Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II"

Transkrypt

1 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność operatorów ˆD, ˆQ, ˆ0 oraz ˆπ (b) Które z powyższych operatorów są operatorami liniowymi? Opowieź uzasanij rachunkiem 2 Niech Â, ˆB, Ĉ są operatorami, a [, ] komutatorem wóch operatorów Uowonij następujące relacje (a) [Â, ˆB] = [ ˆB, Â], (b) [ ˆB, Ĉ] = Â[ ˆB, Ĉ] + [Â, Ĉ] ˆB, (c) [Â, ˆBĈ] = [Â, ˆB]Ĉ + ˆB[Â, Ĉ], [ ] () [Â, [ ˆB, Ĉ]] + ˆB, [ Ĉ, Â] + [Ĉ, [ Â, ˆB] ] = 0, (e) [αâ + β ˆB, Ĉ] = α[â, Ĉ] + β[ ˆB, Ĉ], α, β C 3 Wyznacz Â2 oraz Â3, gy operator  jest postaci (a)  = 5 (b)  = x + x, (c)  = 2 x + 2 x 4 Dany jest operator  = eâ = x e x x + 1 x Stosując metoę inukcji matematycznej pokaż, że prawziwa jest relacja: 5 Stosując metoę inukcji matematycznej uowonij, że zachozi relacja (  n) 1 = ( 1 ) n Załóż, że  1 istnieje 6 Niech ane są liczby λ, µ C oraz operatory  i ˆB określone w przestrzeni Hilberta stanów pewnego ukłau fizycznego Pokaż, że (a) sprzężeniem hermitowskim liczby λ C jest λ C, (b) ( ) = Â, (c) ( ˆB) = ˆB Â, () (λâ + µ ˆB) = λ  + µ ˆB, (e) operatory  + Â, i(â  ) oraz  są hermitowskie, (f) [Â, ˆB] = [ ˆB,  ], (g) zakłaając, że  jest hermitowski oraz, że istnieją operatory  1 i ( ) 1, spełnione są relacje: ( ) 1 = ( 1 ) oraz ( ) 1 =  1 7 Niech operatory  i ˆB są operatorami hermitowskimi Sprawź, czy poane poniżej operatory są hermitowskie: (a)  ˆB, (b)  ˆB ˆBÂ, (c)  ˆB + ˆBÂ, () i(â ˆB ˆBÂ) 8 Niech ana jest przestrzeń l 2 nieskończonych ciągów liczb zespolonych zbieżnych w kwaracie Dla każego elementu x = (x 1, x 2,, x n, ) takiej przestrzeni prawziwa jest relacja x k 2 <, z iloczynem skalarnym zefiniowanym następująco: (x, y) = x k y k Niech w takiej przestrzeni zefiniowany jest operator ˆT : ˆT x = ˆT (x 1, x 2, x 3,, x n, ) = (x 2, x 3,, x n, ) Wyznacz sprzężenie hermitowskie operatora ˆT oraz sprawź, czy jest to operator unitarny 1

2 9 Niech operator  jest macierzą n n określoną w przestrzeni Cn Wyznacz sprzężenie hermitowskie operatora  10 Pokaż, że operatory (a) ˆp = i x, (b) ˆx = x operator mnożenia przez (rzeczywistą) współrzęną położenia są liniowe i hermitowskie w przestrzeni funkcji falowych Ψ(x), 11 Wyznacz postać sprzężenia hermitowskiego operatorów (a) x, (b) 2 x 2, określonych w przestrzeni funkcji falowych Ψ(x) 12 Pokaż, że (a) wartości własne operatora ientycznościowego są równe 1, lim Ψ(x) 0 x (b) wartości własne owolnego operatora hermitowskiego są rzeczywiste, (c) wektory własne owolnego operatora hermitowskiego opowiaające różnym wartościom własnym są ortogonalne, () wartości własne λ i owolnego operatora unitarnego spełniają warunek: λ i = 1 13 Dane są operatory σ 1 = określone w wuwymiarowej przestrzeni wektorowej C 2, σ 2 =, σ 3 = 0 1 (a) Pokaż, że operatory te są hermitowskie (b) Wyznacz wartości własne oraz unormowane wektory własne każego z operatorów własne anego operatora opowiaające różnym wartościom własnym są ortogonalne Następnie pokaż w bezpośrenim rachunku, że spełnione są relacje: (c) [σ i, σ j ] = 2iɛ ijk σ k, la i, j, k = 1, 2, 3, () [σ i, σ j ] + = 2δ ij 1, (e) σ 2 i = 1, i = 1, 2, 3 Pokaż, że wektory 14 Pochona operatora Â(λ) jawnie zależnego o parametru λ zefiniowana jest równaniem Pokaż, że zachozą relacje Â(λ) λ = lim λ 0 Â(λ + λ) Â(λ) λ (a) (b) λ ( ˆB) = Â λ ˆB +  ˆB λ, λ ( 1 (λ)) =  1 (λ) Â(λ) λ  1 (λ), przy założeniu, że  1 (λ) istnieje 15 Niech ane są wa operatory  oraz ˆB spełniające warunek [Â, ˆB] = 0 Pokaż, że la takich operatorów zachozi związek [Â, f( ˆB)] = 0 16 Niech ane są wa operatory  oraz ˆB takie, że zachozi [Â, ˆB] = 1 Pokaż, że prawziwa jest wówczas relacja [Â, f( ˆB)] = f( ˆB) ˆB 17 Relacja Bakera Hausorffa Uowonij, że la operatorów Â, ˆB spełniających związek [Â, [ Â, ˆB] ] = [ ˆB, [ Â, ˆB] ] = 0 prawziwa jest relacja eâ+ ˆB = e 1 2 [Â, ˆB] eâe ˆB 2

3 18 Pokaż, że la owolnych wóch operatorów Â, ˆB zachozi relacja e ˆB Âe ˆB =  + [ ˆB, Â] + 1 [ ˆB, [ ˆB, Â] ] + 1 [ [ ˆB, ˆB, [ ˆB, Â] ]] + 2! 3! 19 Niech  i ˆB są woma operatorami Pokaż, że (a) ˆBe ˆB 1 1 ˆB ˆB = e zakłaając, ( (b) eâ) = e Â, że ˆB 1 istnieje, (c) jeśli λ jest wartością własną operatora  to eλ jest wartością własną operatora exp  20 Pokaż, że gy operator  jest hermitowski, to operator ˆT = e iâ jest unitarny 21 Pokaż, że operator ˆF = t s k(s, t) s t jest operatorem liniowym i hermitowskim Przyjmij, że funkcja k(s, t) jest rzeczywista, a wektory s, t są wektorami stanu pewnego ukłau fizycznego 22 Niech U jest operatorem unitarnym postaci: U = 1 + iɛf, gzie ɛ jest owolnie małą liczbą rzeczywistą, ɛ 0 Pokaż, że unitarność operatora U implikuje hermitowskość operatora F 23 Operator hermitowski  jest oatnio określony, gy la owolnego wektora stanu u spełniony jest warunek u  u 0 Pokaż, że operator postaci ˆPa = a a jest (a) hermitowski (b) oatnio określony (c) inempotentny, tzn spełnia warunek ˆP 2 a = ˆP a Załóż, że a jest unormowanym wektorem własnym pewnego operatora hermitowskiego Rachunki wykonaj w notacji Diraca Operator ˆP a = a a nazywany jest operatorem rzutującym (projektorem) na stan a 24 Niech są zefiniowane operatory ˆP ab = a b oraz ˆP a = a b c Pokaż, że (a) sprzężeniem hermitowskim operatora ˆP ab jest operator ˆP = b a, (b) sprzężeniem hermitowskim operatora ˆP a jest operator ˆP a = c b a Rachunki wykonaj w notacji Diraca 25 Niech any jest ukła N wzajemnie ortogonalnych wektorów stanu Ψ 1,, Ψ N, Ψ i Ψ j = δ ij Niech ˆP N jest liniowym operatorem zefiniowanym w następujący sposób Pokaż, że (a) ˆP 2 N = ˆP N, (b) ˆP N Φ = N k c k Ψ k ˆP N = Ψ k Ψ k 26 Dany jest operator ˆσ y, którego macierzową reprezentacją w wuwymiarowej przestrzeni wektorowej rozpiętej przez wektory bazowe 0 i 1 0 =, 1 =, jest macierz ˆσ y = ( ) 3

4 (a) Pokaż, że operator ˆσ y jest hermitowski Wyznacz wartości własne operatora ˆσ y Wyznacz wektory własne operatora ˆσ y i przeprowaź ich normalizację Przestaw znormalizowane wektory własne jako kombinację liniową wektorów bazowych, (b) Pokaż, że wektory bazowe 0, 1 stanowią ukła ortonormalny, (c) Wyznacz postać macierzową projektorów ˆP 0 oraz ˆP 1, tj operatorów rzutujących na stany, opowienio 0 i 1 Pokaż, że ˆP 2 0 = ˆP 0, ˆP 2 1 = ˆP 1 oraz ˆP 0 ˆP1 = ˆP 1 ˆP0 = 0, () Przyjmując, że Ψ = (5 17) T, wyznacz ziałanie ˆP 0 Ψ oraz ˆP 1 Ψ, (e) Pokaż, że wektory bazowe spełniają rozkła jeynki, tzn 1 = Rozpatrzmy trójwymiarową przestrzeń stanów pewnego ukłau fizycznego Niech ukła { u 1, u 2, u 3 } stanowi ortonormalną bazę tej przestrzeni oraz niech ane są wa wektory stanu zefiniowane w następujący sposób Ψ 0 = 1 u 1 + i 2 2 u u 3 ; Ψ 1 = 1 u 1 + i u (a) sprawź, czy poane kety Ψ 0 i Ψ 1 są unormowane, (b) wyznacz macierzową postać projektorów rzutujących na poane stany Czy macierze te są hermitowskie? 28 Niech w N wymiarowej przestrzeni Hilberta H zefiniowany jest operator hermitowski  posiaający N różnych wartości własnych λ k oraz opowiaające im wektory własne u k, k = 1,, N Pokaż, że prawziwy jest rozkła operatora  postaci  = λ i u i u i Powyższe równanie określa tzw rozkła spektralny operatora  Zbiór wszystkich wartości własnych {λ i} N operatora nazywany jest jego wimem (spektrum) 29 Funkcję operatorową operatora  efiniuje się przez rozwinięcie w szereg f(â) = a n  n, gzie a n są liczbowymi współczynnikami rozwinięcia Pokaż, że gy istnieje rozkła spektralny operatora   = n=0 λ i u i u i, to funkcję f(â) można zapisać równoważnie w postaci N f(â) = f(λ i ) u i u i 30 Niech  jest owolnym operatorem, a Û operatorem unitarnym Pokaż, że prawziwa jest relacja f(û ÂÛ) = Û f(â)û 31 Korzystając z rozkłau spektralnego operatora Â:  = i a i a i a i, gzie  a i = a i a i, a i a j = δ ij oraz z faktu, że f(â) = i f(a i) a i a i pokaż, że zachozi relacja:  n  m = Ân+m 32 Hamiltonian atomu wupoziomowego o poziomach energetycznych równych opowienio E 1 oraz E 2 można zapisać w postaci Ĥ = E E 2 2 2, gzie wektory 1, 2 reprezentują opowienio postawowy i wzbuzony stan energetyczny atomu Pokaż, że operator ewolucji czasowej Û(t) = e i Ĥt można zapisać Û(t) = e i E1t e i E2t 2 2 4

5 33 Niech ane są trzy hermitowskie macierze 2 2 (macierze Pauliego) postaci ˆσ x =, ˆσ y =, ˆσ z = Macierze te spełniają związek ( 0 1 e iϕˆσ k = 1 cos ϕ + iˆσ k sin ϕ (*) (a) Wyznacz wartości własne i unormowane wektory własne każej z macierzy ˆσ k Pokaż, że wektory własne każej z macierzy są ortogonalne, a macierze są hermitowskie (b) Wykaż w bezpośrenim rachunku poprawność relacji (*) la każej z macierzy ˆσ k (c) Wykaż poprawność relacji (*) korzystając z rozkłau spektralnego operatorów ˆσ k (patrz zaanie (29) 34 Pokaż, że zachozi równość exp(θ ˆL cos θ sin θ 0 3 ) = sin θ cos θ 0, 0 ) gzie ˆL 3 jest macierzą 3 3 postaci ˆL 3 = Jaką interpretację geometryczną posiaa przekształcenie v e θ ˆL 3 v, gzie v R 3? 35 Niech ane są macierze postaci: I =, A =, B = Pokaż, że exp(i) = e e 0, exp(a) =, exp(b) = 0 e 36 Wielomiany stopnia co najwyżej n o ogólnej postaci f(x) = c 0 + c 1 x + c 2 x c n x n można interpretować jako elementy przestrzeni wektorowej C n+1 z bazą {1, x, x 2,, x n } Dla przykłau, funkcję f(x) = 2x reprezentuje wektor f = (7, 0, 0, 2, 0,, 0) C n+1 Wyznacz postać macierzową operatora różniczkowania ziałającego na wielomiany f(x) w poanej bazie 0 Opowieź: x = n C A 37 Śla (T r( ) ) operatora  w N wymiarowej przestrzeni Hilberta zefiniowany jest następująco: x Tr(Â) = N ψ k  ψ k, gzie {ψ k } N jest owolną ortonormalną bazą przestrzeni Hilberta (a) Pokaż, że zachozi równość Tr( ˆB) = Tr( ˆBÂ) (b) Uowonij, że Tr( φ ψ ) = ψ φ (c) Uowonij, że śla jest niezmienniczy wzglęem transformacji bazy, tzn wyznaczony w bazie { ψ i } jest ientyczny z wyznaczonym w bazie { ϕ i }, gzie ϕ i = U ψ i oraz U jest przekształceniem unitarnym () Korzystając z efinicji ślau wyznacz śla macierzy Pauliego poanych w zaaniu 33 5

1 Postulaty mechaniki kwantowej

1 Postulaty mechaniki kwantowej 1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości

Bardziej szczegółowo

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda Chemia teoretyczna Postulaty mechaniki kwantowej Katarzyna Kowalska-Szoja Spis treści 1 Postulaty mechaniki kwantowej 2 1.1 Postulat pierwszy.......................... 2 1.2 Postulat rugi.............................

Bardziej szczegółowo

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Wstęp do komputerów kwantowych

Wstęp do komputerów kwantowych Wprowadzenie do mechaniki kwantowej Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Wprowadzenie do mechaniki kwantowej Podstawy matematyczne 1 Algebra liniowa Bazy i liniowa niezależność

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory

Bardziej szczegółowo

1. Matematyka Fizyki Kwantowej: Cześć Trzecia

1. Matematyka Fizyki Kwantowej: Cześć Trzecia 1 Matematyka Fizyki Kwantowej: Cześć Trzecia Piotr Szańkowski Ćwiczenia nr 3 : Podstawowy aparatu matematycznego mechaniki kwantowej I OPERATORY Operator to odwzorowanie  : V V, które działa na stan,

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Matematyczne Metody Chemii I Zadania

Matematyczne Metody Chemii I Zadania Matematyczne Metody Chemii I Zadania Mariusz Radoń, Marcin Makowski, Grzegorz Mazur Zestaw Zadanie. Pokazać, że wyznacznik dowolnej macierzy unitarnej jest liczbą o module. Zadanie. Pokazać, że elementy

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej

Bardziej szczegółowo

21 Symetrie Grupy symetrii Grupa translacji

21 Symetrie Grupy symetrii Grupa translacji 21 Symetrie 21.1 Grupy symetrii Spróbujmy odpowiedzieć sobie na pytanie, jak zmienia się stan układu kwantowego pod wpływem transformacji układu współrzędnych. Najprostszą taką transformacją jest np. przesunięcie

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Zadania z Algebry liniowej 4 Semestr letni 2009

Zadania z Algebry liniowej 4 Semestr letni 2009 Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także

Bardziej szczegółowo

(U.11) Obroty i moment pędu

(U.11) Obroty i moment pędu 3.10.2004 32. U.11) Obroty i moment pędu 96 Rozdział 32 U.11) Obroty i moment pędu 32.1 Wprowadzenie Obroty w przestrzeni R 3 są scharakteryzowane przez podanie osi obrotu, którą określa wektor jednostkowy

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

1 Grupa SU(3) i klasyfikacja cząstek

1 Grupa SU(3) i klasyfikacja cząstek Grupa SU(3) i klasyfikacja cząstek. Grupa SU(N) Unitarne (zespolone) macierze N N można sparametryzować pzez N rzeczywistych parametrów. Ale detu =, unitarność: U U = narzucają dodatkowe warunki. Rozważmy

Bardziej szczegółowo

Wykład I.2 1 Kłopoty z mechaniką klasyczną. 2 Postulaty mechaniki kwantowej 1. Stan układu funkcja falowa ψ(x), ψ(x) 2 interpretacja

Wykład I.2 1 Kłopoty z mechaniką klasyczną. 2 Postulaty mechaniki kwantowej 1. Stan układu funkcja falowa ψ(x), ψ(x) 2 interpretacja Wykład I.2 1 Kłopoty z mechaniką klasyczną 2 Postulaty mechaniki kwantowej 1. Stan układu funkcja falowa ψ(x), ψ(x) 2 interpretacja probabilistyczna 2. Wielkości fizyczne operatory hermitowskie (obserwable)

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej Wyk lad 2 Postulaty mechaniki kwantowej 1 wymiar Postulat Stan czastki określa funkcja falowa Ψ = Ψ(x, t) zależna od po lożenia czastki x oraz czasu t. Interpretacje fizyczna ma jedynie kwadrat modu lu

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

Notacja Diraca. Rozdział Abstrakcyjna przestrzeń wektorów stanu

Notacja Diraca. Rozdział Abstrakcyjna przestrzeń wektorów stanu 3.10.2004 7. Notacja Diraca 84 Rozdział 7 Notacja Diraca 7.1 Abstrakcyjna przestrzeń wektorów stanu Do tej pory posługiwaliśmy się postulatem, że stan układu fizycznego jest w mechanice kwantowej w pełni

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

Mechanika kwantowa - zadania 1 (2007/2008)

Mechanika kwantowa - zadania 1 (2007/2008) Wojciech Broniowski Instytut Fizyki, Akademia Świetokrzyska Mechanika kwantowa - zadania (007/008) Elementy algebry (powtórka). Ortoganalizacja Gramma-Schmidta. Rozważ wektory w przestrzeni R 3 v = 0,

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

(U.6) Oscylator harmoniczny

(U.6) Oscylator harmoniczny 3.0.004 7. U.6 Oscylator harmoniczny 47 Rozdział 7 U.6 Oscylator harmoniczny 7. Rozwiązanie przez rozwinięcie w szereg W głównej części wykładu rozwiązanie zagadnienia własnego dla hamiltonianu kwantowo-mechanicznego

Bardziej szczegółowo

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

(U.14) Oddziaływanie z polem elektromagnetycznym

(U.14) Oddziaływanie z polem elektromagnetycznym 3.10.2004 35. U.14 Oddziaływanie z polem elektromagnetycznym 131 Rozdział 35 U.14 Oddziaływanie z polem elektromagnetycznym 35.1 Niezmienniczość ze względu na W rozdziale 16 wspominaliśmy jedynie o podstawowych

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki XXXI Sesja KNM UŚ Motywacje, intuicje, konstrukcje Szczyrk 10 13 listopada 2011 Tomasz Kochanek (Uniwersytet Śląski) Twierdzenie

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

5 Reprezentacje połozeniowa i pedowa

5 Reprezentacje połozeniowa i pedowa 5 Reprezentacje połozeniowa i pedowa 5.1 Reprezentacja położeniowa W poprzednim rozdziale znaleźliśmy jawną postać operatora Ĥ w przedstawieniu położeniowym. Co to znaczy? W przedstawieniu położeniwym

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Wykłady z Mechaniki Kwantowej

Wykłady z Mechaniki Kwantowej Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 4 Najpiękniejszą rzeczą, jakiej możemy doświadczyć jest oczarowanie tajemnicą.

Bardziej szczegółowo

ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas

ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas ALGEBRA LINIOWA 2 Lista zadań 23/24 Opracowanie : dr Teresa Jurlewicz dr Zbigniew Skoczylas Lista pierwsza Zadanie Uzasadnić z definicji że zbiór wszystkich rzeczywistych macierzy trójkątnych górnych stopnia

Bardziej szczegółowo

W dotychczasowych rozważaniach dotyczących różnych układów fizycznych (w tym i atomu wodoropodobnego)

W dotychczasowych rozważaniach dotyczących różnych układów fizycznych (w tym i atomu wodoropodobnego) 3.1.4 17. Teoria spinu 1/ 196 Rozdział 17 Teoria spinu 1/ 17.1 Wprowadzenie braki dotychczasowej teorii W dotychczasowych rozważaniach dotyczących różnych układów fizycznych w tym i atomu wodoropodobnego

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Reprezentacje położeniowa i pędowa

Reprezentacje położeniowa i pędowa 3.10.2004 9. Reprezentacje położeniowa i pędowa 103 Rozdział 9 Reprezentacje położeniowa i pędowa 9.1 Reprezentacja położeniowa Reprezentacja położeniowa jest szczególnie uprzywilejowana i najczęściej

Bardziej szczegółowo

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi. Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej 3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".

Bardziej szczegółowo

Geometria Lista 0 Zadanie 1

Geometria Lista 0 Zadanie 1 Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio

Bardziej szczegółowo

1. Matematyka Fizyki Kwantowej: Cześć Druga

1. Matematyka Fizyki Kwantowej: Cześć Druga . Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

15 Potencjały sferycznie symetryczne

15 Potencjały sferycznie symetryczne z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły

Bardziej szczegółowo

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie

Bardziej szczegółowo

Normalizacja funkcji falowej

Normalizacja funkcji falowej Normalizacja funkcji falowej Postulaty mechaniki kwantowej Zadanie. Wyznacz stałą normalizacyjną i podaj postać funkcji unormowanej: Ψ = Ncosαx) dla x [, a] Opis sposobu rozwiązania zadania krok po kroku:.

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I* - 1

Zadania z Analizy Funkcjonalnej I* - 1 Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji

Bardziej szczegółowo

Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe

Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Abstrakcyjne sformułowanie teorii kwantów.

Abstrakcyjne sformułowanie teorii kwantów. Abstrakcyjne sformułowanie teorii kwantów. Opisana w tej książce mechanika falowa jest jedną z realizacji ogólnej abstrakcyjnej teorii kwantów (mechaniki kwantowej). Mechanika falowa oparta na ideach de

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ

z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ Izometrie liniowe Przypomnijmy, że jeśli V jest przestrzenią euklidesową (skończonego wymiaru), to U End V jest izometrią wtedy i tylko wtedy, gdy U U = UU = E, to znaczy, gdy jest odwzorowaniem ortogonalnym.

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Przestrzeń liniowa i przekształcenie liniowe

Przestrzeń liniowa i przekształcenie liniowe opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

DB Algebra liniowa 1 semestr letni 2018

DB Algebra liniowa 1 semestr letni 2018 DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej.

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej. 1 Chemia kwantowa. Pytania egzaminacyjne. 21/211: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny - interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest licza

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

Szczegółowa lista zagadnień kursu Algebra z geometrią MT obowiązujących na egzamin ustny w roku akademickim 2018/19

Szczegółowa lista zagadnień kursu Algebra z geometrią MT obowiązujących na egzamin ustny w roku akademickim 2018/19 Szczegółowa lista zagadnień kursu Algebra z geometrią MT obowiązujących na egzamin ustny w roku akademickim 2018/19 1. Zbiory, zdania i formy zdaniowe. 2. Operacje logiczne i podstawowe prawa rachunku

Bardziej szczegółowo