Klasyfikacja trójkątów
|
|
- Sylwia Ostrowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 9.. WŁASNOŚCI TRÓJKĄTÓW Klsyfikj trójkątów odził trójkątów ze względu n oki róŝnoozny równormienny równoozny odził trójkątów ze względu n kąty ostrokątny rostokątny rozwrtokątny Sum kątów wewnętrzny trójkąt jest równ 80 ) Odinki i linie w trójkąie d r s wysokość trójkąt odinek łąząy wierzołek trójkąt z rzeiwległym okiem, rostodły do niego. dwusiezn kąt d ółrost, któr dzieli kąt n ół środkow trójkąt r odinek łąząy wierzołek trójkąt ze środkiem rzeiwległego oku. Twierdzenie o środkowy trójkąt: Środkowe trójkąt rzeinją się w unkie, który nzywmy środkiem ięŝkośi trójkąt. unkt ten dzieli kŝdą ze środkowy w stosunku : lizą do wierzołków. symetrln oku trójkąt s rost rostodł do oku i rzeodzą rzez jego środek
2 Trójkąt równormienny - odstw trójkąt - rmię trójkąt - kąty rzy odstwie są równe, - wysokość dzieli odstwę n ołowę - wysokość dzieli kąt między rmionmi n ołowę α α rzykłd 9... Dny jest trójkąt równormienny o odstwie 8 i rmieniu 5. Środkowe rzeinją się w unkie. Oliz odległośi tego unktu od kŝdego z wierzołków trójkąt Rozwiąznie Komentrz Anliz zdni. Dne: Szukne: 8 g, d 5 g Z twierdzeni o środkowy trójkąt: Środkowe trójkąt rzeinją się w unkie, który nzywmy środkiem ięŝkośi trójkąt. unkt ten dzieli kŝdą ze środkowy w stosunku : lizą do wierzołków, wynik, Ŝe odinek g jest dw rzy dłuŝszy od odink. Korzystją z twierdzeni itgors olizny długość odink
3 ( 0,5 ) ( g ) ( ) g Olizmy długość odink g. Korzystją z twierdzeni itgors olizmy długość odink d ( 0,5) d d d d 7 d 7 Od : g ; d 7 rzykłd 9... Wyznz kąt α trójkąt orz długość oku x α α α 8 8 Rozwiąznie x α Komentrz Kąt α wyznzmy wykorzystują włsność: Sum kątów wewnętrzny trójkąt jest równ 80. x Dw kąty w trójkąie są równe. Ztem trójkąt jest równormienny.
4 rzykłd 9... Oliz owód trójkąt równormiennego wiedzą, Ŝe kąt między rmionmi m mirę 0, wysokość orowdzon z wierzołk tego kąt m długość 0 m. Rozwiąznie Anliz zdni. Komentrz Dne: Szukne: Wzory: 0m O. O α 0 Olizmy wykorzystują definiję kosinus rzyrostoktn_ rzy_α osα rzeiwrostoktn β α 0 os ,5 tg0 0,5 / ,5 / 0 O m Olizmy wykorzystują definiję tngens tg α rzyrostoktn _ nrzeiw _ α rzyrostoktn _ rzy _ α Olizmy owód trójkąt.
5 d) Trójkąt równoozny - w trójkąie równooznym wszystkie kąty mj o 0. - w trójkąie równooznym środkowe, symetrlne, wysokośi, dwusiezne rzeinją się w tym smym unkie, który jest jednoześnie romieniem okręgu wisnego w ten trójkąt, jk i 0 okręgu oisnego n tym trójkąie. wzór n ole trójkąt równooznego r R wzór n wysokość trójkąt równooznego wzory n romień okręgu wisnego w trójkąt równoozny r r wzory n romień okręgu oisnego n trójkąie równooznym R R rzykłd 9... Oliz owód i romień okręgu wisnego w trójkąt równoozny wiedzą, Ŝe jego ole wynosi. Rozwiąznie Dne: Szukne: Wzory: O, r O / / : O r 8 r 9 Anliz zdni. Komentrz Wykorzystują wzór n ole trójkąt równooznego olizmy długość jego oku. Olizmy owód trójkąt. Olizmy romień okręgu wisnego w trójkąt.
6 ole trójkąt sinα α ( )( )( ) gdzie ( ) rzykłd Oliz długośi wysokośi trójkąt o ok 8m,m,m. Rozwiąznie Komentrz Anliz zdni. Dne: m m 8m Szukne:,,
7 Wzory: ( )( )( ) gdzie ( ) ( ) ( ) 9 8 ( )( )( ) ( )( )( ) Olizmy ole trójkąt, korzystją ze wzoru ( )( )( ) 5 : / 5 5 Olizmy ze wzoru 5 : / Olizmy ze wzoru 5 : / 5 5 Olizmy ze wzoru ĆWICZENIA Ćwizenie 9... (kt ) Oliz ole i owód trójkąt równooznego wiedzą, Ŝe romień okręgu oisnego n tym trójkąie wynosi m. semt oenini odowiedzi Odowiedź Liz unktów odnie długośi oku trójkąt. odnie ol trójkąt. odnie owodu trójkąt
8 Ćwizenie 9... (kt ) Oliz ole i owód sześiokąt foremnego wiedzą,ŝe romień okręgu wisnego w ten sześiokąt wynosi m. semt oenini odowiedzi Odowiedź Liz unktów odnie długośi oku sześiokąt. odnie ol sześiokąt. odnie owodu sześiokąt. Ćwizenie 9... (kt ) Oliz ole i owód trójkąt rostokątnego o rzeiwrostokątnej długośi m i kąie ostrym 0 semt oenini odowiedzi Odowiedź Liz unktów odnie długośi krótszej rzyrostokątnej. odnie długośi dłuŝszej rzyrostokątnej. odnie ol trójkąt. odnie owodu trójkąt Ćwizenie 9... (kt ) W trójkąie równormiennym sum długośi rmieni i wysokośi jest równ m.kąt rzy odstwie m mirę 0. Oliz ole tego trójkąt. semt oenini odowiedzi Odowiedź Liz unktów odnie wysokośi trójkąt. odnie długośi odstwy trójkąt odnie ol trójkąt Ćwizenie (kt ) Oliz ole trójkąt o ok,5, 7. semt oenini odowiedzi Odowiedź Liz unktów odnie owodu trójkąt odnie ol trójkąt
8. 1. DEFINICJE FUNKCJI TRYGONOMETRYCZNYCH. Definicje funkcji trygonometrycznych kata ostrego. b- przyprostokątna przy α
8.. DEFINICJE FUNKCJI TRYGONOMETRYCZNYCH Definije funkji trygonometryznyh kt ostrego przyprostokątn nprzeiw - przyprostokątn przy - przeiwprostokątn sin - zytj: sinus os - zytj: kosinus tg - zytj: tngens
GRANIASTOSŁUPY
.. GRANIASTOSŁUPY. Grnistosłupy H Postwy grnistosłup - w równoległe i przystjąe wielokąty Śin ozn - równoległook Grnistosłup prosty grnistosłup, w którym wszystkie krwęzie ozne są prostopłe o postw. W
Scenariusz lekcji matematyki dla klasy III gimnazjum. Temat: Powtórzenie i utrwalenie wiadomości dotyczących figur geometrycznych.
Senriusz lekji mtemtyki dl klsy III gimnzjum Temt: owtórzenie i utrwlenie widomośi dotyząy figur geometryzny Cel ogólny lekji: Uporządkownie i utrwlenie widomośi o figur płski i przestrzenny Cele operyjne:
H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania
H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku
OSTROSŁUPY. Ostrosłupy
.. OSTROSŁUPY Ostrosłupy ścin boczn - trójkąt podstw ostrosłup - dowolny wielokąt Wysokość ostrosłup odcinek łączący wierzcołek ostrosłup z płszczyzną podstwy, prostopdły do podstwy Czworościn - ostrosłup
9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu
9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)
Twierdzenie sinusów i cosinusów
Twierdzenie sinusów i osinusów Aldon Dutkiewiz Anet Sikorsk-Nowk Teori Twierdzenie 1 Twierdzenie sinusów (twierdzenie Snellius) W dowolnym trójkąie stosunek długośi dowolnego boku do sinus kąt leżąego
Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu
9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
Twierdzenie sinusów i cosinusów
Twierdzenie sinusów i osinusów Aldon Dutkiewiz Anet Sikorsk-Nowk Teori Twierdzenie 1 Twierdzenie sinusów (twierdzenie Snellius) W dowolnym trójkąie stosunek długośi dowolnego boku do sinus kąt leżąego
, GEOMETRIA NA PŁASZCZYZNIE (PLANIMETRIA)
Treść:, GEOMETRI N PŁSZCZYZNIE (PLNIMETRI) 1. Podstwowe pojęi geometrii (punkt, prost, płszzyzn, przestrzeń, półprost, odinek, łmn, figur geometryzn (płsk i przestrzenn). -------------------------------------------------------------------------------------------------------------.
ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH
Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh
KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p
KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
Spis treści. Podstawowe definicje. Wielokąty. Trójkąty. Czworokąty. Kąty
Mrt Compny Ksprowicz LOGO Spis treści. 1 Podstwowe definicje 2 Wielokąty 3 Trójkąty 4 Czworokąty 5 Kąty Podstwowe definicje w geometrii. 1.Punkt 2.Prost 3.Proste prostopdłe 4.Proste równoległe 5.Półprost
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt
Planimetria czworokąty
Plnimetri czworokąty Emili Ruszczyk kl. II, I LO im. Stefn Żeromskiego w Ełku pod kierunkiem Grżyny iernot-lendo Klsyfikcj czworokątów zworokąty dzielą się n niewypukłe i wypukłe, wypukłe n trpezy i trpezoidy,
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri Środowisk w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
Spis treści. Wstęp... 4
pis treści Wstęp... 4 Zdni mturlne......................................................... 5 1. Funkcj kwdrtow... 5. Wielominy... 7. Trygonometri... 9 4. Wrtość bezwzględn... 11 5. Plnimetri... 15 6.
zestaw DO ĆWICZEŃ z matematyki
Mtemtyk Poziom podstwowy zestaw DO ĆWICZEŃ z mtemtyki poziom podstwowy rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1 Uzsdnij, że pole romu o przekątnych p i q wyrż się wzorem P = 1 pq Rozwiąznie: Przyjmij
Blok IV: Wektory i geometria
Blok IV: Wektory i geometria IV. Punkty A, B, C, D są kolejnymi wierzhołkami równoległooku ABCD. Ile różnyh, niezerowyh wektorów wyznazają te punkty? IV. Każda para spośród punktow A, B, C, D kwadratu
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine
GEOMETRIA GEOMETRIA
GEOMETRIA WYKONALI: Jek Dąrwski Kludiusz Dyjs Tmsz Wwrzyński Temt: Widmśi wstęne. AKJOMAT - w, którym zwrt jest ewn nieudwdniln rwd. Jest t ewnik. Aksjmtów nie udwdni się. NAUKA DEDUKCYJNA - nuk ierją
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.
Szkice rozwiązań zadań zawody rejonowe 2019
XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
Modele odpowiedzi do arkusza próbnej matury z OPERONEM. Fizyka Poziom rozszerzony
Modele odowiedzi do rkuz róbnej mtury z OPEONEM Fizyk Poziom rozzerzony Grudzieƒ 007 zdni Prwid ow odowiedê Liczb unktów... z zinie wzoru n nt enie ol grwitcyjnego kt GM z zinie wrunku kt m v GM m c, gdzie
2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.
Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut
Temat: Do czego służą wyrażenia algebraiczne?
Projekt współfinnsowny przez Unię Europejską w rm Europejskiego Funduszu Społeznego Spotknie 14 Temt: Do zego służą wyrżeni lgerizne? Pln zjęć 1. Jkie wyrżenie nzywmy lgeriznym? Czym wyrżenie lgerizne
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ dla studentów I roku kierunku INŻYNIERIA ŚRODOWISKA - studia stacjonarne
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ GIMNAZJUM I SZKOŁY ŚREDNIEJ dl studentów I roku kierunku INŻYNIERIA ŚRODOWISKA - studi stjonrne Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 08/09 Schemt punktowni zdni zmknięte Z kżdą poprwną odpowiedź uczeń otrzymuje punkt Numer zdni Poprwn odpowiedź 5 6 7 8 9
Regionalne Koło Matematyczne
Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej
INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?
INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.
Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.
GEOMETRIA W PRZESTRZENI (STEREOMETRIA)
GEOMETRIA W RZESTRZENI (STEREOMETRIA) Treść: 1. roste, płszzyzny i kąty w przestrzeni: --------------------------------------------------------------------------------------------------- Wzjemne połoŝenie
Ą Ą Ł Ś ÓŁ Ł ć ć ź ÓŁ ć ć Ś ć ć Ą ć ć ć ź ć ć ć ć ć Ą Ó ÓŁ ć ć Ł Ł ź Ś ć ć ć ć Ł Ł ć ć Ł Ł Ł ć Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ź Ż ź Ł ć Ż Ć Ż Ś Ż ć ć ć ć Ł Ż Ś ć Ś ź ć ź ć ć ć ź ć Ś Ź ŚĆ ź ć ć Ś Ś
ć ź ź Ł ź ź ź Ś ć ć Ę ÓŁ ź Ń ź ź ź ć ć Ń ć ć ć Ń ź Ę Ś Ń ć ć ć ź ć ć ć ć ć ć ź Ś Ę ź ź Ż ć ź ź ć ź Ń ź ć ć ć ź ź Ł Ń ć Ń Ń ź Ś Ń Ę Ę Ę ź ć ć Ę ź Ń Ł Ę ź ź Ń Ę Ę Ł Ł Ś Ś ć ć Ł ź ć ć Ł Ó Ż Ś Ł Ó ź Ę Ń
Ł ÓŁ Ł Ą Ś Ą Ą Ś Ś ć ć ć ć ć ć ć ć ć ć ć Ę ć ń ć ć ć ć ć ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ń ń ć Ś ń ć ń ć ń ć ć Ś ć Ż Ś Ś ń Ł Ń ń ć ć ć ć Ś ń
Ł Ń Ś ś ę ę ś ś ś ś ę ę ę ę ś ś ę ś ę ś ę ś ś ć Ą ś ę ś ś ę ś ę ś ś Ń ś ś ś ś ś ś ę ę ę ę ś ś ę ć ś ś ę ś ę ś ę ę ś ę ś Ą ę ś ę ś ś ś ś ę ś ś ę ę ś ś ę ś ś ś ę ę ę ś ś ś ę ś ę ś ę ć ś ś ę ś ę ę Ą ę ę ę
ÓŁ Ą Ś Ą Ł Ś Ó Ą Ł ź ź Ą ż ż ż ż ż Ę Ę ź Ą ż Ę Ń Ę ż ż ź ż ż Ń ż Ą ż ć ż ć ć ć ć ż ć ć ć ć ż Ł Ę Ą ć ć ć ć ć ć ć ć ć ź ć ź Ę ć ź ć ż ć ć ć ż ź ć ć ć ć ż ź ż ż ć ż ż ć ż Ę Ą ć Ł ź ż ż Ł Ó ÓŁ ć Ą ć Ą ż ż
Ł ś Ł Ą ś Ź Ł ś Ł ś ź ś ę ÓŁ ÓŁ ź ź ś ś ę ę ź ć ś ś ę ć ę ś ę ś ź ę ś ę ś ś ś ę ę ć ę ś Ł ę ę ę Ę Ą ś ś ś Ł ś ę ś Ł Ń Ł Ń ę ś ś ę Ż Ż ś Ż ś ś Ż ś ź ś ś ź ś ę ś ę Ń ę ę ę ś ę ś ę ś ź ś Ł ś ś ś ś ę ś ś
Ą Ł Ł Ł Ś ż ź ź Ł Ś Ą Ł Ś Ś Ł Ó ż Ł Ś Ą ć ć ż ż Ą ż ć ż ż ć ć ć Ś ć ż Ś ż ż Ą ć ż ż ć ć ć ć ż ż Ś ć ż ż ÓŁ ż ż ż Ł Ł Ś Ó ć ż Ł ż ż ż ż ż Ć Ó Ó ż ż Ó Ł Ł ż Ą ż ż ż ż ż ż ż ż ż ć ż ż ć ż ż ż ć ż ż ż Ł ć
Ń ÓŁ Ł Ś Ł Ł Ś ÓŁ Ł Ś Ń ÓŁ Ł Ń Ź ę Ą ę ę ę ę ę ę Ź ę ć ć ę ę ę ę ę Ź ć ę ę ę ć ć ę ę ę Ł ę ę ę Ł Ł ę ę ę ę ę ź ę ę ę ę ź ę ć ę ć ć ę ę ź ź ę ć ę ę ź Ź ę ź ę ę ć Ź Ą ć ć ć ę ę ę ę ę Ź ź ę ć Ł ź ę ę Ź Ę
O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych
Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć
Sprawdzian całoroczny kl. III
Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
h a V. GEOMETRIA PŁASKA TRÓJKĄT :
pitgos..pl V. GEOMETRIA PŁASKA TRÓJKĄT : Wunek utwozeni tójkąt: sum ługośi wó kótszy oków musi yć większ o ługośi njłuższego oku. Śoek okęgu opisnego wyznzją symetlne oków. Śoek okęgu wpisnego wyznzją
Modele odpowiedzi do arkusza próbnej matury z OPERONEM. Fizyka Poziom rozszerzony
Modele odowiedzi do rkuz rónej ury z OPEONEM Fizyk Pozio rozzerzony Grudzieƒ 007 zdni Prwid ow odowiedê Licz... z zinie wzoru n n enie ol grwicyjnego k GM z zinie wrunku k v GM c v, gdzie M lney, roieƒ
1. Wstęp. Pojęcie grafu przepływowego. Niech pewien system liniowy będzie opisany układem liniowych równań algebraicznych
Owody i Ukłdy Anliz ukłdów z pomoą grfów przepływowy Mteriły Pomonize. Wstęp. Pojęie grfu przepływowego. Nie pewien system liniowy ędzie opisny ukłdem liniowy równń lgerizny x + x x + x gdzie: x, x - zmienne
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM
Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej
Materiały diagnostyczne z matematyki poziom podstawowy
Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:
Pojęcia Działania na macierzach Wyznacznik macierzy
Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to
9. PLANIMETRIA zadania
Zad.9.1. Czy boki trójkąta mogą mieć długości: a),6, 10 b) 5,8, 10 9. PLANIMETRIA zadania Zad.9.. Dwa kąty trójkąta mają miary: 5, 40. Jaki to trójkąt: ostrokątny, prostokątny, czy rozwartokątny? Zad.9..
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w Stowzyszenie n zez Edukji Mtemtyznej Zestw 6 szkie ozwiązń zdń Znjdź wszystkie tójki (x, y, z) liz zezywistyh, któe są ozwiąznimi ównni 5(x +y +z ) = 4(xy +yz +zx)
Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7
Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie
Zestawy prac kontrolnych z matematyki dla klasy III LOd semestr VI. ZESTAW nr 1 Prawdopodobieństwo warunkowe
Zestwy prc kontrolnych z mtemtyki dl klsy III LOd semestr VI ZESTAW nr Prwdopodoieństwo wrunkowe. Co nzywmy prwdopodoieństwem wrunkowym? Podj wzór i włsności prwdopodoieństw wrunkowego. 2. Spośród trzystu
Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy
Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni
DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVII ROK SZKOLNY 2017/2018 LICEA RUNDA ELIMINACYJNA MECZ I
DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVII ROK SZKOLNY 07/08 LICEA RUNDA ELIMINACYJNA MECZ I. N ile trójkątów prostokątnyh d się roziąć prostokąt?. Czy liz 3 77 jest wymiern? 3. N płszzyźnie dnyh jest
Zwróć uwagę. Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj je kilka razy.
Zwróć uwgę Poniżej znjdziesz kilk wskzówek, którą mogą ci ułtwić npisnie sprwdzinu szóstoklsisty. Njwżniejsz z nich to: Czytj uwżnie treści zdń i poleceni. W rzie potrzey przeczytj je kilk rzy. Zwrcj uwgę
Definicje. r r r r. Struktura kryształu. Sieć Bravais go. Baza
Definije Sieć Brvis'go - Nieskońzon sieć punktów przestrzeni tkih, że otozenie kżdego punktu jest identyzne Nieskońzon sieć punktów przestrzeni otrzymnyh wskutek przesunięi jednego punktu o wszystkie możliwe
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/05 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZE MMA-P SIERPIEŃ 05 Nr zd Klucz punktowni zdń zmkniętych 3 5
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
ZAKRES WYMAGAŃ Z MATEMATYKI
ZAKRES WYMAGAŃ Z MATEMATYKI W RAMACH PRZYGOTOWAŃ DO EGZAMINU GIMNAZJALNEGO PRZYKŁADOWE ZAGADNIENIA CZĘŚĆ I. Elementrne dziłni n liczbch wymiernych. Dziłni wykonywne w pmięci. II. Liczby wymierne. Włsności
Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 05 skle.oeon.l/mtu
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 0 Zdni zmknięte
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
XXI OLIMPIADA FIZYCZNA(1971/1972). Stopień III, zadanie teoretyczne T3
XXI OLIMPIADA FIZYCZNA(1971/197) Stoień III, zadanie teoretyczne T3 Źródło: Olimiady fizyczne XXI i XXII, WSiP Warszawa 1975 Autor: Nazwa zadania: Działy: Słowa kluczowe: Andrzej Szymacha Obrót łytki Mechanika
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM - MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC Stron z 9 Zsdy oenini zdń - pozio rozszerzony MARZEC ZADANIA ZAMKNIĘTE Nr zdni Lizb punktów
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Skrypt 18. Trygonometria
Projekt Innowayjny program nauzania matematyki dla lieów ogólnokształąyh współfinansowany ze środków Unii Europejskiej w ramah Europejskiego Funduszu Społeznego Skrypt 18 Trygonometria 1. Definije i wartośi
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
pieczątk WKK Kod uczni - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP WOJEWÓDZKI Drogi Uczniu, witj n III etpie konkursu mtemtycznego. Przeczytj uwżnie
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 21 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zdni zmknięte ZADANIE 1 (1 PKT) Liczę 19 85 zokr glmy do
Skrypt edukacyjny do zajęć wyrównawczych z matematyki dla klas II Bożena Kuczera
Projekt Wiedz, kompetencje i prktyk to pewn przyszłość zwodow technik Kompleksowy Progrm Rozwojowy dl Technikum nr w Zespole Szkół Technicznych im Stnisłw Stszic w Ryniku, współfinnsowny przez Unię Europejską
( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)
List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych