[ ] [ ] [ ] [ ] 1. Sygnały i systemy dyskretne (LTI, SLS) y[n] x[n] 1.1. Systemy LTI. liniowy system dyskretny
|
|
- Judyta Szczepaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Cyfrowe rzewarzanie sygnałów --. Sygnały i sysemy dyskrene (LTI, SLS).. Sysemy LTI Pojęcie sysemy LTI oznacza liniowe sysemy niezmienne w czasie (ang. Linear Time - Invarian ). W lieraurze olskiej częściej używa się erminu SLS ( sysemy liniowo sacjonarne). Rozumienie ojęcia liniowości i sacjonarności ozwala na idenyfikację klasy sysemu i rzyjęcie odowiednich meod analizy. Termin sysemy liniowe definiuje klasę sysemów, w kórych odowiedź (sygnał wyjściowy) jes suerozycją składowych sanowiących odowiedzi sysemu na ojedyncze składowe wymuszenia (sygnału wejściowego). x liniowy sysem dyskreny y Założymy, że jeżeli na wejście sysemu odamy sygnał x o na wyjściu orzymamy sygnał y oraz jeżeli na wejście sysemu odamy sygnał x o na wyjściu orzymamy sygnał y. sysem sysem x[ n] y[ n ] x [ n ] y[ n] Jeżeli sysem jes liniowy o sełniony jes warunek addyywności oraz jednorodności sysem [ ] [ ] [ ] [ ] a x n + b x n a y n + b y n Inaczej mówiąc sygnał wyjściowy y zależy wyłącznie od sygnału wejściowego x oraz charakerysyk sysemu, nie zależy naomias od żadnego innego sygnału wejściowego.
2 Cyfrowe rzewarzanie sygnałów -- Przykład dyskrenego sysemu liniowego [ ] yn= x[ n] x y Y [m] Sysem cyfrowy jes zdefiniowany w en sosób, że każda róbka odana na jego wejście zmieni znak i zmniejszy swoją warość dwukronie..5 f 3 4 Podamy na wejście układu dyskrene sygnały sinusoidalne [ ] x n = sin( ωnt ) o częsoliwości f=hz róbkowany z częsoliwością f =Hz [ ] x n = sin(3 ωnt ) o częsoliwości f=3hz róbkowany z częsoliwością f =Hz x y.5 Y [m] f 3 4 oraz sumę sygnałów x i x [ ] [ ] [ ] x3 n = x n + x n = sin( ωnt) + sin(3 ωnt) x 3 =x +x y 3 Y 3 [m].5 Z wykresu czasowego oraz widmowego widać, że sygnał y 3 sanowi sumę sygnałów y i y (sumowanie róbka o róbce, suma dwóch harmonicznych, ierwszej i rzeciej). f 3 4
3 Cyfrowe rzewarzanie sygnałów -3- Przykład sysemu nieliniowego [ ] = ( xn [ ]) yn Sysem cyfrowy jes zdefiniowany w en sosób, że każda róbka odana na jego wejście zosanie odniesiona do kwadrau. Podamy na wejście układu dyskrene sygnały sinusoidalne [ ] [ ] x n = sin( ωnt ) o częsoliwości f=hz róbkowany z częsoliwością f =Hz x n = sin(3 ωnt ) o częsoliwości f=3hz róbkowany z częsoliwością f =Hz x y.5 Y [m] f Obliczymy rzebiegi wyjściowe y i y [ ] ( [ ]) [ ] ( [ ]) y n = x n = sin( ωnt ) sin( ωnt ) y n = x n = sin(3 ωnt ) sin(3 ωnt ) Wykorzysując rzekszałcenia rygonomeryczne y[ n] = cos( ωnt ) [ ] y n = cos(6 ωnt ) Jeżeli sygnałem wejściowym będzie suma sygnałów x i x orzymamy: y3[ n] = cos( ωnt ) cos( ωnt ) cos(4 ωnt ) cos(6 ωnt ) + + x x 3 =x +x y.5 Y [m] f y Y 3 [m] 5 6 f Zauważmy, że w sygnale wyjściowym y 3 ojawiają się harmoniczne, kóre nie wysęują w żadnym sygnale wejściowym (,4). Równanie definiujące liniowość nie jes zaem sełnione. Sysem jes nieliniowy. W dalszym ciągu będziemy rozarywać ylko sysemy liniowe
4 Cyfrowe rzewarzanie sygnałów -4- W sysemie niezmiennym w czasie rzesunięcie w czasie w ciągu wejściowym owoduje równoważne rzesunięcie w ciągu wyjściowym. x y Jeżeli reakcją układu na wymuszenie x będzie odowiedź y sysem [ ] y[ n] x n.5 o na wymuszenie x rzesunięe w czasie (o k róbek) układ odowie sygnałem y ak samo oóźnionym [ ] sysem [ ] x n k y n k x' y' Przykład sysemu niezmiennego w czasie.5 [ ] yn= x[ n] sysem ' [ ] = [ n+ 4 ] [ ] = [ n+ 4] ' x n x y n y Przykładem rocesu cyfrowego rzewarzania nie sełniającego warunku niezmienności w czasie jes odróbkowywanie (wybieranie niekórych róbek rzebiegu). Dalej będziemy rozarywać ylko sysemy niezmienne w czasie Czasami można sokać definicję sacjonarności jako brak zmian aramerów układu w czasie. Jednak aka definicja nie jes komlena.
5 Cyfrowe rzewarzanie sygnałów -5- Analiza sysemów LTI Dzięki właściwościom sysemów LTI, można w rosy sosób rzewidywać ich funkcjonowanie. Pełną informację o sysemie gwaranuje znajomość odowiedzi imulsowej. Odowiedź imulsowa sysemu jes o sygnał (ciąg ) wyjściowy w dziedzinie czasu, gdy sygnałem wejściowym jes imuls jednoskowy, zn. sygnałem wejściowym jes ojedyncza róbka o warości jeden, naomias wszyskie róbki rzed i o niej mają warość równą zero. x y x liniowy sysem dyskreny y Znając odowiedź imulsową sysemu LTI, można określić odowiedź dla dowolnego sygnału wejściowego jako slo ego sygnału z odowiedzią imulsową. Odowiedź imulsowa umożliwia wyznaczenie ransmiancji widmowej sysemu LTI, oraz analizę sysemu w dziedzinie częsoliwości.
6 Cyfrowe rzewarzanie sygnałów Sygnały Termin rzewarzanie sygnałów należy rozumieć jako analizowanie zmiennych w czasie rocesów fizycznych. Ze względu na y rerezenacji sygnałów w dziedzinie czasu rzewarzanie dzieli się na: analogowe rzewarzanie sygnałów (sygnały o czasie ciągłym, syg. analogowe) Zmienna niezależna czasu jes ciągła. cyfrowe rzewarzanie sygnałów (sygnały o czasie dyskrenym, syg. dyskrene) W ym rzyadku zmienna niezależna czasu jes kwanowana, ak że orzymuje się warości sygnału w dyskrenych unkach. Sygnał jes rerezenowany jako ciąg warości. Orócz kwanowania osi czasu, sygnał dyskreny może mieć kwanowane warości, aki sygnał nazywany jes sygnałem cyfrowym. Sygnały analogowe Sygnałem analogowym określamy sygnał ciągły w czasie, kóry może rzyjmować ciągły zakres warości chwilowej. Przykładem jes naięcie odawane na wejście oscyloskou, dając na jego ekranie obraz rzebiegu jako ciągłą w czasie funkcję. Elekryczne sygnały analogowe rzewarza się w układach analogowych akich jak n. rezysory, kondensaory, filry analogowe, wzmacniacze oeracyjne id., lub rzewarza się je do osaci dyskrenej (róbkuje). f( ) f() Rys. Sygnał analogowy Termin analogowy wywodzi się od elekronicznych komuerów analogowych, kóre rozwiązywały złożone układy równań różniczkowych. Wykorzysywano analogie badanych modeli maemaycznych do modeli elekrycznych.
7 Cyfrowe rzewarzanie sygnałów -7- Sygnały dyskrene f f[k] k n T Rys. Sygnał dyskreny Wykorzysując rzeworniki analogowo-cyfrowe 3 sygnały analogowe róbkuje się w równych odsęach czasu. Przedział czasu T omiędzy kolejnymi róbkami nazywa się okresem róbkowania. Orzymuje się sygnał dyskreny jako ciąg warości, kóre są indeksowane za omocą liczb całkowiych: f [ n] = f( nt ) Częsoliwość róbkowania f jes równa odwroności okresu róbkowania: f = T Wybór warości częsoliwości róbkowania zależy od własności widmowych rzewarzanego sygnału analogowego oraz secyfiki rocesu róbkowania. 3 Parz ema doyczący budowy i działania rzeworników A/C
8 Cyfrowe rzewarzanie sygnałów -8- Wybrane aramery sygnału: Paramer Sygnał ciągły x() Sygnał ciągły x Warość średnia sygnału w rzedziale x = xd () x = xn [ ] n n n = n n Energia sygnału Ex x () d + = E x [ n] x = n= Moc średnia sygnału w rzedziale P x x d x (, ) = = () Px ( n, n) = x = x [ n] n n n = n n Warość skueczna sygnału X sk = Px Xsk = Px w_.m, w_.m ( rzykłady w Malabie)
9 Cyfrowe rzewarzanie sygnałów -9- Maemayczna rerezenacja sygnału dyskrenego Maemaycznie roces róbkowania olega omnożeniu sygnału analogowego f() z nieskończonym szeregiem imulsów (del) Diraca d(). Imulsy w akim szeregu owarzają się z okresem T. Szereg imulsów Diraca oisuje zależność: () = δ ( ) d nt Na wykresie rzedsawia się aki szereg w osaci srzałek o jednoskowej długości ( jes o miara ola owierzchni dely), oddalonych od siebie o sały rzedział czasu równy T (okres róbkowania). d() δ ( nt ) = nt T Zaem sygnał dyskreny (ozn. f*() ) oisuje zależność: Rys.3 Szereg imulsów Diraca
10 Cyfrowe rzewarzanie sygnałów -- f *( ) = f ( ) d( ) () = () δ ( ) f f nt * Wykorzysując własność filracyjną dely Diraca orzymujemy wyrażenie oisujące sygnał dyskreny: () = ( ) δ ( ) f f nt nt * Zais en należy inerreować jako szereg imulsów Diraca o olach równych warościom róbkowanej funkcji analogowej w unkach, w kórych znajdują się dely szeregu d(). f*() f ( nt ) δ ( ) nt = nt { } Widmo sygnału dyskrenego. F f *( ) Rys.4 Sygnał dyskreny
11 Cyfrowe rzewarzanie sygnałów -- Analiza sygnałów w dziedzinie częsoliwości ozwala na leiej rozumieć zagadnienia rzewarzania sygnałów. Przewarzaniu sygnałów dyskrenych, echnikami Fouriera będą oświęcone osobne wykłady wyjaśniające zagadnienia dyskrenej ransformay Fouriera (DFT oraz FFT). Tu wykorzysamy znane już ciągłe rzekszałcenie Fouriera. Widmo dely Diraca zgodnie z definicją rzekszałcenia Fouriera wynosi: F jω { δ() } = δ() e d = δ ( ) F Pary ransforma wynikające z właściwości rzekszałcenia Fouriera: δ j T ( T) F e ω F ( ) πδ ω F ( ) j e ω πδ ω ω Widmo rzebiegu okresowego, ozwala zauważyć charakerysyczną właściwość widma sygnału dyskrenego. Wykorzysamy zesolony szereg Fouriera. Przebieg okresowy f() w osaci zesolonego szeregu Fouriera ma osać Jego ransformaa Fouriera jk () cke ω f = k =
12 Cyfrowe rzewarzanie sygnałów -- jk ( ω ) = F { k } F j c e ω k = jk ( ω ) = kf { } F j c e ω k = gdzie F jω π c δ ω kω ( ) = k ( + ) k = ck T jkω () = f e d wsółczynniki szeregu T ω π ω = odsęy między imulsami widma T Wynika z ego, że widmo dowolnego sygnału okresowego, oisuje szereg imulsów Diraca oddalonych od siebie o sałą warość ω i o olach równych odowiednio π ck. ω Wykorzysując właściwość symerii rzekszałcenia Fouriera można swierdzić, że sygnał złożony z imulsów Diraca odległych od siebie o sałą warość (sygnał dyskreny) osiada okresowe widmo. Ta właściwość charakerysyki widmowej sygnału dyskrenego, ma swoje ważne konsekwencje w eorii róbkowania.
13 Cyfrowe rzewarzanie sygnałów -3- Szereg imulsów Diraca rozarzymy jako szczególny rzyadek rzebiegu okresowego () = δ ( ) d kt k = Po rzedsawieniu d() w osaci zesolonego szeregu Fouriera jk () cke ω d = k = wsółczynniki ego szeregu wynoszą T / jω k T / () ck δ e d = = T T Sąd charakerysyka widmowa szeregu imulsów Diraca rzyjmuje osać ( ω) D j π π = δ ω + k T k = T Transformaa Fouriera szeregu imulsów Diraca owarzających się z okresem T (w dziedzinie czasu) jes również szeregiem imulsów Diraca owarzających się z okresem π /T (w dziedzinie częsoliwości). Ważne sosrzeżenie, że zmniejszając odsęy między imulsami w dziedzinie czasu ( większa częsoliwość róbkowania ) zwiększają się odsęy miedzy delami w dziedzinie częsoliwości (i odwronie). Ta rosa zależność ma fundamenalne znaczenie odczas realizacji zadania róbkowania rzebiegów analogowych.
14 Cyfrowe rzewarzanie sygnałów -4- { } Do obliczenia ransformay Fouriera sygnału dyskrenego f *( ) F wykorzysamy wcześniejsze zależności. Transformaa Fouriera iloczynu dwóch rzebiegów ( wierdzenie o slocie z dziedzinie częsoliwości ): F{ f () d() } = F f () F d π { } { ()} F{ f *() } = F f () F d π { } { ()} W uroszczonej osaci zaiszemy ransformaę Fouriera sygnału dyskrenego jako F * j π F j D j ( ω ) = ( ω) ( ω) oraz znając ransformaę szeregu imulsów Diraca orzymamy: π F* ( jω) = F( jω) δ ω + k T k = T Pamięamy, że slo funkcji z imulsem Diraca owoduje rzesunięcie ej funkcji do unku, w kórym znajduje się dela. Dodakowo jeżeli funkcja slaana jes z szeregiem imulsów, o nasęuje owielanie ej funkcji i rzesuwanie owieleń do miejsc, w kórych znajdują się imulsy Diraca. Wnioskujemy zaem, że widmo sygnału dyskrenego owsaje w wyniku owielania widma sygnału analogowego nieskończoną ilość razy i rzesuwania ych owieleń o wielokroności ω.
15 Cyfrowe rzewarzanie sygnałów -5- ω = π T Transformaa Fouriera sygnału dyskrenego ma zaem nasęującą osać: f() f() π F* ( jω) = F jω + jk T k = T ω Oerację róbkowania sygnału analogowego f() można rzedsawić graficznie w osaci wykresów w dziedzinie czasu i częsoliwości. d() π D(ω) ω T ω Jak wynika z wyrowadzeń osać widma sygnału dyskrenego zależy od częsoliwości róbkowania. W niekórych wyadkach w wyniku owieleń i rzesunięć widma sygnału analogowego, może wysęować nakładanie się owieleń. Ten nieożądany efek nazywany aliasingiem wymusza sosowanie dodakowej filracji analogowej (filry anyaliasingowe) oraz odowiednich echnik róbkowania. f*() F*(ω) ω ω Rys 5. Graficzne rzedsawienie oeracji róbkowania
1. Sygnały i systemy dyskretne (LTI, SLS) (1w=2h)
Cyfrowe rzewarzanie sygnałów Jace Rezmer --. Sygnały i sysemy dysrene (LI, SLS (w=h.. Sysemy LI Pojęcie sysemy LI oznacza liniowe sysemy niezmienne w czasie (ang. Linear ime - Invarian. W lieraurze olsiej
PRÓBKOWANIE RÓWNOMIERNE
CPS 6/7 PRÓKOWANIE RÓWNOMIERNE Próbkowanie równomierne, Ujes rocesem konwersji sygnału analogowego (o czasie ciągłym) do osaci róbeku obieranych w równych odsęach czasu. Próbkowanie rzerowadza się orzez
{ x n } = {,1.1, 0.2,2.1,3.0, 1.2, }
CPS 6/7 Defiicje: SYGNAŁY DYSKRETNE USygały dyskree w czasieu rerezeowae są rzez ciągi liczb i ozaczae jako {x[]} Elemey ych ciągów azywa się UróbkamiU, warości róbek sygałów ozacza się jako x[] dla całkowiych
2. Próbkowanie równomierne
Cyrowe rzewarzanie sygnałów -- 3. Próbkowanie równomierne Wrowadzenie Próbkowanie równomierne, jes rocesem konwersji sygnału analogowego (o czasie ciągłym) do osaci róbek obieranych w równych odsęach czasu.
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201
Dyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:
Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu
Niezawodność elemenu nienarawialnego. Model niezawodnościowy elemenu nienarawialnego. Niekóre rozkłady zmiennych losowych sosowane w oisie niezawodności elemenów 3. Funkcyjne i liczbowe charakerysyki niezawodności
Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 8 1/9 ĆWICZENIE 8. Próbkowanie i rekonstrukcja sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 8 1/9 ĆWICZENIE 8 Próbkowanie i rekonstrukcja sygnałów 1. Cel ćwiczenia Pierwotnymi nośnikami informacji są w raktyce głównie sygnały analogowe. Aby umożliwić
Rys.1. Podstawowa klasyfikacja sygnałów
Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE
Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego
Modulacja PAM- właściwości modulacji i ograniczenia transmisji
INSTRUKJA DO ĆWIZENIA Modulacja PAM- właściwości modulacji i ograniczenia ransmisji. WSTĘP Modulacja o roces rzewarzania sygnału zawierającego informację na jego inną osać, kóra odznacza się nowymi właściwościami.
Teoria sygna³ów. Wstêp. Wydanie II poprawione i uzupe³nione
IDZ DO PRZYK ADOWY ROZDZIA KATALOG KSI EK ZAMÓW DRUKOWANY KATALOG Wydawnicwo Helion ul Chopina 6 44- Gliwice el (32)23-98-63 e-mail: helion@helionpl TWÓJ KOSZYK CENNIK I INFORMACJE ZAMÓW INFORMACJE ONOWOŒCIACH
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki
Wybrane wiadomości o sygnałach. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
Wybrane wiadomości o sygnałach Przebieg i widmo Zniekszałcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Przebieg i widmo analogowego. Sygnał sinsoidalny A ϕ sygnał okresowego
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Przetwarzanie analogowocyfrowe
Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie
Sygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU
ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ
Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Aleksander Jakimowicz. Dynamika nieliniowa a rozumienie współczesnych idei ekonomicznych
Aleksander Jakimowicz Dynamika nieliniowa a rozumienie wsółczesnych idei ekonomicznych Plan rezenacji Dynamika ekonomiczna w rzesrzeni aramerów. Oczekiwania adaacyjne a oczekiwania racjonalne. Krzywa Phillisa.
Urządzenia i Układów Automatyki Instrukcja Wykonania Projektu
KAEDRA ENERGOELEKRYKI POLIECHNIKI WROCŁAWSKIEJ Urądenia i Układów Auomayki Insrukcja Wykonania Projeku Auory: rof. dr hab. inż. Eugenius Rosołowski dr inż. Pior Pier dr inż. Daniel Bejmer Wrocław 5 I.
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,
- Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego
imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia
CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone
Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Przemieszczeniem ciała nazywamy zmianę jego położenia
1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Podstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Secjalność Transort morski Semestr II Ćw. 3 Badanie rzebiegów imulsowych Wersja oracowania Marzec 2005 Oracowanie:
Badanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór
ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
PRZETWARZANIE SYGNAŁÓW
PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania
ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska
Poliechnika Wrocławska Insyu elekomunikacji, eleinformayki i Akusyki Zakład kładów Elekronicznych Insrukcja do ćwiczenia laboraoryjnego ZASOSOWANIE WZMACNIACZY OPEACYJNYCH DO LINIOWEGO PZEKSZAŁCANIA SYGNAŁÓW
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego
1 MLIMER CYFROWY 1. CEL ĆWICZEIA: Celem ćwiczenia jes zapoznanie się z zasadą działania, obsługą i możliwościami mulimeru cyfrowego 2. WPROWADZEIE: Współczesna echnologia elekroniczna pozwala na budowę
4. MODELE ZALEŻNE OD ZDARZEŃ
4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę
Ćwiczenie E-5 UKŁADY PROSTUJĄCE
KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
BADANIE NIESPŁACALNOŚCI KREDYTÓW ZA POMOCĄ BAYESOWSKICH MODELI DYCHOTOMICZNYCH - ZAŁOŻENIA I WYNIKI 1. 1. Wprowadzenie.
Jerzy Marzec, Kaedra Ekonomerii i Badań Oeracyjnych, Uniwersye Ekonomiczny w Krakowie Jerzy Marzec BADANIE NIESPŁACALNOŚCI KREDYTÓW ZA POMOCĄ BAYESOWSKICH MODELI DYCHOTOMICZNYCH - ZAŁOŻENIA I WYNIKI 1
WNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych
Wykład 4: Transformata Laplace a
Rachunek prawdopodobieńwa MAP164 Wydział Elekroniki, rok akad. 28/9, em. leni Wykładowca: dr hab. A. Jurlewicz Wykład 4: Tranformaa Laplace a Definicja. Niech f() będzie funkcją określoną na R, przy czym
Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
Przetworniki analogowo-cyfrowe.
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI INSTYTUT MASZYN I UZĄDZEŃ ENEGETYCZNYCH LABOATOIUM ELEKTYCZNE Przeworniki analogowo-cyfrowe. (E 11) Opracował: Dr inż. Włodzimierz OGULEWICZ
Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia
Wydział Mechaniczno-Energeyczny Laboraorium Elekroniki Badanie zasilaczy ze sabilizacją napięcia 1. Wsęp eoreyczny Prawie wszyskie układy elekroniczne (zarówno analogowe, jak i cyfrowe) do poprawnej pracy
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów
Przekzałcenie Laplace a Deinicja i właności, ranormay podawowych ygnałów Tranormaą Laplace a unkcji je unkcja S zmiennej zepolonej, kórą oznacza ię naępująco: L[ ] unkcja S nazywana bywa również unkcją
Ćwiczenie 133. Interferencja fal akustycznych - dudnienia. Wyznaczanie częstotliwości dudnień. Teoretyczna częstotliwość dudnienia dla danego pomiaru
Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ćwiczenie 33 Inererencja al akusycznych - dudnienia Tabela I. Wyznaczanie częsoliwości dudnień Pomiar Czas,
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Przetwarzanie sygnałów dyskretnych
Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n
Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017
Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA
1. POJĘCIA PODSAWOWE ELEKROECHNIKI. SYGNAŁY ELEKRYCZNE I ICH KLASYIKACJA 1.1. WPROWADZENIE WIELKOŚĆ (MIERZALNA) - cecha zjawiska, ciała lub substancji, którą można wyrazić jakościowo i wyznaczyć ilościowo.
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
2. Cyfrowe reprezentacje sygnału fonicznego
3. Cyrowe reprezenacje sygnału onicznego Treść niniejszego rozdziału zosała opracowana przy założeniu, że Czyelnik jes zaznajomiony z podsawami eorii sygnałów dyskrenych. Podsawowe zagadnienia, związane
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
PODSTAWY TELEDETEKCJI-ćwiczenia rachunkowe
PODSTAWY TELEDETEKCJI-ćwiczenia rachunkowe Tema.eoy omiaru oległości i rękości raialnej. Zaanie. Na jakiej oległości znajuje się obiek, gy czas oóźnienia sygnałów wynosi:μs, ms, min O.50m, 50km, 9 9 0
VII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
4.2 Analiza fourierowska(f1)
Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad
ZAJĘCIA I. Obiekty identyfikacji, sygnały, modele
ompuerowa idenyfikacja obieków ZAJĘCIA I Obieky idenyfikacji, sygnały, modele Czym zajmuje się idenyfikacja? Sandardowe modele sayki i dynamiki Propagacja sygnałów, błędów i zakłóceń Modele nieliniowe
LABORATORIUM Z ELEKTRONIKI
LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5
Entalpia swobodna (potencjał termodynamiczny)
Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ
RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzysano: M A T E M A T Y K A Wykład dla sudenów Część Krzyszo KOŁOWROCKI, ZBIÓR ZADAŃ Z RACHUNKU CAŁKOWEGO Krzyszo PISKÓRZ Deinicja CAŁKA NIEOZNACZONA Funkcję
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
POLITECHNIKA BIAŁOSTOCKA
DODATEK A POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI ĆWICZENIE NR 1 CHARAKTERYSTYKI CZASOWE I CZĘSTOTLIWOŚCIOWE PROSTYCH UKŁADÓW DYNAMICZNYCH PRACOWNIA SPECJALISTYCZNA
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono
Ćwiczenie. Analiza widmowa sygnałów
Program Rozwojowy Poliechniki Warszawskiej, Zadanie 36 Przygoowanie i modernizacja programów sudiów oraz maeriałów dydakycznych na Wydziale Elekrycznym Laboraorium kwizycja, przewarzanie i przesyłanie
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
AMD. Wykład Elektrotechnika z elektroniką
Andrzej M. Dąbrowski AGH Universiy of Science and Technology Kaedra Elekroechniki i Elekroenergeyki e-mail: amd@agh.edu.pl Wykład Elekroechnika z elekroniką Wykład. Informacje wsępne i organizacyjne, zaliczenie
Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji
Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki