G i m n a z j a l i s t ó w
|
|
- Mirosław Michalak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Ko³o Mtemtyzne G i m n z j l i s t ó w Stowzyszenie n zez Edukji Mtemtyznej Zestw 6 szkie ozwiązń zdń Znjdź wszystkie tójki (x, y, z) liz zezywistyh, któe są ozwiąznimi ównni 5(x +y +z ) = 4(xy +yz +zx) Rozwiąznie Pzeksztłją ównowżnie dne ównnie, otzymujemy 5(x +y +z ) = 4(xy +yz +zx) 4x 4xy +y +4y 4yz +z +4z 4zx+x = 0 (x y) +(y z) +(z x) = 0 Poniewż kwdt lizy zezywistej jest zwsze nieujemny, wię sum kwdtów jest ówn zeo tylko wtedy, gdy wszystkie lizy są zemi, ztem zyli x y = y z = z x = 0 x = z = 4y = 8x Stąd ównnie m tylko jedno ozwiąznie: x = y = z = 0 Udowodnij, że dl kżej lizy ntulnej n 6 kwdt możn oziąć n n kwdtów Rozwiąznie Łtwo podzielić kwdt n 4 kwdty Po kżdym tkim podzile liz kwdtów zwiększ się o 3 Stosują ten podził wielokotnie możemy uzyskć wszystkie lizy posti 4+3n, gdzie n N 0 Rozpozynją od podziłu n 6 kwdtów i dzielą kolejno dowolne powstłe kwdty n 4 zęśi możemy uzyskć wszystkie lizy posti 6 + 3n, gdzie n N 0
2 Jeśli podzielimy kwdt n 8 zęśi, to ozumują nlogiznie uzyskujemy wszystkie lizy posti 8+3n, gdzie n N 0 Możemy wię podzielić kwdt n 4, 6, 7, 8 i dowolną większą lizę kwdtów 3 N okęgu o śodku S opisno tpez ABCD (o podstwh AB i CD) Wykż, że AS BS = CS DS Rozwiąznie W dowolnym tpezie sum kątów pzy kżdym z mion wynosi 80, zyli <)BAD +<)ADC = 80 D d Odinki AS i DS są dwusieznymi kątów, wię S <)SAD +<)ADS = 90, stąd tójkąt ASD jest postokątny, w któym A B jest jest wysokośią popowdzoną do pzeiwpostokątnej AD Oznzmy zęśi n któe spodek wysokośi podzielił odinek AD jko odinki i d Poniewż wysokość dzieli tójkąt postokątny ASD n dw tójkąty do niego podone, wię = d zyli d = Pzepowdzją nlogizne ozumownie dl tójkąt BSC, uzyskujemy (pzy oznzenih z ysunku) popoję =, wię = C
3 Kozystją z twiedzeni Pitgos oz powyższyh ównośi, otzymujemy AS + DS = + + d + = +d + d +d = = (+d) + d(+d) = d d(+d) + d(+d) = +d d(+d) = d = Anlogiznie BS + CS = = Z dwóh osttnih ównośi, dostjemy AS + DS = BS + CS zyli AS BS = CS DS 4 N stole leży 9 żetonów z numemi od do 9 Dwóh zwodników g w nstępująą gę: piewszy gz w swoim uhu usuw ze stołu żeton z wyną lizą oz wszystkie żetony z jej dzielnikmi, nstępnie dugi wykonuje uh według tyh smyh zsd itd Wygyw zwodnik, któy zdejmie ze stołu osttni żeton Któy z gzy (piewszy zy dugi) m sttegię wygywjąą i n zym on może polegć? Rozwiąznie Uzsdnimy, że jeśli piewszy gz w piewszym swoim uhu weźmie żeton oznzony numeem 7, to jest w stnie zgwntowć soie wygną Oznzmy gz piewszego pzez G, dugiego pzez G Rozwżmy w tkiej sytuji wszystkie opje uhu dugiego gz: G G G pozostją żetony dlsz ozgywk po uhh wygyw G po uhh wygyw G po uhh wygyw G dlsz ozgywk opisn poniżej po 4 uhh wygyw G po 4 uhh wygyw G dlsz ozgywk opisn poniżej 3
4 Jeżeli po uhu piewszego gz n stole zostną żetony 3, 4, 6, 8, 9, to piewszy gz może osiągnąć zwyięstwo nstępujźo: G G pozostją żetony dlsz ozgywk po uhh wygyw G po uhh wygyw G po uhh wygyw G po uhh wygyw G po uhh wygyw G 5 Znjdź wszystkie lizy piewsze p, dl któyh wtość wyżeni nie jest podzieln pzez 360 Rozwiąznie p 4 5p +4 Pzeksztłją dne wyżenie ównowżnie, otzymujemy p 4 5p +4 = (p 4 4p +4) p = (p ) p = = (p p)(p +p) = (p )(p+)(p+)(p ) = = (p )(p )(p+)(p+) Zuwżmy, że liz jest podzieln pzez 360 wtedy i tylko wtedy, gdy jest podzieln pzez 5, 8 i 9 Jeżeli p jest lizą łkowitą, to wśód liz: p, p, p, p+, p+ dokłdnie jedn jest podzieln pzez 5 (poniewż jest to pięć kolejnyh liz łkowityh) Łtwo spwdzić, że dl p = 5 wyżenie dne w zdniu nie jest podzielne pzez 5 Jeśli p jest lizą piewszą óżną od 5, to dokłdnie jedn z liz: p, p, p+, p+ jest podzieln pzez 5, wię i dne wyżenie dzieli się pzez 5 Jeśli p jest lizą niepzystą, to lizy p i p + są kolejnymi lizmi pzystymi i jedn z nih dzieli się pzez 4, wię ih ilozyn dzieli się pzez 8, stąd i dne wyżenie dzieli się pzez 8 Jeśli ntomist p = (jest to jedyn liz piewsz pzyst), to wtość dnego wyżeni jest ówn 0 Czyli dl kżdej lizy piewszej p dne wyżenie dzieli się pzez 8 Jeśli p jest lizą podzielną pzez 3, to wśód liz: p, p, p+, p+ są dwie, któe dzielą się pzez 3, ztem dne wyżenie dzieli się pzez 9 Łtwo spwdzić, że dl p = 3 wyżenie nie dzieli się pzez 3 N podstwie powyższyh uwg, dne wyżenie nie dzieli się pzez 360 tylko dl p = 3 oz p = 5 4
5 6 Dny jest tójkąt o okh długośi,, Ustl, w jkih popojh śodek okęgu wpisnego w ten tójkąt podzielił odinki wyięte z dwusieznyh kątów tójkąt pzez zeg tego tójkąt Rozwiąznie Pzyjmijmy oznzeni jk n ysunku: A, B, C wiezhołki tójkąt; I śodek okęgu wpisnego w tójkąt ABC; X, Y Z punkty pzeięi oków BC, AC, AB pzez odpowiednie dwusiezne kątów tójkąt ABC W dlszej zęśi ozwiązni pzez [M N P ] oznzć ędziemy pole tójkąt o wiezhołkh M, N, P C Y h I h X h A Z Punkt I jest śodkiem okęgu wpisnego w tójkąt ABC, wię jest oddlony od kżdego jego oku o, gdzie jest pomieniem okęgu wpisnego Poniewż punkt X leży n dwusieznej kąt BAC, wię jest jednkowo oddlony od oków AB i AC Pzyjmijmy, że t odległość jest ówn h Tójkąty ACI i XCI mją wspólną wysokość h, wię B i jednoześnie Stąd () Anlogiznie otzymujemy () [ACI] = AI h oz [XCI] = XI h [ACI] = AC oz [XCI] = CX [ACI] [XCI] = AI XI = CA CX [BAX] [CAX] = BX CX = AB AC 5
6 Uwg Równośi () i () możn otzymć ezpośednio z twiedzeni o dwusieznej kąt wewnętznego tójkąt Wykozystują ówność (), otzymujemy CX = BC BC +CX = = BX AB + = CX CX CX AC + = + + = Stąd (3) CX = + Wykozystują tez () i (3), dostjemy AI XI = CX = (+) = + Powdzą nlogiznie ozumownie, otzymujemy BI Y I = + CI oz ZI = + 7 W zwoośinie ABCD kwędzie śiny ABC są odpowiednio ówne: BC =, CA =, AB =, wszystkie pozostłe śiny są pzystjąe do śiny ABC Oliz odległość między kwędzimi AB i CD Rozwiąznie Zuwżmy, że w zwoośinie opisnym w teśi zdni w kżdym jego wiezhołku shodzą się kwędzie o długośih, i Popowdźmy tzy py płszzyzn ównoległyh: płszzyznę ównoległą do kwędzi AB i zwiejąą kwędź CD oz płszzyznę ównoległą do kwędzi CD i zwiejąą kwędź AB, 6
7 pę płszzyzn wyznzonyh pzez kwędzie BC i AD, pę płszzyzn wyznzonyh pzez kwędzie AC i BD D N M h L C B g A f K Płszzyzny te wyznzją ównoległośin AKBLM CN D, w któym pzeiwległe śiny są pzystjąymi ównoległookmi Zuwżmy, że kwędzie zwoośinu ABCD są pzekątnymi śin otzymnego ównoległośinu Kżd p pzeiwległyh śin m oie pzekątne tej smej długośi, ztem ównoległooki muszą yć postokątmi, zyli ównoległośin AKBLM CN D jest postopdłośinem Oznzmy jego kwędzie: f =AK, g =AL i h=am Odległość między kwędzimi AB i CD jest ówn h Kozystją z twiedzeni Pitgos, otzymujemy zleżnośi g +h = h +f = g +f = Dodją dw piewsze ównni stonmi oz wykozystują tzeie, dostjemy g +h +h +f = h + = +, stąd h = + h = + 7
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu
9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM
Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej
KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p
KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni
h a V. GEOMETRIA PŁASKA TRÓJKĄT :
pitgos..pl V. GEOMETRIA PŁASKA TRÓJKĄT : Wunek utwozeni tójkąt: sum ługośi wó kótszy oków musi yć większ o ługośi njłuższego oku. Śoek okęgu opisnego wyznzją symetlne oków. Śoek okęgu wpisnego wyznzją
H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania
H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku
Szkice rozwiązań zadań zawody rejonowe 2019
XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.
Znajdowanie analogii w geometrii płaskiej i przestrzennej
Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec
IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI
CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI 1.1. Okąg opisny n wielokącie (s. 10) Zdni utwljące (s. ) 1.. Okąg wpisny w wielokąt (s. 4) Zdni utwljące (s. 35) 1.3. Wielokąty foemne (s. 37) Zdni utwljące (s. 43) Zdni
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
11. STEREOMETRIA. V - objętość bryły D H. c p. Oznaczenia stosowane w stereometrii: - pole powierzchni całkowitej bryły - pole podstawy bryły
. STEREOMETRIA Oznczeni stosowne w steeometii: Pc - poe powiezcni cłkowitej yły Pp - poe podstwy yły P - poe powiezcni ocznej yły V - ojętość yły.. Gnistosłupy D Podstwy gnistosłup - dw ównoegłe i pzystjące
ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH
Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 05 skle.oeon.l/mtu
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 0 Zdni zmknięte
zestaw DO ĆWICZEŃ z matematyki
Mtemtyk Poziom podstwowy zestaw DO ĆWICZEŃ z mtemtyki poziom podstwowy rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1 Uzsdnij, że pole romu o przekątnych p i q wyrż się wzorem P = 1 pq Rozwiąznie: Przyjmij
Klasyfikacja trójkątów
9.. WŁASNOŚCI TRÓJKĄTÓW Klsyfikj trójkątów odził trójkątów ze względu n oki róŝnoozny równormienny równoozny odził trójkątów ze względu n kąty ostrokątny rostokątny rozwrtokątny Sum kątów wewnętrzny trójkąt
O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych
Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA POZIOM ROZSZERZONY. Copyright by Nowa Era Sp. z o.o.
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 0/06 MATEMATYKA POZIOM ROZSZERZONY Zsdy ocenini ozwiązń zdń Copyight by Now E Sp. z o.o. Póbny egzmin mtulny z Nową Eą Uwg: Akceptowne są wszystkie odpowiedzi meytoycznie
Twierdzenie sinusów i cosinusów
Twierdzenie sinusów i osinusów Aldon Dutkiewiz Anet Sikorsk-Nowk Teori Twierdzenie 1 Twierdzenie sinusów (twierdzenie Snellius) W dowolnym trójkąie stosunek długośi dowolnego boku do sinus kąt leżąego
11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków
..BRYŁY OBROTOWE Wae była obotowa powstała w wyniku obotu postokąta dokoła postej zawieająej jeden z jego boków pomień podstawy waa wysokość waa twoząa waa Pzekój osiowy waa postokąt o boka i Podstawa
Regionalne Koło Matematyczne
Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej
Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.
Zestw wzoów mtemtyzy zostł pzygotowy dl potze egzmiu mtulego z mtemtyki oowiązująej od oku 00. Zwie wzoy pzydte do ozwiązi zdń z wszystki dziłów mtemtyki, dltego może służyć zdjąym ie tylko podzs egzmiu,
Twierdzenie sinusów i cosinusów
Twierdzenie sinusów i osinusów Aldon Dutkiewiz Anet Sikorsk-Nowk Teori Twierdzenie 1 Twierdzenie sinusów (twierdzenie Snellius) W dowolnym trójkąie stosunek długośi dowolnego boku do sinus kąt leżąego
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź
5. Mechanika bryły sztywnej
W ozdzie dpowiedzi i wskzówki znjdują się odpowiedzi do wszystkich zdń, znjdziesz tm ównież wskzówki do ozwiązń tudnych zdń. Pełne ozwiązni zdń możesz uzyskć pzysyłjąc e-mi n des: kons@x.wp.p 5. Mechnik
DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVII ROK SZKOLNY 2017/2018 LICEA RUNDA ELIMINACYJNA MECZ I
DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVII ROK SZKOLNY 07/08 LICEA RUNDA ELIMINACYJNA MECZ I. N ile trójkątów prostokątnyh d się roziąć prostokąt?. Czy liz 3 77 jest wymiern? 3. N płszzyźnie dnyh jest
Momenty bezwładności figur płaskich - definicje i wzory
Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem
akademia365.pl kopia dla:
Zestw wzoów mtemtycznych zostł pzygotowny dl potzeb egzminu mtulnego z mtemtyki obowiązującej od oku 00. Zwie wzoy pzydtne do ozwiązni zdń z wszystkich dziłów mtemtyki, dltego może służyć zdjącym nie tylko
Konkurs dla gimnazjalistów Etap szkolny 9 grudnia 2016 roku
Konkurs dl gimnzjlistów Etp szkolny 9 grudni 016 roku Instrukcj dl uczni 1. W zdnich o numerch od 1. do 1. są podne cztery wrinty odpowiedzi: A, B, C, D. Dokłdnie jedn z nich jest poprwn. Poprwne odpowiedzi
Materiały diagnostyczne z matematyki poziom podstawowy
Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY
Rys. 9.. Wyrównnie spostrzeżeń zwrunkownyh jednkowo dokłdnyh C. KRAKOWIANY 9.9. Informje wstępne o krkowinh Krkowin jest zespołem liz rozmieszzonyh w prostokątnej teli o k kolumnh i w wierszh, dl którego
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri Środowisk w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
LXIV Olimpiada Matematyczna
LXIV Olimpiada Matematyzna Rozwiązania zadań konkursowyh zawodów stopnia drugiego 22 lutego 203 r. (pierwszy dzień zawodów) Zadanie. Dane są lizby ałkowite b i oraz trójmian f(x) = x 2 +bx+. Udowodnić,
VIII Olimpiada Matematyczna Gimnazjalistów
VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek
FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.
Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
8. 1. DEFINICJE FUNKCJI TRYGONOMETRYCZNYCH. Definicje funkcji trygonometrycznych kata ostrego. b- przyprostokątna przy α
8.. DEFINICJE FUNKCJI TRYGONOMETRYCZNYCH Definije funkji trygonometryznyh kt ostrego przyprostokątn nprzeiw - przyprostokątn przy - przeiwprostokątn sin - zytj: sinus os - zytj: kosinus tg - zytj: tngens
XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:
XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
1. Wstęp. Pojęcie grafu przepływowego. Niech pewien system liniowy będzie opisany układem liniowych równań algebraicznych
Owody i Ukłdy Anliz ukłdów z pomoą grfów przepływowy Mteriły Pomonize. Wstęp. Pojęie grfu przepływowego. Nie pewien system liniowy ędzie opisny ukłdem liniowy równń lgerizny x + x x + x gdzie: x, x - zmienne
9. 1. KOŁO. Odcinki w okręgu i kole
9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie
Próbny egzamin maturalny MARZEC 2017 schemat oceniania. Klucz odpowiedzi do zadań zamkniętych C A D C C B C C C D C B A A A C A B D D C A C A C
Próbny egzmin mturlny MARZEC 7 schemt ocenini Klucz odpowiedzi do zdń zmkniętych 4 5 7 8 9 4 5 7 8 9 4 5 C A D C C B C C C D C B A A A C A B D D C A C A C Schemt ocenini zdń otwrtych Zdnie. (-) x Rozwiąż
Całki oznaczone. wykład z MATEMATYKI
Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt
Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba
Wybrne zgdnieni z geometrii płszczyzny Dnut Zremb Wstęp Publikcj t powstł z myślą o studentch, którzy chcą zdobyć uprwnieni do nuczni mtemtyki w szkole. Zwier on nieco podstwowych widomości z geometrii
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
Mechanika teoretyczna
ktestki geometcze Mecik teoetcz Wkłd 9, i ktestki geometcze figu płskic. Główe cetle osie ezwłdości. Pole powiezci Momet sttcz współzęde śodk ciężkości. Momet ezwłdości Momet odśodkow główe cetle osie
Całki podwójne i potrójne
Miej Grzesik Instytut Mtemtyki Politehniki Poznńskiej Cłki podwójne i potrójne 1. efinij łki podwójnej po prostokąie efinij 1. Podziłem prostokąt = {(x, y) : x b, y d} (inzej: = [, b] [, d]) nzywmy zbiór
PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,
Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie
, GEOMETRIA NA PŁASZCZYZNIE (PLANIMETRIA)
Treść:, GEOMETRI N PŁSZCZYZNIE (PLNIMETRI) 1. Podstwowe pojęi geometrii (punkt, prost, płszzyzn, przestrzeń, półprost, odinek, łmn, figur geometryzn (płsk i przestrzenn). -------------------------------------------------------------------------------------------------------------.
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Parada nierówności. Marcin Fryz. 15 czerwca a + b 2. ab 2. a + b + c. 3 abc. (2)
Prd nierównośi Mrin Fryz 5 zerw 0 Rozgrzewk Udowodnić, że dl dowolnyh nieujemnyh liz,,, d zhodzą:, () () Dowód Pierwszą nierówność w () możemy podnieść równowżnie do kwdrtu i zstosowć wzór skróonego mnożeni:
Planimetria czworokąty
Plnimetri czworokąty Emili Ruszczyk kl. II, I LO im. Stefn Żeromskiego w Ełku pod kierunkiem Grżyny iernot-lendo Klsyfikcj czworokątów zworokąty dzielą się n niewypukłe i wypukłe, wypukłe n trpezy i trpezoidy,
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
DZIAŁ 2. Figury geometryczne
1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVI ROK SZKOLNY 2016/17 LICEA RUNDA PÓŁFINAŁOWA MECZ I
DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVI ROK SZKOLNY 016/17 LICEA RUNDA PÓŁFINAŁOWA MECZ I 1) Dw wyięte z tektury kwdrty o okh odpowiednio 4 m i m nłożono jeden n drugi w ten sposó, że wierzhołek mniejszego
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej
O zachęcaniu i zniechęcaniu do matematyki
Zdzisłw Pogod Instytut Mtemtyki UJ Ul.Łojsiewiz 6 0-8 Kków e-mil: zdzislw.ogod@uj.edu.l O zhęniu i zniehęniu do mtemtyki Uzą mtemtyki stmy się do niej zhęić. Tudno soie wyozić nuzyiel mtemtyki, któy elowo
INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?
INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj
Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y
Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia:. Ilość punktów: Konkus Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012. zawody II stopnia (ejonowe) Witamy Cię na dugim etapie Konkusu Matematycznego. Pzed pzystąpieniem
Temat ćwiczenia. Pomiary kół zębatych
POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temt ćwiczeni Pomiy kół zębtych I. Cel ćwiczeni Zpoznnie studentów z metodmi pomiu uzębień wlcowych kół zębtych o zębch postych oz pktyczny pomi koł. II. Widomości
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.
ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.
Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.
Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy
1 Definicja całki podwójnej po prostokącie
1 efinij łki podwójnej po prostokąie efinij 1 Podziłem prostokąt = {(x, y) : x b, y d} (inzej: = [, b] [, d]) nzywmy zbiór P złożony z prostokątów 1, 2,..., n które łkowiie go wypełniją i mją prmi rozłązne
=I π xy. +I π xz. +I π yz. + I π yz
GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π
STYLE. TWORZENIE SPISÓW TREŚCI
STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
PEWNIK DEDEKINDA i jego najprostsze konsekwencje
PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Proponowane rozwiazania Matura 2013 MATEMATYKA Poziom podstawowy
POLITECHNIKA WARSZAWSKA WYDZIAŁ MATEMATYKI I NAUK INFORMACYJNYCH Proponowane rozwiazania Matura 013 MATEMATYKA Poziom podstawowy Autorzy: Tomasz Kostrzewa Agnieszka Piliszek Wojciech Ożański Michał Zwierzyński
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty.
3 Kinemk uchu jednosjnego zmiennego jednosjnie zmiennego zu Wbó i opcownie zdń 3-3: Bb Kościelsk zdń 33-35: szd J Bczński 3 Zleżność dogi pzebej pzez punk meiln od czsu możn opisć ównniem: () A B C 3 gdzie
1. WARTOŚĆ BEZWZGLĘDNA LICZBY
. WRTŚĆ EZWZGLĘN LIZY Wtość ezwzględą lizy zezywistej x defiiujemy wzoem: x dl x 0 x x dl x < 0 Liz x jest to odległość osi lizowej puktu x od puktu 0. W szzególośi: x 0 x x l dowoly liz x, y mmy: x +
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch
VI. Rachunek całkowy. 1. Całka nieoznaczona
VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x
Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.
Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem
bezkontekstowa generujac X 010 0X0.
1. Npisz grmtyke ezkontekstow generujc jezyk : L 1 = { 0 i 10 j 10 p : i, j, p > 0, i + j = p } Odpowiedź. Grmtyk wygląd tk: Nieterminlem strtowym jest S. S 01X0 0S0 X 010 0X0. Nieterminl X generuje słow
ń Ż Ż Ż ź Ś ź ń ŚĆ ć ń Ę ć Ć ń Ę ć ń ć ć Ż Ę Ę Ś ń Ó ć Ę Ć ć ć Ę Ę Ż ń ć ć Ś ń Ę ć ń Ś Ś ć ź Ś ŹĆ Ż Ś Ż ć ć ć ć ć ć ń ć ć ń ć ć Ś Ć ń Ś Ą ć ć ć ć ć ć ń ć ń ć Ć ć ń ć Ą ń ć ć Ę Ś ć ń ź ń Ć Ć ń ć ć ć Ś ć
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu