNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny
kłady zasilania ranzysorów Wrocław 28 Punk pracy ranzysora Punk pracy ranzysora Tranzysor unipolarny SS GS p GS S S opuszczalny oszar pracy (safe operaing condiions SOA) P max Zniekszałcenia nieliniowe
Dendrochronologia Tworzenie chronologii
Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu
= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.
ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne
Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu
Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego
II.1. Zagadnienia wstępne.
II.1. Zagadnienia wsępne. Arysoeles ze Sagiry wyraźnie łączy ruch z czasem: A jes niemożliwe, żeby zaczął się albo usał ruch, gdyż jak powiedzieliśmy ruch jes wieczny, a ak samo i czas, bo czas jes albo
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania
EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz
EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TERMODYNAMIKA TECHNICZNA I CHEMICZNA WYKŁAD IX RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja) ADSORPCJA KRYSTALIZACJA, ADSORPCJA 1 RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja)
Polityka fiskalna. Makroekonomia II Joanna Siwińska-Gorzelak
Poliyka fiskalna Makroekonomia II Joanna Siwińska-Gorzelak Budże rządu Wydaki publiczne: Zakupy rządowe (G) zakupy dóbr i usług (również inwesycyjne) Płaności ransferowe (TR) zasiłki i inne płaności, za
Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO. z dnia 2 czerwca 2017 r.
DZIENNIK URZĘDOWY NARODOWEGO BANKU POLSKIEGO Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO z dnia 2 czerwca 2017 r. zmieniająca uchwałę w sprawie wprowadzenia
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,
Przemieszczeniem ciała nazywamy zmianę jego położenia
1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że
Makroekonomia II POLITYKA FISKALNA. Plan. 1. Ograniczenie budżetowe rządu
Makroekonomia II Wykład 6 POLITKA FISKALNA Wykład 6 Plan POLITKA FISKALNA. Ograniczenie budżeowe rządu. Obliczanie długu i deficyu.2 Sosunek długu do PK.3 Wypłacalność rządu.4 Deficy srukuralny i cykliczny
Jerzy Czesław Ossowski Politechnika Gdańska. Dynamika wzrostu gospodarczego a stopy procentowe w Polsce w latach
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Poliechnika Gdańska Dynamika wzrosu
Nowokeynesowski model gospodarki
M.Brzoza-Brzezina Poliyka pieniężna: Neokeynesowski model gospodarki Nowokeynesowski model gospodarki Model nowokeynesowski (laa 90. XX w.) jes obecnie najprosszym, sandardowym narzędziem analizy procesów
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX
Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział
MODELE EKONOMICZNE Z DYNAMIKĄ CHAOTYCZNĄ
Monika Miśkiewicz-Nawrocka MODELE EONOMICZNE Z DYNAMIĄ CHAOTYCZNĄ Wprowadzenie Od czasu pojawienia się w lieraurze pojęcia deerminisycznego chaosu można znaleźć wiele przykładów układów dynamicznych (zarówno
BADANIA WPŁYWU KÓŁ PRZEDNICH I TYLNYCH WYBRANYCH CIĄGNIKÓW ROLNICZYCH NA UGNIATANIE GLEBY LEKKIEJ
Problemy Inżynierii Rolniczej nr 4/2008 Zbigniew Błaszkiewicz Insyu Inżynierii Rolniczej Uniwersye Przyrodniczy w Poznaniu BADANIA WPŁYWU KÓŁ PRZEDNICH I TYLNYCH WYBRANYCH CIĄGNIKÓW ROLNICZYCH NA UGNIATANIE
I. KINEMATYKA, DYNAMIKA, ENERGIA
iagoras.d.l I. KINEMATYKA, DYNAMIKA, ENERGIA KINEMATYKA: Położenie ciała w rzesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i soczynek są
MODEL AD-AS : MIKROPODSTAWY
Makroekonomia II Wykład 8 MODEL AD-AS : MIKROODSTAW Wykład 8 lan MODEL AD-AS : MIKROODSTAW 1.1 Długookresowa krzywa AS 1.2 Sztywność cen 1.3 Sztywność nominalnych płac 2.1 Zagregowany popyt 2.2 Równowaga
I. KINEMATYKA I DYNAMIKA
piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
THE ANALYSIS OF THE INFLUENCE OF INFORMATION TECHNOLOGY MANAGEMENT INTRODUCTION ON THE STORING PROCESS IN ZWS SILESIA COMPANY
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2011 Seria: TRANSPORT z. 71 Nr kol. 1836 Andrzej URBAS, Piotr CZECH, Jacek BARCIK ANALIZA WPŁYWU WPROWADZENIA ZARZĄDZANIA INFORMATYCZNEGO MAGAZYNEM NA PROCES MAGAZYNOWANIA
Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak
Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem