O zachęcaniu i zniechęcaniu do matematyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "O zachęcaniu i zniechęcaniu do matematyki"

Transkrypt

1 Zdzisłw Pogod Instytut Mtemtyki UJ Ul.Łojsiewiz Kków e-mil: zdzislw.ogod@uj.edu.l O zhęniu i zniehęniu do mtemtyki Uzą mtemtyki stmy się do niej zhęić. Tudno soie wyozić nuzyiel mtemtyki, któy elowo zniehęły uzniów do swojego zedmiotu. Dlzego wię dzieje się tk, Ŝe wielu uzniów oz tyh, któzy juŝ mją nukę szkolną z soą twiedzi, Ŝe włśnie w szkole zniehęili się do mtemtyki? Polem jest owŝny i zyzyn wiele. Zwóimy tu uwgę n jeden z sektów. Czy nm się oś odo zy nie, zy oś luimy lu nie jest odzuiem dzo osoistym i względnym. Jkiś utwó muzyzny, wiesz, owieść, zy film w iewszej hwili moŝe nm się zuełnie nie odoć, lez óźniej moŝemy uznć, Ŝe jest to dzieło inteesująe, nwet fsynująe. Ozywiśie moŝe teŝ yć odwotnie. ZleŜy to od wielu zynników: sosou ezentji, smoozui w dnym momenie, nstoju, kontekstu, w jkim stykmy się z dziełem. Podonie jest z olemmi mtemtyznymi. Jeśli zdnieolem zostnie zedstwione w iekwy sosó z uzsdnieniem, to jest duŝ szns, Ŝe i ns zinteesuje. Szns n ziekwienie z ewnośią wzośnie, gdy w ełni zozumiemy ozwiąznie, oznmy zstosowni Jeśli jednk olem ukzny ędzie eznmiętnie, ondto jego ozwiąznie ędzie zwiłe, ozywiste dl ozwiązująego dl ns nie, to istnieją młe sznse, Ŝe ns wiągnie, Ŝe się nim zfsynujemy. Zdz się, Ŝe zły doó zdń tudnyh, ond siły uzni, moŝe go zniehęić nwet do njostszyh olemów. Dostją zdnie z góy moŝe złoŝyć, Ŝe jest ond jego siły i nwet nie ędzie óowł go ozwiązywć, hoć tk nwdę moŝe to yć zdnie tyowe, wymgjąe niewielkiego wysiłku, węz stnddowe. Pzyzwyzjony jednk do tego, Ŝe nuzyiel iągle zskkuje go zdnimi z sztńskim omysłem, uzn, iŝ i tk nie d soie dy z olemem. Pzyjzyjmy się kilku zykłdom. Zdnie. Rozwiązć ównnie 0 Zdnie wygląd n tyowe z temtu ozwiązywnie ównń wyŝszyh stoni oz ozkłd wielominu n zynniki. Jednk óy ozwiązni go stnddowymi metodmi nie zynoszą efektu. śden z dzielników wyzu wolnego nie jest iewistkiem ównni. Pozostje wię metod oś dodć i odjąć. MoŜn ostąić tk:

2 ) ) ) ) ) ) ) ) ) ) Jeśli jkoś udło nm się wść n omysł, jk wykonć ten ozkłd, to tez mmy zed soą ównnie 0 I tym zem nie dziłją swdzone metody. Wyz wolny tki sm jk ozednio nie ozwl n znlezienie iewistków łkowityh. TkŜe óy ozkłdu n zynniki są ezowone. Tudno zkłdć, Ŝe znne są wzoy Cdn. Tze wię wykozystć jkiś omysł. Njiew zstosujmy odstwienie ozwljąe ozyć się złonu w dugiej otędze. Tkim odstwieniem jest y Pozwl to ozednie ównnie zstąić nstęująym y y Tez stosujemy kolejne odstwienie z z y o dje z z stąd z z i tez z z

3 wją tez do zmiennej dostniemy ostteznie Pozostłe ozwiązni otzymmy z tójminy kwdtowego, któy ojwił się w ozkłdzie n zynniki. Ozywiśie są to Tu nie owinno yć olemów. oz Tkie zdnie i jego ozwiąznie moŝe uzni zezić i łkowiie zniehęić do innyh zdń zdeydownie ostszyh, gdzie nie tze stosowć Ŝ tk wyszuknyh hwytów. Wltją je między stnddowe zdni moŝemy wielu uzniów skuteznie zniehęić do mtemtyki. Jest to niewątliwie olem w stylu olimijskim i uzniowie zygotowni n nietyowe olemy i odowiednio tenowni, mogą odzić soie z zdniem, yć moŝe nwet ez większego tudu. NleŜy tu wyźnie zznzyć, Ŝe nie hodzi o kytykę odonyh zdń. Mtemtyy w swojej y zęsto sotykją się z tkimi elementnymi olemmi i muszą soie z nimi dzić. Tze jednk dzo uwŝć, kiedy i komu moŝn zoonowć zdnie tego tyu. Pzyjzyjmy się innemu zdniu Zdnie Lizę 9 moŝn n dw sosoy zedstwić w osti, gdzie, N Znleźć lizę ntulną, któą moŝn zedstwić w tkiej osti n tzy sosoy. Z temtu zdni wynik, Ŝe oszukiwn liz owinn istnieć. Tylko jk ją znleźć. Wiele olemów z teoii liz ozwiązuje się z omoą óŝnego odzju sztuzek i nienlnyh omysłów. Tk to wygląd dl osó, któe nie mją n o dzień do zynieni z odonymi zdnimi. Njiew zuwŝmy zleŝność

4 ) d d ) d ) d ) d d ) d d ) Swdzmy ją ezośednim hunkiem. Tez zdefiniujmy funkję f, y) y y Oisną owyŝej zleŝność moŝemy zisć wykozystują f f, ) f, d) f d, d d ) Pwdą jest teŝ, Ŝe f, y) f y, ), zyli f, ) f, d) f, ) f d, ) f d, d) Pzehodzą n lizy moŝn zuwŝyć, Ŝe f,) f,) f,9) f,6) tkŝe f,9) f,) f,) f,) i jeszze f,6) f,) f,0) f 8,7) Pondto f,) 7, f,), f,) 9. Tk wię liz jest szukną lizą gdyŝ f,0) f 8,7) f,) f,) 79 Dokłdniejsze zyjzenie się ozwiązniu ozwl n stwiedzenie, Ŝe dl dowolnej lizy ntulnej n istnieje tk liz, któą moŝn zedstwić w osti n n óŝnyh sosoów. Ten olem ównieŝ hy nie ndje się, jko zhęt dl uzniów niezdeydownyh lu setyznie nstwionyh do mtemtyki. MoŜe utwiedzić ih w zekonniu, Ŝe mtemtyk sowdz się zede wszystkim do tików i zskkująyh omysłów. Dl zygotowująyh się do olimidy lu innyh konkusów moŝe to yć jednk iekwy

5 zykłd wykozystni ewnej tehniki. Wszystko zleŝy komu hemy zoonowć zdnie. Nuzyiel musi ostęowć dzo ostoŝnie zy dooze olemów. MoŜe tez zenlizujmy zykłd geometyzny. Zdnie Udowodnić, Ŝe zy tdyyjnyh oznzenih dl tójkąt nieówność 6 gdzie. ABC wdziw jest Rozwiąznie wygląd nstęująo: oz zyli ) I jeszze jedno zdnie Zdnie W tójkąie ABC nieh unkty A, B i C ędą unktmi styznośi okęgu wisnego do odowiednih oków. Oznzmy jeszze B C, A C oz A B. Pzy owyŝszyh oznzenih udowodnić, Ŝe wdziw jest nieówność: 8 Bez ognizni ogólnośi moŝemy zyjąć, Ŝe. Nieh O oznz śodek okęgu wisnego, wtedy moŝemy jeszze wowdzić oznzeni

6 6,, OC A A OB OC B ZuwŜmy, Ŝe zy tdyyjnyh oznzenih któw wewnętznyh w tójkąie zhodzą zleŝnośi π oz Odinki BO AO, i CO są ostodłe odowiednio do, A C C B i B A. Mmy ntyhmist,, zyli oz konsekwentnie Wykozystują tez nieówność Czeyszew moŝemy zisć szownie ) os os os Wykozystują wzó Heon i oznzją ole tójkąt ABC zez S mmy zleŝnośi 6 ) ) ) S zyli S gdzie, jk ozednio jest ołową owodu tójkąt.

7 ZuwŜmy jeszze, Ŝe funkj dn wzoem 0, π ), ztem z nieównośi Jensen dostniemy kolejne szownie f ) jest wyukł n zedzile os os os os os π os 6 Ostteznie wię os os os 8 o dje szukną nieówność. Widć, Ŝe w zdniu jest to hunek zysto lgeizny, wię geometyzność tegoŝ zdni jest ozon. Pondto jest to znów tyowe zdnie-ćwizenie dl uzestników konkusów, o sm nieówność n iewszy zut ok nie m iekwej inteetji geometyznej. Lizymy, Ŝey wyszło. W zdniu zwtym wykozystujemy o wd ewne włsnośi tójkąt, le odstwowe omysły związne są z lgeiznymi nieównośimi. Tkie zdnie zej nie zhęi zeiętnego uzni do mtemtyki tym dziej do geometii. Będzie utwiedzło w zekonniu, Ŝe zdni mtemtyzne wymgją nientulnyh sztuzek, n któe tudno wść. PowyŜsze zykłdy okzują, Ŝe tze dzo uwŝć, zy dooze zdń. MoŜn, mimo doyh hęi, uzyskć efekt dleki od ozekiwnego. Zmist zinteesowni moŝn niestety skuteznie zniehęić. Pzyjzyjmy się ewnemu twiedzeniu, któym inteesowł się Eule Zdnie W ABC z wiezhołków A, B i C owdzimy oste zeinjąe zeiwległe oki odowiednio w unkth A, B i C i osidjąe unkt wsólny O. Udowodnić, Ŝe OC OA OB CC AA BB 7

8 Wew ozoom nie jest to zdnie n zstosownie twiedzeni Cevy. Njośiej, z Euleem, uzsdni się to tk. Pzez unkt O owdzimy oste ównoległe do AC i BC i zeinjąe ok AB odowiednio w unkth X i Y. Ntulnie stąd ozywiśie AX XY YB AB AX AB XY AB Wystzy tez zuwŝyć odowiednie ooje YB AB AX OB oniewŝ tójkąty XOB i ABB są odone. AB BB Anlogiznie XY OC n odstwie odoieństw XOY i ABC AB CC i jeszze YB OA, o odone są tójkąty ABA i AYO AB AA Wto jednk dodć, Ŝe Eule uzyskł to ozwiąznie doieo z tzeim odejśiem. Piewsze dw ozwiązni yły znznie dziej skomlikowne. Fkt ten jest znny 8

9 ównieŝ jko twiedzenie Gegonne, któy oulikowł je w 88 oku. Eule swoją osttezną wesję zedstwił juŝ w 66 oku. ChoiŜ zezentowne ozumownie wymg omysłu, to jest dość ntulne z unktu widzeni geometii elementnej. Jest teŝ oste i tudno mu odmówić elegnji. N konie zjmijmy się wsomninym wześniej wzoem Heon. Ciekwe, Ŝe hoć wzó jest dość zwiły i w ktye szkolnej nieml nieuŝywny, to jest miętny nwet leiej niŝ inne niezędne wzoy n ole tójkąt. Njzęśiej wzó Heon wyowdzny jest z wykozystniem twiedzeni ousów i kilku sztuzek lgeiznyh: tk zeksztłmy zleŝnośi, Ŝey wyszło o tze. Inteesująe yłoy zedstwienie sosou ozumowni smego Heon. Nie znł on zeieŝ lgey i tygonometii. Pondto nie wiedził zeieŝ jką zleŝność m otzymć. Jego wynik jest nwdę niezwykły jk n tmte zsy zyomnijmy Heon Ŝył w I wieku nszej ey). Pzedstwimy ozumownie, któe ozwl wyowdzić wzó Heon ez jego wześniejszej znjomośi. Choć jest to ozumownie zejzyste i dzo logizne, oenie zdko jest ezentowne. Sttujemy od znnej zleŝnośi n ole tójkąt zy tdyyjnyh oznzenih) S Chemy wyznzyć omień okęgu wisnego w tójkąt z omoą oków tego tójkąt. W tym elu do oku AC doiszmy okąg i oznzmy zydtne unkty zgodnie z ysunkiem Podzielmy dlsze ozumownie n kilk etów. Et. ZuwŜmy, Ŝe AD, BD i CD Jest to ost konsekwenj twiedzeni o odinkh styznyh. Bowiem AD DB BD D C CF F A 9

10 N odstwie wsomninego twiedzeni AD AF, DB BD, CD CF zyli AD DB CD stąd AD DB CD ) Pozostłe ównośi dowodzimy odonie. Et. Udowodnimy, Ŝe CF FA Znów wykozystmy twiedzenie o odinkh styznyh i sttujemy od ównośi i tez BM BM MA AD DB M C CD D B Ponownie wykozystujemy twiedzenie o odinkh styznyh AF AF DB CF CF CD i dlej AF AF FF) CF F F) CF skąd ozywiśie CF AF Et. ZuwŜmy, Ŝe tójkąty ADO oz MAO są odone. Jest tk zezywiśie, gdyŝ o tójkąty są ostokątne oz odinki AO i AO są ostodłe jko dwusiezne odowiednih kątów związnyh z tójkątem. Et. Tez moŝemy juŝ wylizyć. ZuwŜmy njiew, Ŝe z ozednih ozwŝń MA, AD oz DB. Wykozystują odoieństwo tójkątów z etu moŝemy znotowć ooje z odoieństw tójkątów DBO i MBO 0

11 gdzie MO jest omieniem okęgu doisnego do oku AC. Z iewszej ooji wyznzmy z dugiej ) ) ostteznie wię skąd o odstwieniu do wzou ) ) ) S dostniemy wzó Heon. Ntulnie owyŝszy zykłd nie ndje się n zdnie dl uzniów. Jest to jednk zykłd łdnego ozumowni z zkesu geometii elementnej. Chy wto je zyominć zy ndzjąyh się okzjh. Zdolni, zinteesowni mtemtyką uzniowie mogą doenić uok tego ozumowni tym dziej, Ŝe oszzególne ety są dzo oste i mogą yć smodzielnie dowodzone od kieunkiem nuzyiel. N tym końzymy zegląd zykłdów, któe sme w soie są inteesująe i mogą yć nwet insiująe. Jednk oonowne jko zdni uzniom niezygotownym, z zskozeni, mogą stć się owodem niehęi do mtemtyki i fustji uzniów.

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w Stowzyszenie n zez Edukji Mtemtyznej Zestw 6 szkie ozwiązń zdń Znjdź wszystkie tójki (x, y, z) liz zezywistyh, któe są ozwiąznimi ównni 5(x +y +z ) = 4(xy +yz +zx)

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.

Zadania otwarte.  2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10. Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 05 skle.oeon.l/mtu

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 0 Zdni zmknięte

Bardziej szczegółowo

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni

Bardziej szczegółowo

9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu

9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu 9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Szkice rozwiązań zadań zawody rejonowe 2019

Szkice rozwiązań zadań zawody rejonowe 2019 XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

Klasyfikacja trójkątów

Klasyfikacja trójkątów 9.. WŁASNOŚCI TRÓJKĄTÓW Klsyfikj trójkątów odził trójkątów ze względu n oki róŝnoozny równormienny równoozny odził trójkątów ze względu n kąty ostrokątny rostokątny rozwrtokątny Sum kątów wewnętrzny trójkąt

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.

Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów. Zestw wzoów mtemtyzy zostł pzygotowy dl potze egzmiu mtulego z mtemtyki oowiązująej od oku 00. Zwie wzoy pzydte do ozwiązi zdń z wszystki dziłów mtemtyki, dltego może służyć zdjąym ie tylko podzs egzmiu,

Bardziej szczegółowo

Parada nierówności. Marcin Fryz. 15 czerwca a + b 2. ab 2. a + b + c. 3 abc. (2)

Parada nierówności. Marcin Fryz. 15 czerwca a + b 2. ab 2. a + b + c. 3 abc. (2) Prd nierównośi Mrin Fryz 5 zerw 0 Rozgrzewk Udowodnić, że dl dowolnyh nieujemnyh liz,,, d zhodzą:, () () Dowód Pierwszą nierówność w () możemy podnieść równowżnie do kwdrtu i zstosowć wzór skróonego mnożeni:

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej

Bardziej szczegółowo

Małgorzata Żak. Zapisane w genach. czyli o zastosowaniu matematyki w genetyce

Małgorzata Żak. Zapisane w genach. czyli o zastosowaniu matematyki w genetyce Młgorzt Żk Zpisne w gench czyli o zstosowniu mtemtyki w genetyce by opisć: - występownie zjwisk msowych - sznse n niebieski kolor oczu potomk - odległość między genmi - położenie genu n chromosomie Rchunek

Bardziej szczegółowo

h a V. GEOMETRIA PŁASKA TRÓJKĄT :

h a V. GEOMETRIA PŁASKA TRÓJKĄT : pitgos..pl V. GEOMETRIA PŁASKA TRÓJKĄT : Wunek utwozeni tójkąt: sum ługośi wó kótszy oków musi yć większ o ługośi njłuższego oku. Śoek okęgu opisnego wyznzją symetlne oków. Śoek okęgu wpisnego wyznzją

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej

Bardziej szczegółowo

Od wzorów skróconego mnoŝenia do klasycznych nierówności

Od wzorów skróconego mnoŝenia do klasycznych nierówności Hery Pwłowsi IV LO Toruń O wzorów sróoego moŝei o lsyzyh ierówośi Uzą w szole wzorów sróoego moŝei zzymy o owozei wóh toŝsmośi: () ( ) () ( ) Nstępie uŝywmy ih o przesztłi wyrŝeń Tym rzem zrómy z ih iy

Bardziej szczegółowo

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane? INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Z INFORMATYKI RAPORT

Z INFORMATYKI RAPORT OKRĘGOWA KOMISJA EGZAMINACYJNA W POZNANIU WYNIKI EGZAMINU MATURALNEGO Z INFORMATYKI RAPORT WOJEWÓDZTWA LUBUSKIE*WIELKOPOLSKIE*ZACHODNIOPOMORSKIE 2 Egzmin mturlny z informtyki zostł przeprowdzony w łym

Bardziej szczegółowo

Scenariusz lekcji matematyki dla klasy III gimnazjum. Temat: Powtórzenie i utrwalenie wiadomości dotyczących figur geometrycznych.

Scenariusz lekcji matematyki dla klasy III gimnazjum. Temat: Powtórzenie i utrwalenie wiadomości dotyczących figur geometrycznych. Senriusz lekji mtemtyki dl klsy III gimnzjum Temt: owtórzenie i utrwlenie widomośi dotyząy figur geometryzny Cel ogólny lekji: Uporządkownie i utrwlenie widomośi o figur płski i przestrzenny Cele operyjne:

Bardziej szczegółowo

RURA GRUBOŚCIENNA W STANIE UPLASTYCZNIENIA. dr inŝ. Jan Lewiński

RURA GRUBOŚCIENNA W STANIE UPLASTYCZNIENIA. dr inŝ. Jan Lewiński RURA GRUBOŚCIENNA W STANIE UPLASTYCZNIENIA d inŝ. Jn Lwiński CEL OPRACOWANIA Clm oowni jst zdstwini sosou olizń wytzymłośiowyh uy guośinnj, oddnj iśniniu wwnętznmu, znjdująj się w łskim stni odksztłni,

Bardziej szczegółowo

Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B).

Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B). Roztwory rzezywiste (1) Również w tep. 98,15K, le dl CCl 4 () i CH 3 OH (). 15 Τ S 5 H,,4,6,8 1-5 - -15 G - Che. Fiz. TCH II/1 1 Roztwory rzezywiste () Ty rze dl (CH 3 ) CO () i CHCl 3 (). 15 5 Τ S -5,,4

Bardziej szczegółowo

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków ..BRYŁY OBROTOWE Wae była obotowa powstała w wyniku obotu postokąta dokoła postej zawieająej jeden z jego boków pomień podstawy waa wysokość waa twoząa waa Pzekój osiowy waa postokąt o boka i Podstawa

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki Mtemtyk Poziom podstwowy zestaw DO ĆWICZEŃ z mtemtyki poziom podstwowy rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1 Uzsdnij, że pole romu o przekątnych p i q wyrż się wzorem P = 1 pq Rozwiąznie: Przyjmij

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

Zwróć uwagę. Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj je kilka razy.

Zwróć uwagę. Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj je kilka razy. Zwróć uwgę Poniżej znjdziesz kilk wskzówek, którą mogą ci ułtwić npisnie sprwdzinu szóstoklsisty. Njwżniejsz z nich to: Czytj uwżnie treści zdń i poleceni. W rzie potrzey przeczytj je kilk rzy. Zwrcj uwgę

Bardziej szczegółowo

, GEOMETRIA NA PŁASZCZYZNIE (PLANIMETRIA)

, GEOMETRIA NA PŁASZCZYZNIE (PLANIMETRIA) Treść:, GEOMETRI N PŁSZCZYZNIE (PLNIMETRI) 1. Podstwowe pojęi geometrii (punkt, prost, płszzyzn, przestrzeń, półprost, odinek, łmn, figur geometryzn (płsk i przestrzenn). -------------------------------------------------------------------------------------------------------------.

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność.

SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność. SCENAIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w tygonometii Cel: Uczeń twozy łańcuch agumentów i uzasadnia jego popawność Czas: godzina lekcyjna Cele zajęć: Uczeń po zajęciach: wykozystuje definicje

Bardziej szczegółowo

Całki podwójne i potrójne

Całki podwójne i potrójne Miej Grzesik Instytut Mtemtyki Politehniki Poznńskiej Cłki podwójne i potrójne 1. efinij łki podwójnej po prostokąie efinij 1. Podziłem prostokąt = {(x, y) : x b, y d} (inzej: = [, b] [, d]) nzywmy zbiór

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi

Bardziej szczegółowo

1 Definicja całki podwójnej po prostokącie

1 Definicja całki podwójnej po prostokącie 1 efinij łki podwójnej po prostokąie efinij 1 Podziłem prostokąt = {(x, y) : x b, y d} (inzej: = [, b] [, d]) nzywmy zbiór P złożony z prostokątów 1, 2,..., n które łkowiie go wypełniją i mją prmi rozłązne

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy)

TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy) Rysz Chybicki TORY PLANET (Rozwżni n tet ksztłtów toów uchu lnety wokół stcjonnej gwizy) (Posługiwnie się zez osoby tzecie ty tykułe lub jego istotnyi fgenti bez wiezy uto jest wzbonione) MIELEC Plnecie

Bardziej szczegółowo

Zawód: s t o l a r z I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: r e s m o ś c i i u m i e j ę t n o ś c i c i c h k i f i k j i m

Zawód: s t o l a r z I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: r e s m o ś c i i u m i e j ę t n o ś c i c i c h k i f i k j i m 4 3 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu S T O L A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu. ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.

Bardziej szczegółowo

ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ

ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZEOŁU SZKÓŁ Bni nkietowe zostły przeprowzono w rmh relizji projektu eukyjnego Nie wyrzuj jk lei. Celem tyh ń yło uzysknie informji n temt świomośi ekologiznej uzniów

Bardziej szczegółowo

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia: XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon

Bardziej szczegółowo

5. Mechanika bryły sztywnej

5. Mechanika bryły sztywnej W ozdzie dpowiedzi i wskzówki znjdują się odpowiedzi do wszystkich zdń, znjdziesz tm ównież wskzówki do ozwiązń tudnych zdń. Pełne ozwiązni zdń możesz uzyskć pzysyłjąc e-mi n des: kons@x.wp.p 5. Mechnik

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA POZIOM ROZSZERZONY. Copyright by Nowa Era Sp. z o.o.

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA POZIOM ROZSZERZONY. Copyright by Nowa Era Sp. z o.o. PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 0/06 MATEMATYKA POZIOM ROZSZERZONY Zsdy ocenini ozwiązń zdń Copyight by Now E Sp. z o.o. Póbny egzmin mtulny z Nową Eą Uwg: Akceptowne są wszystkie odpowiedzi meytoycznie

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Czas gry: 15 min Liczba graczy: 2 4 Wiek: 6 8 lat

Czas gry: 15 min Liczba graczy: 2 4 Wiek: 6 8 lat Zwy z ortogrfią Czs gry: 15 min Licz grczy: 2 4 Wiek: 6 8 lt Dzięki zwie z ortogrfią dzieci uczą się isowni i wymowy wyrzów. Te umiejętności omgją w łynnej i jsnej komunikcji z innymi osomi. Grcze również

Bardziej szczegółowo

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny! TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem

Bardziej szczegółowo

GŁÓWNY URZĄD STATYSTYCZNY, al. Niepodległości 208, 00-925 Warszawa DS-50 I OCHRONA ZDROWIA W GOSPODARSTWACH DOMOWYCH, Kwestionariusz indywidualny

GŁÓWNY URZĄD STATYSTYCZNY, al. Niepodległości 208, 00-925 Warszawa DS-50 I OCHRONA ZDROWIA W GOSPODARSTWACH DOMOWYCH, Kwestionariusz indywidualny GŁÓWNY URZĄD STATYSTYCZNY, l. Niepodległośi 08, 00-95 Wrszw www.stt.gov.pl Dził 1. CHARAKTERYSTYKA OSOBY 1. Symol województw gospodrstw domowego. Nr gospodrstw domowego. Nr kolejny osoy ojętej dniem w

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine

Bardziej szczegółowo

Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów

Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów Młodzieżowe Uniwersytety Mtemtyczne Projekt współfinnsowny przez Unię Europejską w rmch Europejskiego Funduszu Społecznego Hipotez Černego, czyli jk zciekwić uczni teorią grfów Adm Romn, Instytut Informtyki

Bardziej szczegółowo

ź Ź Ź Ź ć Ł Ę Ź ć Ź ć Ń Ź Ź Ź Ź ć ć ć ź ć ź Ę ć Ź Ź Ł Ł Ł ć Ł Ą ć ć Ź Ś ć Ź ć Ę Ź ź ć Ź ć ź ć Ę ć Ą ć ć ć Ł ć ć ć ć Ą ć Ź ć ć Ź Ą Ź Ą ź Ń Ą ć Ą ć ć ć Ź ć ć ć ć ć Ą Ą Ą ć Ł Ń ć ć Ź Ł ć Ź Ź Ę Ź ć ć ć ć

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

ď ź ź Ä Ď É Ě Ź Ą Ü Á Ą Ń Đ ő ý ý ő ý Ú Ä Á Ą ô Ó Ó ŕ đ ý Á Ą Đ í ő É ä Ä Ä Ď ď ŕ Ń ř ý ő Ú Á Ĺ Ą Ď Ó í úł ő Ł Ä Á Ą Ď Ó ŕ Ď ý ý ő ý ĄÁ Á Ą Ď Ń ŕ Ü ä ý ő ý ý Đ ý ő Ú ď Ä Ą Ą É Ó Ł ő ý ő ý ý ŕ ŕ Á Ą Ń É

Bardziej szczegółowo

DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVII ROK SZKOLNY 2017/2018 LICEA RUNDA ELIMINACYJNA MECZ I

DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVII ROK SZKOLNY 2017/2018 LICEA RUNDA ELIMINACYJNA MECZ I DOLNOŚLĄSKIE MECZE MATEMATYCZNE EDYCJA XVII ROK SZKOLNY 07/08 LICEA RUNDA ELIMINACYJNA MECZ I. N ile trójkątów prostokątnyh d się roziąć prostokąt?. Czy liz 3 77 jest wymiern? 3. N płszzyźnie dnyh jest

Bardziej szczegółowo

Ę ę ę Łó-ź ----

Ę ę ę Łó-ź ---- -Ę- - - - - - -ę- ę- - Łó-ź -ś - - ó -ą-ę- - -ł - -ą-ę - Ń - - -Ł - - - - - -óż - - - - - - - - - - -ż - - - - - -ś - - - - ł - - - -ą-ę- - - - - - - - - - -ę - - - - - - - - - - - - - ł - - Ł -ń ł - -

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n

Bardziej szczegółowo

IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI

IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI 1.1. Okąg opisny n wielokącie (s. 10) Zdni utwljące (s. ) 1.. Okąg wpisny w wielokąt (s. 4) Zdni utwljące (s. 35) 1.3. Wielokąty foemne (s. 37) Zdni utwljące (s. 43) Zdni

Bardziej szczegółowo

Twierdzenie sinusów i cosinusów

Twierdzenie sinusów i cosinusów Twierdzenie sinusów i osinusów Aldon Dutkiewiz Anet Sikorsk-Nowk Teori Twierdzenie 1 Twierdzenie sinusów (twierdzenie Snellius) W dowolnym trójkąie stosunek długośi dowolnego boku do sinus kąt leżąego

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element MATEMATYKA Wykłd 4 (Funkcje) Pisząc f : (,b) R rozumiemy Ŝe kŝdemu (, b) przyporządkowny zostł dokłdnie jeden element y R. Wykresem funkcji nzywmy zbiór pr (,f()) n płszczyźnie skłdjącej się ze wszystkich

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

akademia365.pl kopia dla:

akademia365.pl kopia dla: Zestw wzoów mtemtycznych zostł pzygotowny dl potzeb egzminu mtulnego z mtemtyki obowiązującej od oku 00. Zwie wzoy pzydtne do ozwiązni zdń z wszystkich dziłów mtemtyki, dltego może służyć zdjącym nie tylko

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Twierdzenie sinusów i cosinusów

Twierdzenie sinusów i cosinusów Twierdzenie sinusów i osinusów Aldon Dutkiewiz Anet Sikorsk-Nowk Teori Twierdzenie 1 Twierdzenie sinusów (twierdzenie Snellius) W dowolnym trójkąie stosunek długośi dowolnego boku do sinus kąt leżąego

Bardziej szczegółowo

Ó ć ć Ł ć ć Ó ć ć ć ć ć Ć ć ź ć ć ć ź ć ć Ó Ó ć Ó Ó Ą Ó Ź Ó Ł Ó Ó Ó Ź Ó Ó ć Ć ć Ó Ł ć ć ć Ć ć ć Ó Ó ć ć Ó Ć ć ć Ą ć Ó Ć Ó ć ć Ć Ć Ó Ź ć Ó Ą ć ć ć ź ć Ś ć ź Ć ć ć Ć Ź ĄĄ Ą Ó Ć ć Ć Ć Ć ć Ć Ć Ć Ą ĄĄ ź Ą Ś

Bardziej szczegółowo

ź Ł Ą ź ż ź ż ż ć ż ć ź ć Ą ć Ź ć Ą ż Ś Ą ż ź ń ź Ź ż Ą ż ć ć ż ń ż Ś ż ż ż ć ń ż ż Ź ń Ś ć ć ź Ą ż ć ń ż ż ż Ź ń ć Ę ż ż ń Ź ż ż ć ż ć ć ż ń Ś ć Ć ć ń ć ć ż ć ń ż Ś ż Ó ń Ś Ś Óż Ą Ą Ą ń ż Ń Ń Ł ż Ś Ą

Bardziej szczegółowo

Momenty bezwładności figur płaskich - definicje i wzory

Momenty bezwładności figur płaskich - definicje i wzory Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe

Bardziej szczegółowo

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

8 6 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu E L E K T R Y K K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z e b r y n k

Bardziej szczegółowo

Sprężyny naciągowe z drutu o przekroju okrągłym

Sprężyny naciągowe z drutu o przekroju okrągłym Sprężyny naciągowe z o przekroju okrągłym Stal sprężynowa, zgodnie z normą PN-71/M80057 (EN 10270:1-SH oraz DIN 17223, C; nr mat. 1.1200) Stal sprężynowa nierdzewna, zgodnie z normą PN-71/M80057 (EN 10270:3-NS

Bardziej szczegółowo

Diagram fazowy ciecz-para (6a)

Diagram fazowy ciecz-para (6a) Digrm fzowy iez-pr (6) P=onst X B =onst tylko iez x B =X B Chem. Fiz. TCH II/09 1 Wrunki izoryzne mją większe znzenie prktyzne. Nsz tłok jest niewżki i porusz się ez tri, ztem we wnętrzu ylindr pnuje ły

Bardziej szczegółowo