METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L"

Transkrypt

1 METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L

2 Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie e- nergii korelacji gdyż obliczenia jakie siȩ czȩsto przeprowadza przy użyciu metody Hartree-Focka (HF) obarczone s a b lȩdem spowodowanym tym, iż zak lada siȩ, że każdy elektron porusza siȩ w uśrednionym (a nie w aktualnym) polu pochodz acym od pozosta lych elektronów. Dopuszcza siȩ wiȩc sytuacje, w której elektrony o spinach antyrównoleg lych mog a znajdować siȩ blisko siebie. Ten b l ad liczbowo ujmuje energia korelacji, która jest różnic a miȩdzy energi a dok ladn a (w przybliżeniu nierelatywistycznym) a energi a Hartree-Focka: E korelacji = E dokladna E HF

3 Stanowi ona niewielk a czȩść ca lkowitej energii uk ladu kwantowochemicznego i z regu ly jej wartość nie przekracza 1% ca lkowitej energii ale w sytuacjach interesuj acych chemika jej obliczanie ma ogromne znaczenie np. przy wyznaczaniu: energii dysocjacji energii stanów przejściowych w lasności molekularnych, takich jak czȩstości harmoniczne a także optymalne geometrie w lasności elektryczne oraz wielu innych sytuacjach

4 Można wiȩc powiedzieć, iż energia korelacji jest miar a niedoskona lości przybliżenia jednoelektronowego (modelu cz astek niezależnych) gdyż w rzeczywistości z powodu kulombowskiego odpychania elektrony nie poruszaj a siȩ niezależnie i stan każdego z nich zależy od aktualnego a nie uśrednionego po lożenia wszystkich pozosta lych elektronów. Mówimy wówczas, iż ruchy elektronów w uk ladzie wieloelektronowym s a skorelowane.

5 METODY KWANTOWOCHEMICZNE Wave Function Theory WFT metody oparte na funkcji falowej Density Functional Theory DFT metody oparte na gȩstości elektronowej ւ ց metody ab initio metody pó lempiryczne Hartree-Fock Metoda oddzia lywania konfiguracji (CI) Rachunek zaburzeń Moellera-Plesseta (MPn) Metoda sprzȩżonych klasterów (CC)

6 Metody obliczeniowe oparte na funkcji falowej Ψ Równanie Schrödingera: ĤΨ = EΨ Komplet informacji znajdujemy poprzez znajomość funkcji falowej

7 Strategia obliczeniowa w metodach kwantowochemicznych 1. Wyznaczanie (spin)orbitali molekularnych Metoda Hartree-Focka E HF 99% energii ca lkowitej moleku ly 2. Wyznaczanie korelacji elektronowej Oddzia lywanie konfiguracji Rachunek zburzeń Sprzȩżone klastery

8 Energia korelacji ĤΨ = EΨ Rozwijamy funkcjȩ falow a Ψ na konfiguracje wzbudzone: Ψ = Φ o + Σ ai c a i Φa i + Σ abij,a>b,i>j c ab ij Φab ij + Σ abcijk,a>b>c,i>j>k c abc ijk Φabc ijk +...

9 Funkcje Φ r (Φ ab.. ij.. ) s a w ogólnym przypadku wyznacznikami wzbudzonymi (otrzymanymi przez przeniesienie jednego lub wiȩcej elektronów z poziomu zajȩtego w funkcji referencyjnej na poziomy wirtualne na wszystkie możliwe sposoby).

10 ... c. b. a. i. j. k Φ o Φ a i Φ ab ij Φ abc ijk

11 Wspó lczynniki rozwiniȩcia znajdujemy: 1. stosuj ac rachunek zaburzeń poprawki Moellera-Plesseta: MP2, MP3, stosuj ac rozwiniȩcie liniowe na konfiguracje wzbudzone Ψ = (1 + Ĉ)Φ o metoda oddzia lywania konfiguracji (CI) 3. stosuj ac rozwiniȩcie wyk ladnicze Ψ = exp(ˆt)φ o metoda sprzȩżonych klasterów (CC)

12

13 METODY KWANTOWOCHEMICZNE Wave Function Theory WFT metody oparte na funkcji falowej Density Functional Theory DFT metody oparte na gȩstości elektronowej ւ metody ab initio ց metody pó lempiryczne Hartree-Fock Metoda oddzia lywania konfiguracji (CI) Rachunek zaburzeń Moellera-Plesseta (MPn) Metoda sprzȩżonych klasterów (CC)

14 Metoda sprzȩżonych klasterów (Coupled Cluster CC) - - Istot a metody sprzȩżonych klasterów jest eksponencjalna parametryzacji funkcji falowej: Ψ = Ψ CC = e T Φ o gdzie funkcja φ o jest pewn a funkcj a referencyjn a, najczȩściej bȩdzie to funkcja wyznaczona metod a Hartree-Focka.

15 Metoda CC - podstawy Operator T, generuj acy wzbudzenia elektronowe, zdefiniujemy jako T = T 1 + T T N gdzie N jest liczb a elektronów w uk ladzie, a T n jest operatorem odpowiedzialnym za n-krotne wzbudzenia i możemy go zapisać w formaliźmie drugiej kwantyzacji nastȩpuj aco: T n = 1 (n!) 2Σ ij...ab...t ab ij a b ji Pamiȩtajmy o konwencji indeksowej, zgodnie z któr a: i, j,..., przebiega po poziomach zajȩtych (dziurowych), a, b,..., przebiega po poziomach niezajȩtych (orbitale wirtualne, poziomy cz astkowe).

16 Metoda CC - podstawy Zatem pierwsze trzy sk ladniki operatora T bȩd a mia ly postać: T =Σ ia t a ia i+ 1 4 Σ ijabt ab ija b ji Σ ijkabct abc ijka b c kji... c. b. a. i. j. k Φ o ˆT 1 ˆT 2 ˆT 3

17 Metoda CC - podstawy Pod dzia laniem operatorów T n na funkcjȩ referencyjn a powstaje kombinacja liniowa konfiguracji wzbudzonych, np.: Rozwijamy e x w szereg: T 1 Φ o = Σ ia t a iφ a i Analogicznie operator e T : e x = 1 + x + x2 2! + x3 3! +... Wówczas: e T = 1 + T T T Ψ o = (1 + T 1 + T T T 1 T T T )Φ o Operatory T ze sob a komutuj a.

18 Metoda CC - podstawy Ponieważ operatory klasterowe s a op. wzbudzeń elektronowych, zatem rozwiniȩcie klasterowe jest rozwiniȩciem funkcji Ψ CC na konfiguracje wzbudzone Ψ CC = Φ o + t a iφ a i + (t ab ij + t a it b j + t a jt b i)φ ab ij + a,i a,b,i,j,a>b,i>j (t abc ijk + t ab ijt c k...)φ abc ijk +... a,b,c,i,j,k,i>j>k,a>b>c... c. b. a. i. j. k Φ o Φ a i Φ ab ij Φ abc ijk

19 Metoda CC - podstawy Wprowadzamy rozwiniȩcie klasterowe do równania Schrödingera HΨ CC = EΨ CC He T Φ o = Ee T Φ o gdzie H jest operatorem Hamiltona. Jest to pe lny hamiltonian uk ladu zapisywany zwykle jako suma czȩści niezaburzonej (H o ) i operatora zaburzenia (V ). W tym ostatnim możemy wyróżnić czȩść jednoelektronow a (F) oraz dwuelektronow a (W). ( )

20 Metoda CC - podstawy Rozwi azanie równania Schrödingera HΨ CC = E Ψ CC sprowadza siȩ do: znalezienia amplitud klasterowych, t a i, tab ij, tabc ijk,... energii E

21 Metoda CC - podstawy Mnoż ac lewostronnie równanie ( ), czyli równanie He T Φ o = Ee T Φ o, przez e T otrzymujemy: e T He T Φ o = EΦ o ( ) a nastȩpnie dokonuj ac projekcji na wektor Φ o (tj. rzutuj ac lewostronnie na Φ o ) otrzymujemy wyrażenie na energiȩ: E = Φ o e T He T Φ o Natomiast rzutuj ac równanie ( ) na konfiguracje wzbudzone wzglȩdem Φ o, otrzymujemy równania na amplitudy metody CC: Φ ab... ij... e T He T Φ o = 0

22 Metoda CC - podstawy Centralna wielkość w teorii CC Hamiltonian transformowany przez podobieństwo: H H = e T He T = (He T ) c

23 Metoda CC - podstawy Po prostych przekszta lceniach algebraicznych i skorzystaniu z twierdzenia Campbella Bakera Hausdorffa możemy równania na amplitudy zapisać w postaci: Φ ab... ij... (He T ) c Φ o = 0 gdzie rzutowanie obejmuje wszystkie konfiguracje wzbudzone, a indeks c (od connected) oznacza pozostawienie w wyrażeniach tylko wyrazów spójnych, co zapewnia wymiarow a ekstensywność metody (czyli poprawne skalowanie siȩ energii z rozmiarem uk ladu). Podobnie możemy zapisać wyrażenie na energiȩ: E = Φ o (He T ) c Φ o

24 Metoda CC - podstawy Wzbudzenia spójne i niespójne C 1 = T 1 C 2 = T 2 +T 2 1/2! C 3 = T 3 +T 1 T 2 + T 3 1/3! C 4 = T 4 +T 2 2/2! + T 1 T 3 + T 2 T 2 1/2! + T 4 1/4!...

25 Metoda CC - modele pe lne CCD T = T 2 CCSD T = T 1 + T 2 CCSDT T = T 1 + T 2 + T 3 CCSDTQ T = T 1 + T 2 + T 3 + T 4 CCSDTQP T = T 1 + T 2 + T 3 + T 4 + T 5.

26 Metoda CC - modele pe lne Model CCD (T = T 2 ) Φ ab ij (H(1 + T 2 + T 2 2 /2)) c Φ o = 0

27 Metoda CC - modele pe lne Model CCSD (T = T 1 + T 2 ) Φ a i (H(1 + T 1 + T 2 + T 2 1 /2 + T 1T 2 + T 3 1 /6)) c Φ o = 0 Φ ab ij (H(1+T 1+T 2 +T 2 1 /2 + T 1T 2 +T 2 2 /2+ +T 3 1 /6 + T2 1 T 2/2 + T 4 1 /24)) c Φ o = 0

28 Metoda CC - modele pe lne Model CCSDT (T = T 1 + T 2 + T 3 ) Φ a i (H(1 + T 1 + T 2 +T 3 +T 2 1 /2 + T 1T 2 + T 3 1 /6)) c Φ o = 0 Φ ab ij (H(1 + T 1 + T 2 +T 3 +T 2 1 /2 + T 1T 2 +T 1 T 3 +T 2 2 /2+ +T 3 1 /6 + T2 1 T 2/2 + T 4 1 /24)) c Φ o = 0 Φ abc ijk (H(T 2 + T 3 + T 1 T 2 + T 1 T 3 + T 2 2 /2 + T 2T 3 + +T 2 1 T 2/2 + T 2 1 T 3/2 + T 1 T 2 2 /2 + T3 1 T 2/6)) c Φ o = 0

29 Metoda CC - modele pe lne Model CCSDTQ (T = T 1 + T 2 + T 3 + T 4 ) Φ a i (H(1 + T 1 + T 2 + T 3 + T 2 1/2 + T 1 T 2 + T 3 1/6)) c Φ o = 0 Φ ab ij (H(1 + T 1 + T 2 + T 3 +T 4 +T 2 1/2 + T 1 T 2 + T 1 T 3 + T 2 2/2+ +T 3 1/6 + T 2 1T 2 /2 + T 4 1/24)) c Φ o = 0 Φ abc ijk (H(T 2 + T 3 +T 4 +T 1 T 2 + T 1 T 3 +T 1 T 4 +T 2 2/2 + T 2 T 3 + +T 2 1T 2 /2 + T 2 1T 3 /2 + T 1 T 2 2/2 + T 3 1T 2 /6)) c Φ o = 0 Φ abcd ijkl (H(T 3 + T 4 + T 1 T 3 + T 1 T 4 + T 2 2/2 + T 2 T 3 + T 2 T 4 + T 2 3/2 + T 2 1T 3 /2+ +T 2 1T 4 /2 + T 1 T 2 2/2 + T 1 T 2 T 3 + T 3 2/6 + T 3 1T 3 /6 + T 2 1T 2 2/4)) c Φ o = 0

30 METODA SPRZȨŻONYCH KLASTERÓW Ψ = exp(t) Φ o wymiarowa ekstensywność

31 Wymiarowa ekstensywność Poprawne skalowanie siȩ energii z rozmiarem uk ladu = poprawne odseparowanie nieoddzia luj acych fragmentów. Dla moleku ly AB sk ladaj acej siȩ z nieoddzia luj acych fragmentów A i B, opisywanej funkcj a referencyjn a Φ AB = Φ A Φ B, otrzymujemy: Ψ AB = exp(t AB ) Φ AB = exp(t A ) Φ A exp(t B ) Φ B = Ψ A Ψ B E AB CC = EA CC + EB CC

32 METODY KWANTOWOCHEMICZNE Wave Function Theory WFT metody oparte na funkcji falowej Density Functional Theory DFT metody oparte na gȩstości elektronowej ւ ց metody ab initio metody pó lempiryczne Hartree-Fock Metoda oddzia lywania konfiguracji (CI) Rachunek zaburzeń Moellera-Plesseta (MPn) Metoda sprzȩżonych klasterów (CC)

33 Metoda mieszania konfiguracji w ujȩciu operatorów kreacji-anihilacji Ψ o = (1 + Ĉ)Φ o Ĉ = Ĉ 1 + Ĉ Ĉ N Ĉ n = (n!) 2 ab... ij... c ab... ij... â ˆb...ĵî

34 Model CISD (Singles (S) and Doubles (D)) Ĉ = Ĉ 1 + Ĉ 2 Ĉ 1 = ai c a iâ î Ĉ 2 = 1 4 abij c ab ij â ˆb ĵî Rezultat dzia lania operatorów Ĉ1 i Ĉ 2 na funkcjȩ Φ o to konfiguracje jednokrotnie i dwukrotnie wzbudzone: Ĉ 1 Φ o = ai c a iφ a i Ĉ 2 Φ o = 1 4 abij c ab ij Φ ab ij

35 Model CID (Doubles) Ĉ = Ĉ 2 Ĉ 2 = 1 4 abij c ab ij â ˆb ĵî Rezultat dzia lania operatora Ĉ 2 na funkcjȩ Φ o to konfiguracje dwukrotnie wzbudzone: Ĉ 2 Φ o = 1 c ab ij Φ ab ij 4 abij

36 Wyrażenie na energiȩ ĤΨ o = E o Ψ o Ĥ(1 + Ĉ 2 )Φ o = E CID o (1 + Ĉ 2 )Φ o Dokonujemy projekcji (rzutowania) powyższego równania na wektor Φ o : Φ o Ĥ(1 + Ĉ 2 ) Φ o = E CID o Φ o (1 + Ĉ 2 ) Φ o Φ o Ĥ(1 + Ĉ 2 ) Φ o = E CID o E CID o = Φ o Ĥ Φ o + Φ o ĤĈ 2 Φ o E = E CID o Φ o Ĥ Φ o

37 Równania na amplitudy Ĥ(1 + Ĉ 2 )Φ o = E CID o (1 + Ĉ 2 )Φ o Dokonujemy projekcji (rzutowania) powyższego równania na konfiguracje wzbudzone wzglȩdem Φ o Równanie na amplitudy c2 Φ ab ij Ĥ(1 + Ĉ 2 ) Φ o = E CID o c ab ij

38 Ogólnie: E = Φ o Ĥ(1 + Ĉ) Φ o Φ ab... ij... (Ĥ E)(1 + Ĉ) Φ o = 0

39 subroutine cid(no,nu,ti,c2,o2,vhh,vpp,vhpr,vhpl,eh,ep) implicit double precision (a-h,o-z) integer a,b,e,f common/enci/enrgnew dimension vhh(no,no,no,no),ti(1),eh(no),ep(nu),c2(no,nu,nu, *no),o2(no,nu,nu,no),vpp(nu,nu,nu,nu),vhpr(no,nu,nu,no), *vhpl(no,nu,nu,no),ve(nu,nu,nu,no) data zero/0.0d+0/,two/2.0d+0/,half/0.5d+0/,tresh/0.1d-13/ call rdov4(1,nu,no,ti,vhh) call rdov4(0,no,nu,ti,vpp) call ro2hpp(1,no,nu,ti,vhpr) call ro2hpp(2,no,nu,ti,vhpl) call ro2hpp(1,no,nu,ti,o2) call adden(no,nu,o2,eh,ep) call energymm(no,nu,ti,o2,c2,enrgold) iter=0

40 1000 continue!ci LOOP iter=iter+1 do 110 i=1,no do 110 j=1,no do 110 a=1,nu do 110 b=1,nu x1=zero;x2=zero;x3=zero do 120 e=1,nu do 120 f=1,nu x1=x1+o2(i,e,f,j)*vpp(a,e,b,f)*half!1a 120 continue do 140 m=1,no do 140 n=1,no x2=x2+o2(m,a,b,n)*vhh(i,j,m,n)*half!2a 140 continue do 160 e=1,nu do 161 m=1,no x3=x3 * -o2(i,e,b,m)*vhpl(m,e,a,j)!3a * -o2(i,a,e,m)*vhpl(m,e,b,j)!4a * +o2(i,a,e,m)*vhpr(m,e,b,j)*two!5a * -o2(i,e,a,m)*vhpr(m,e,b,j)!6a 161 continue 160 continue c2(i,a,b,j)=x1+x2+x3 110 continue

41 call symetr(c2,no,nu) call ro2hpp(1,no,nu,ti,o2)!wczytywanie calki call vectadd(c2,o2,no2u2)!dodawnie calki (wyrazu wolnego) do amp.c2 call adddenci2(no,nu,c2,eh,ep) call energymm(no,nu,ti,c2,o2,enrgnew)!wyznaczamy energie write(6,99)iter,enrgnew diff=enrgnew-enrgold if(dabs(diff).gt.tresh)then call veccop(no2u2,o2,c2)!podst. new amp. w miejsce old tj. o2 enrgold=enrgnew goto 1000 endif

42 iteracja: 1 energia kor. CI iteracja: 2 energia kor. CI iteracja: 3 energia kor. CI iteracja: 4 energia kor. CI iteracja: 5 energia kor. CI iteracja: 6 energia kor. CI iteracja: 7 energia kor. CI iteracja: 8 energia kor. CI iteracja: 9 energia kor. CI iteracja: 10 energia kor. CI iteracja: 11 energia kor. CI iteracja: 12 energia kor. CI iteracja: 13 energia kor. CI iteracja: 14 energia kor. CI iteracja: 15 energia kor. CI iteracja: 16 energia kor. CI iteracja: 17 energia kor. CI iteracja: 18 energia kor. CI iteracja: 19 energia kor. CI iteracja: 20 energia kor. CI

43 iteracja: 21 energia kor. CI iteracja: 22 energia kor. CI iteracja: 23 energia kor. CI iteracja: 24 energia kor. CI iteracja: 25 energia kor. CI iteracja: 26 energia kor. CI iteracja: 27 energia kor. CI iteracja: 28 energia kor. CI iteracja: 29 energia kor. CI

44 Poprawki korelacyjne (mh) dla różnych wariantów metody CI i CC w stosunku do wartości FCI dla moleku l HF i H 2 O (baza DZP; zamrożone orbitale rdzenia). HF H 2 O Metoda R e 1.5R e 2.0R e R e 1.5R e 2.0R e CISD CISDT CISDTQ CISDTQP CISDTQPH CISDTQPH CCSD CCSDT CCSDTQ CCSDTQP

45 Poprawki korelacyjne (mh) dla różnych wariantów metody CC w stosunku do wartości FCI dla moleku l N 2 (R=2.068 au) i C 2 (R=2.348 au) (baza cc-pvdz dla N 2 ; dla C 2 baza cc-pvdz poszerzona o funkcje dyfuzyjne s i p z wyk ladnikami oraz , odpowiednio; zamrożone orbitale rdzenia). Moleku/la CCSD CCSDT CCSDTQ CCSDTQP N C

46 Poprawki korelacyjne (mh) dla różnych wariantów metody CC w stosunku do wartości FCI. CCSD CCSDT CCSDTQ CCSDTQP R e HF(DZP) 1.5R e R e R e H 2 O(DZP) 1.5R e R e R e SiH 2 (DZP) 1.5R e R e R e CH 2 (DZP) 1.5R e R b) e

47 Wk lady do energii korelacji (mh) pochodz ace od poszczególnych operatorów klasterowych. E(CCSD) E(T 3 ) E(T 4 ) E(T 5 ) R e HF(DZP) 1.5R e R e R e H 2 O(DZP) 1.5R e R e R e SiH 2 (DZP) 1.5R e R e R e CH 2 (DZP) 1.5R e R e

48 Energie korelacji (mh) dla wybranych moleku l z potrójnym wi azaniem obliczone w bazie DZP. CA LKOWITA KORELACJA CC SD SD(T) SDT SDT(Q f ) SDTQ SDTQ(P f ) N NO CN HCN c) C 2 H c) EFEKTY NETTO E(CCSD) E(T 3 ) E(T 3 ) E(T 4 ) E(T 4 ) E(T 5 ) N NO CN HCN C 2 H

49 Równowagowe d lugości wi azań (Å) dla N 2, CN, NO + w bazach cc-pvdz i DZP obliczone za pomoc a różnych wariantów metody CC. CC SD SD(T) SDT SDT(Q f ) SDTQ SDTQ(P f ) Eksp. cc-pvdz N CN NO DZP N CN NO EFEKTY NETTO R e (CCSD) R e (T 3 ) R e (T 3 ) R e (T 4 ) R e (T 4 ) R e (T 5 ) cc-pvdz N CN NO DZP N CN NO

50 Czȩstości harmoniczne [ cm 1 ] dla N 2, CN, NO + w bazach cc-pvdz i DZP obliczone za pomoc a różnych wariantów metody CC. CC SD SD(T) SDT SDT(Q f ) SDTQ SDTQ(P f ) Eksp. cc-pvdz N CN NO DZP N CN NO EFEKTY NETTO ω (CCSD) ω(t 3 ) ω(t 3 ) ω(t 4 ) ω(t 4 ) ω(t 5 ) cc-pvdz N CN NO DZP N CN NO

51 H 2 O molecule (cc-pvdz basis set; all electrons were correlated) E/Hartrees FCI CCSD CCSDT CCSDTQ CCSD(T) ΛCCSD(T) CCSD(TQ f ) ΛCCSD(TQ f ) n*r e

52 F 2 molecule (cc-pvdz basis set; all electrons were correlated) E(Hartrees) CCSDTQ CCSDT CCSD(T) CCSD IH-FS-CCSD (0,2) DIP-EOM-CCSDT n*r e (R e = A)

53 Na 2 (POL1 basis set; valence electrons were correlated) E (Hartrees) CCSD CCSDT CCSD(T) DEA-EOM-CCSDT IH-FS-CCSD (2,0) R (Angstroms)

54 HF molecule (6-31G** basis set; core electrons were frozen) E(Hartrees) R(Angstroms) FCI CCSD CCSDT CCSD(T) IH-FS-CCSD (0,2) DIP-EOM-CCSDT

METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI. Monika Musia l

METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI. Monika Musia l METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI Monika Musia l Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie

Bardziej szczegółowo

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a

Bardziej szczegółowo

METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI)

METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) lub ĤΨ i = E i Ψ i Ψ i = K r=0 c riφ r ĤΨ = EΨ Ψ = c o Φ o + ia ca i Φ a i + ijab cab ij Φ ab ij + ijkabc cabc ijk Φ abc ijk + Funkcje Φ r (Φij..

Bardziej szczegółowo

Metody obliczeniowe chemii teoretycznej

Metody obliczeniowe chemii teoretycznej Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave

Bardziej szczegółowo

Metoda oddzia lywania konfiguracji (CI)

Metoda oddzia lywania konfiguracji (CI) Metoda oddzia lywania konfiguracji (CI) Spinorbitale: obsadzone φ a i wirtualne φ r : ɛ a ɛ HOMO, ɛ r ɛ LUMO ê r a wykonuje podstawienie φ a φ r, np. ê 7 2 φ 1 φ 2 φ 3... φ N = φ 1 φ 7 φ 3... φ N Operator

Bardziej szczegółowo

METODA SPRZȨŻONYCH KLASTERÓW. Monika Musia l

METODA SPRZȨŻONYCH KLASTERÓW. Monika Musia l METODA SPRZȨŻONYCH KLASTERÓW Monika Musia l Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie e- nergii korelacji

Bardziej szczegółowo

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych

Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych Justyna Cembrzyńska Zakład Mechaniki Kwantowej Uniwersytet

Bardziej szczegółowo

RACHUNEK ZABURZEŃ. Monika Musiał

RACHUNEK ZABURZEŃ. Monika Musiał RACHUNEK ZABURZEŃ Monika Musiał Rachunek zaburzeń jest podstawową obok metody wariacyjnej techniką obliczeniową stosowaną do rozwiązywania równania Schrödingera. Idea metody zaburzeniowej sprowadza się

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Uwzględnienie energii korelacji w metodach ab initio - przykłady

Uwzględnienie energii korelacji w metodach ab initio - przykłady Uwzględnienie energii korelacji w metodach ab initio - przykłady Funkcje falowe (i funkcje bazy) jawnie skorelowane - zależa jawnie od odległości międzyelektronowych r ij = r i r j Funkcje falowe w postaci

Bardziej szczegółowo

Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y)

Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y) Notatki do wyk ladu XII Korelacja elektronowa Nazwa korelacja elektronowa wywodzi si e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa niezależne jeśli ρ(x, y) = ρ 1 (x) ρ 2 (y) Oznacza

Bardziej szczegółowo

Hierarchia baz gaussowskich (5)

Hierarchia baz gaussowskich (5) Hierarchia baz gaussowskich (5) Bazy split-valence czyli VDZ, VTZ, etc. (np. bazy Pople a 6-31G, 6-311G, etc) Bazy split-valence spolaryzowane VDZP, VTZP, etc. Bazy bazy Dunninga (konsystentne korelacyjnie)

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

Teoria funkcjona lu g Density Functional Theory (DFT)

Teoria funkcjona lu g Density Functional Theory (DFT) Teoria funkcjona lu g estości Density Functional Theory (DFT) Cz eść slajdów tego wyk ladu pochodzi z wyk ladu wyg loszonego przez dra Lukasza Rajchela w Interdyscyplinarnym Centrum Modelowania Matematycznego

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia.   mm CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,

Bardziej szczegółowo

Stany wysokospinowe w teorii sprzężonych klasterów w połączeniu z metodą równań ruchu dla układów podwójnie zjonizowanych

Stany wysokospinowe w teorii sprzężonych klasterów w połączeniu z metodą równań ruchu dla układów podwójnie zjonizowanych Wszczęcie przewodu doktorskiego Proponowany temat pracy: Stany wysokospinowe w teorii sprzężonych klasterów w połączeniu z metodą równań ruchu dla układów podwójnie zjonizowanych Łukasz Lupa Opiekun naukowy:

Bardziej szczegółowo

Korelacja elektronowa

Korelacja elektronowa Korelacja elektronowa oraz metody jej uwzgl edniania oparte na funkcji falowej Mariusz Radoń 04.04.2017 11.04.2017 Wymiana i korelacja kulombowska W metodzie HF Elektrony o jednakowych spinach nie moga

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Chemia teoretyczna (023) 1. Informacje ogólne koordynator modułu dr hab. Monika Musiał, prof. UŚ rok akademicki

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

Notatki do wyk ladu IV (z 27.10.2014)

Notatki do wyk ladu IV (z 27.10.2014) Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

Metoda Hartree-Focka (Hartree ego-focka)

Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika Slatera,

Bardziej szczegółowo

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia Monika Musia l Uk lad zamkniȩtopow lokowy: N elektronów; N 2 elektronowa: Ψ = 1 N! orbitali. Funkcja falowa N- φ 1 (1)α(1)

Bardziej szczegółowo

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V (z 03.11.014) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu IV (z 1.11.01) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa opisujac a stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Wyk lad 6 Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Uk lady modelowe czastka swobodna czastka na barierze potencja lu czastka w pudle oscylator harmoniczny oscylator Morse

Bardziej szczegółowo

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ

Bardziej szczegółowo

{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r

{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r to w pobliżu dna (lub szczytu) pasma (k k 0 ) zależność E(k) jest paraboliczna ale z mas a m m 0 Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane)

Bardziej szczegółowo

u nk = n c nn u n 0 wyznacza siȩ empirycznie (elementy przejść) lub próbuje oszacować w obliczeniach typu ab initio Rachunek zaburzeń Löwdina

u nk = n c nn u n 0 wyznacza siȩ empirycznie (elementy przejść) lub próbuje oszacować w obliczeniach typu ab initio Rachunek zaburzeń Löwdina Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane) to ich wzajemny wp lyw musi być uwzglȩdniony wariacyjnie - w I rzȩdzie RZ dla stanow zdegenerowanych

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Teoria funkcjonału gęstości

Teoria funkcjonału gęstości Teoria funkcjonału gęstości Łukasz Rajchel Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego Uniwersytet Warszawski lrajchel1981@gmail.com Wykład dostępny w sieci: http://tiger.chem.uw.edu.pl/staff/lrajchel/

Bardziej szczegółowo

Teoria funkcjona lu g

Teoria funkcjona lu g Notatki do wyk ladu XII (z 1.01.015) Uwaga! Strony 1-14 sa w wiekszości powtórzeniem stron z Notatek do wyk ladu XI z 15.1.014 Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Metody obliczeniowe chemii kwantowej

Metody obliczeniowe chemii kwantowej Uniwersytet Śląski Metody obliczeniowe chemii kwantowej Monika Musiał Spis treści 1 Metody obliczeniowe chemii kwantowej uwzględniające korelację elektronową 3 1.1 Wstęp... 4 1.2 Rachunekzaburzeń... 6

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Monika Musia l

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Monika Musia l WYK LAD STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Monika Musia l http : //zcht.mf c.us.edu.pl/ mm WYK LAD - wyznaczanie orbitali atomowych i molekularnych Uk lad zamkniȩtopow

Bardziej szczegółowo

Teoria funkcjona lu g

Teoria funkcjona lu g Notatki do wyk ladu XI Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość funkcji falowej jest niezb edna? Ψ(1,, 3,..., N) dla uk ladu N-elektronowego zależy od 4N zmiennych (dla

Bardziej szczegółowo

Prof. dr hab. Leszek Meissner Toruń, 24 września 2018 r. Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń

Prof. dr hab. Leszek Meissner Toruń, 24 września 2018 r. Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń Prof. dr hab. Leszek Meissner Toruń, 24 września 2018 r. Instytut Fizyki Uniwersytet Mikołaja Kopernika 87-100 Toruń Ocena rozprawy doktorskiej magister Aleksandry Tucholskiej zatytułowanej Momenty przejścia

Bardziej szczegółowo

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu

Bardziej szczegółowo

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

W lasności elektryczne moleku l

W lasności elektryczne moleku l W lasności elektryczne moleku l Hamiltonian dla czasteczki w jednorodnym polu elektrycznym E ma postać: Ĥ(E) = Ĥ + E ˆµ x gdzie zak ladamy, że pole jest zorientowane wzd luż osi x a ˆµ x jest operatorem

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu.

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu. Notatki do wyk ladu VI Stany atomu wieloelektronowego o określonej energii. Konfiguracja elektronowa atomu - zbiór spinorbitali, wykorzystywanych do konstrukcji funkcji falowej dla danego stanu atomu;

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Modelowanie molekularne

Modelowanie molekularne Ck08 Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 10 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody

Bardziej szczegółowo

w = w i ξ i. (1) i=1 w 1 w 2 :

w = w i ξ i. (1) i=1 w 1 w 2 : S. D. G lazek, www.fuw.edu.pl/ stglazek, 11.III.2005 1 I. MACIERZ LINIOWEGO ODWZOROWANIA PRZESTRZENI WEKTOROWYCH Wyobraźmy sobie, że przestrzeń wektorowa W jest zbudowana z kombinacji liniowych n liniowo

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa Notatki do wyk ladu VI (z 18.11.2013) Symbol termu: 2S+1 L (1) L -liczba kwantowa ca lkowitego orbitalnego momentu pedu Duże litery S, P, D, F, itd. dla L=0, 1, 2, 3, itd. 2S+1 - multipletowość; S - liczba

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

Uklady modelowe III - rotator, atom wodoru

Uklady modelowe III - rotator, atom wodoru Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

Korelacja elektronowa w metodzie elongacji

Korelacja elektronowa w metodzie elongacji March 28, 2006 1 2 3 4 5 6 Waskie gard la metody jednowyznacznikowe wyznaczanie ca lek dwuelektronowych potrzebnych do budowy macierzy Focka: formalnie O(N 4 ), asymptotycznie O(N 2 ) diagonalizacja macierzy

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 2 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 2 wiedza Symbole efektów kształcenia K_U01 2 umiejętności K_K01 11 kompetencje

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu.

Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu. Wizualizacja Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu. Graficzny obraz schematu DEA w obliczeniach energii

Bardziej szczegółowo

Uk lady modelowe II - oscylator

Uk lady modelowe II - oscylator Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Grupa Moniki Musiał. Uniwersytet Śląski Instytut Chemii Zakład Chemii Teoretycznej

Grupa Moniki Musiał. Uniwersytet Śląski Instytut Chemii Zakład Chemii Teoretycznej Wieloreferencyjna metoda sprzężonych klasterów w dwuwalencyjnych sektorach przestrzeni Focka oraz metoda równań ruchu w zastosowaniu do opisu stanów wzbudzonych Grupa Moniki Musiał Uniwersytet Śląski Instytut

Bardziej szczegółowo

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag

Bardziej szczegółowo

jawnie od odleg lości miedzyelektronowych r ij = r i r j Funkcje falowe w postaci kombinacji liniowej wielu wyznaczników.

jawnie od odleg lości miedzyelektronowych r ij = r i r j Funkcje falowe w postaci kombinacji liniowej wielu wyznaczników. Notati do wy ladu XII Przy lady metod ab iitio uwzglediaj acych orelacje eletroowa Fucje falowe jawie sorelowae - zależa jawie od odleg lości miedzyeletroowych r ij = r i r j Fucje falowe w postaci ombiacji

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Nowe modele obliczeniowe wieloreferencyjnej metody sprzężonych klasterów sformułowanej w przestrzeni Hilberta.

Nowe modele obliczeniowe wieloreferencyjnej metody sprzężonych klasterów sformułowanej w przestrzeni Hilberta. Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Zamknięcie przewodu doktorskiego Katarzyna Szopa Nowe modele obliczeniowe wieloreferencyjnej metody sprzężonych klasterów sformułowanej w przestrzeni

Bardziej szczegółowo

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Cia la i wielomiany Javier de Lucas

Cia la i wielomiany Javier de Lucas Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 02

Geometria odwzorowań inżynierskich Zadania 02 Scriptiones Geometrica Volumen I (2007), No. Z2, 1 3. Geometria odwzorowań inżynierskich Zadania 02 1. Odwzorowania w rzucie równoleg lym. Przekroje cd. Konstrukcje p laskie 1.1. Przekszat lcenia na p

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

Rotacje i drgania czasteczek

Rotacje i drgania czasteczek Rotacje i drgania czasteczek wieloatomowych Gdy znamy powierzchnie energii potencjalnej V( R 1, R 2,..., R N ) to możemy obliczyć poziomy energetyczne czasteczki. Poziomy te sa w ogólności efektem: rotacji

Bardziej szczegółowo

Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych

Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych Wstęp Krzywa energii potencjalnej 1 to wykres zależności energii potencjalnej cząsteczek od długości wiązania (czyli od wzajemnej

Bardziej szczegółowo

Układy wieloelektronowe

Układy wieloelektronowe Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające

Bardziej szczegółowo

Wyk lad 10 Przestrzeń przekszta lceń liniowych

Wyk lad 10 Przestrzeń przekszta lceń liniowych Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo