Uczenie Wielowarstwowych Sieci Neuronów o
|
|
- Wacław Żurek
- 7 lat temu
- Przeglądów:
Transkrypt
1
2 Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej
3 neuronu o ci gªej funkcji aktywacji
4 Przypomnienie: neuron z ci gª funkcj aktywacji sigmoidalna funkcja unipolarna: 1 f (net) = 1 + e net sigmoidalna funkcja bipolarna: f (net) = e net 1 gdzie: net = w T x
5 Bª d neuronu ci gªego Zdeniujmy nast puj c miar bª du pojedynczego neuronu: E = 1 2 (d y)2 = 1 2 (d f (w T x)) 2 gdzie: d - po» dane wyj±cie (ci gªe) y - aktualne wyj±cie (ci gªe) (y = f(net)) (wspóªczynnik 1/2 wybrany dla uproszczenia pó¹niejszych rachunków)
6 Cel uczenia: minimalizacja bª du Chcemy tak modykowa wektor wag w,»eby zminimalizowa bª d. Metoda gradientu: najwi kszy spadek funkcji (w kierunku minimum) wskazywany jest przez przeciwny wektor gradientu (czyli pochodnych cz stkowych bª du jako funkcji wektora wag) E(w) = E w E(w) = (d y)f (net)( net w 1,..., net w p ) T = = (d y)f (net)x
7 Pochodne funkcyj sigmoidalnych Zauwa»my,»e: dla funkcji sigmoidalnej unipolarnej: f (net) = f (net)(f (net) 1) = y(y 1) dla funkcji sigmoidalnej bipolarnej: f (net) = 1 2 (1 f 2 (net)) = 1 2 (1 y 2 ) Czyli pochodna funkcji f jest ªatwo wyra»alna przez sam funkcj f. (Teraz mo»na zrozumie dlaczego zaproponowano akurat takie formy ci gªych funkcyj aktywacji)
8 Reguªa uczenia dla ci gªego neuronu Reasumuj c, wagi neuronu ci gªego modykujemy zgodnie ze wzorem: unipolarny: w new = w old + η(d y)y(1 y)x bipolarny: w new = w old η(d y)(1 y 2 )x gdzie: η to wspóªczynnik uczenia (learning rate) Zauwa»my wyra¹n analogi do reguªy delta dla dyskretnego perceptronu
9 jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji
10 Jednowarstwowa sie neuronów ci gªych Zaªó»my,»e sie ma J wej± i K neuronów ci gªych. Wprowad¹my nast puj ce oznaczenia: wektor wej± : y T = (y 1,..., y J ) wektor wyj± : z T = (z 1,..., z K ) macierz wag: W = [w kj ] (w kj : k-ty neuron, j-ta waga) macierz funkcyj aktywacji: Γ = diag[f ( )] (wymiar: K K ) Obliczenie wyj±cia mo»na wi c teraz zapisa jako: z = Γ[Wy]
11 jednowarstwowej sieci ci gªych neuronów Wprowad¹my dodatkowe oznaczenia: po» dany wektor wyj±ciowy: d T = (d 1,..., d K ) bª d wyj±cia dla pojedynczego wektora wej± : E = 1 K (d k z k ) 2 = 1 d z k=1 Zastosujemy ponownie metod gradientu (jak dla pojedynczego neuronu). Zmiana pojedynczej wagi dana jest wi c wzorem: w kj = η E w kj
12 jednej warstwy, cd. Mamy wi c: E = E net k w kj net k w kj sygnaª bª du delta k-tego neuronu ostatniej warstwy: δ zk = E net k = (d k z k )z k (1 z k ) δ zk = E net k = 1 2 (d k z k )(1 z k ) 2 Zauwa»my,»e net k w kj = y j Otrzymujemy wi c wzór modykacji wag w postaci macierzowej: W new = W old + ηδ z y T
13 Algorytm uczenia jednej warstwy wybór η, E max, inicjalizacja losowych wag W, E = 0 dla ka»dego przykªadu ze zbioru ucz cego: oblicz wyj±cie z zmodykuj wagi k-tego neuronu (unipolarny/bipolarny): w k w k + η(d k z k )z k (1 z k )y kumuluj bª d: w k w k η(d k z k )(1 z 2 k )y E E K (d k z k ) 2 k=1 je±li pokazano wszystkie elementy zbioru ucz cego i E < E max to zako«cz uczenie. W przeciwnym wypadku wyzeruj E i ponownie wykonaj uczenie na caªym zbiorze ucz cym
14 sieci wielowarstwowej - metoda propagacji wstecznej
15 Sie wielowarstwowa Jedna warstwa sieci neuronowej ma mo»liwo±ci podzielenia przestrzeni obrazów wej±ciowych na obszary liniowo separowalne. Ka»da nast pna mo»e dokonywa kolejnych transformacji. W efekcie, wielowarstwowa sie neuronowa jest uniwersalnym narz dziem, które teoretycznie mo»e dowolnie dokªadnie aproksymowa dowolne transformacje przestrzeni wej±ciowej w przestrze«odwzorowa«wyj±ciowych.
16 Wielowarstwowej Zilustrujemy uczenie sieci wielowarstwowej na przykªadzie sieci 2-warstwowej. W tym celu dodamy jedn warstw umieszczon przed ostatni (wyj±ciow ) warstw sieci i poka»emy jak j uczy. Ka»da warstwa poza wyj±ciow nazywana jest warstw ukryt, gdy» nie jest wiadome jakie powinno by jej prawidªowe wyj±cie. Metod uczenia sieci wielowarstwowej odkryto dopiero w latach 70. i zacz to stosowa w latach 80. XX. wieku - nazywa si ona metod wstecznej propagacji bª dów, gdy» wagi modykuje si od warstwy ostatniej do pierwszej (wstecz). Metod t mo»na naturalnie rozszerza z sieci 2-warstwowej na dowoln liczb warstw ukrytych.
17 Sie dwuwarstwowa Wprowadzimy nast puj ce oznaczenia: wektor wej± : x T = (x 1,..., x I ) macierz wag pierwszej warstwy: V = [v ji ] (v ji : j-ty neuron, i-ta waga) wektor wyj± pierwszej (wej± drugiej) warstwy: y T = (y 1,..., y J ) wektor wyj± drugiej warstwy (caªej sieci): z T = (z 1,..., z K ) macierz wag drugiej warstwy: W = [w kj ] (w kj : k-ty neuron, j-ta waga) operator funkcyj aktywacji: Γ = diag[f ( )] (wymiar: J J lub K K ) Obliczenie wektora wyj± mo»na wi c teraz zapisa jako: z = Γ[Wy] = Γ[W Γ[Vx]]
18 sieci wielowarstwowej Metoda wstecznej propagacji bª du: Po obliczeniu wektora wyj± z, wagi modykowane s od ostatniej do pierwszej warstwy (wstecz). Pokazano wcze±niej, jak modykowa wagi ostatniej warstwy. Po zmodykowaniu wag ostatniej warstwy, modykowane s wagi warstwy drugiej od ko«ca (itd.) Przy modykowaniu wag warstwy drugiej od ko«ca stosuje si równie» metod gradientu: v ji = η E v ji
19 Metoda wstecznej propagacji bª du, cd. Przez analogi, wagi V modykowane s nast puj co: V new = V old + ηδ y x T gdzie, δ y oznacza wektor sygnaªu bª du warstwy ukrytej: δ T y = (δ y 1,..., δ y J ) Sygnaª bª du warstwy ukrytej obliczamy nast puj co: δ yj = E y j y j net j = E y j f (net j ) = K k=1 δ zk w kj f j (net j )
20 Algorytm uczenia sieci dwuwarstwowej wybór η, E max, inicjalizacja losowych wag W i V, E = 0 dla ka»dego przykªadu ze zbioru ucz cego: oblicz kolejno wektory wyj± y oraz z kumuluj bª d:e E K k=1 (d k z k ) 2 oblicz sygnaªy bª dów (ostatniej, pierwszej warstwy): unipolarny: δ zk = (d k z k )z k (1 z k ), δ yj = y j (1 y j ) K k=1 δ zk w kj bipolarny: δ zk = 1 2 (d k z k )(1 z 2 k ), δ yj = 1 2 (1 y 2 j ) K k=1 δ zk w kj zmodykuj wagi ostatniej warstwy: w kj w kj + ηδ zk y j zmodykuj wagi pierwszej (ukrytej) warstwy: v ji v ji + ηδ yj x i je±li pokazano wszystkie elementy zbioru ucz cego i E < E max to zako«cz uczenie. W przeciwnym wypadku wyzeruj E i ponownie wykonaj uczenie na caªym zbiorze ucz cym
21 Zagadnienia do przyswojenia: uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej
22 Dzi kuj za uwag.
Jednowarstwowe Sieci Neuronowe jako. klasykatory do wielu klas. (c) Marcin Sydow
Plan dyskretny perceptron i jego ograniczenia inne funkcje aktywacji wielo-klasykacja przy pomocy jedno-warstwowe sieci neuronowej ograniczenia jedno-warstwowej sieci neuronowej miary ewaluacyjne dla klasykacji
WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Wst p do sieci neuronowych, wykªad 05a Algorytm wstecznej propagacji bª du
Wst p do sieci neuronowych, wykªad 05a M. Czoków, J. Piersa Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika w Toruniu 2012-11-14 Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w
Wst p do sieci neuronowych, wykªad 4 Algorytm wstecznej propagacji bª du, cz. 1
Wst p do sieci neuronowych, wykªad 4, cz. 1 M. Czoków, J. Piersa, A. Rutkowski Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika w Toruniu 2018-10-28 Projekt pn. Wzmocnienie potencjaªu dydaktycznego
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Algorytm propagacji wstecznej
Algorytm propagacji wstecznej M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-16 Powtórzenie Architektury sieci Dlacezgo MLP? W sieciach
AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING
AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING Magdalena Wiercioch Uniwersytet Jagiello«ski 3 kwietnia 2014 Plan Uczenie gª bokie (deep learning) Auto-enkodery Rodzaje Zasada dziaªania Przykªady
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd.
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-23
Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe
Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby
Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek
Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Uczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Sztuczne siei neuronowe - wprowadzenie
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp
Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
Aproksymacja funkcji metod najmniejszych kwadratów
Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych
Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5 1 2 SZTUCZNE SIECI NEURONOWE cd 3 UCZENIE PERCEPTRONU: Pojedynczy neuron (lub 1 warstwa neuronów) typu percep- tronowego jest w stanie rozdzielić przestrzeń obsza-
Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
przewidywania zapotrzebowania na moc elektryczn
do Wykorzystanie do na moc elektryczn Instytut Techniki Cieplnej Politechnika Warszawska Slide 1 of 20 do Coraz bardziej popularne staj si zagadnienia zwi zane z prac ¹ródªa energii elektrycznej (i cieplnej)
Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Sieci Neuronowe Laboratorium 2
Sieci Neuronowe Zadania i problemy algorytmiczne dla sieci neuronowych, programowania logicznego i sztucznej inteligencji według zasad i kryteriów laboratoriów. pdf Laboratorium 2 Zapisać następujące stwierdzenia
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego
OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA:
METODY HEURYSTYCZNE wykład 4 OCENA DZIAŁANIA AE 1 2 LOSOWOŚĆ W AE Różne zachowanie algorytmuw poszczególnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych.
Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018
Wielomiany El»bieta Sadowska-Owczorz 19 listopada 2018 Wielomianem nazywamy wyra»enie postaci a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 = n a k x k. k=0 Funkcj wielomianow nazywamy funkcj W :
Sztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
Opis matematyczny ukªadów liniowych
Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór
Ekstremalnie fajne równania
Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci
c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach
12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa
Interpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia
wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i
Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9
Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s
SSI - lab 5. DP SSI - lab 5 16, Kwiecie«, / 23
SSI - lab 5 DP DP SSI - lab 5 16, Kwiecie«, 2018 1 / 23 Plan dzisiejszych zaj 1 Podªo»e biologiczne 2 Budowa i dziaªanie neuronów 3 Dziaªanie pami ci 4 Sztuczne sieci neuronowe 5 Uczenie sieci DP SSI -
Poprawa efektywnoci metody wstecznej propagacji bdu. Jacek Bartman
Poprawa efektywnoci metody wstecznej propagac bdu Algorytm wstecznej propagac bdu. Wygeneruj losowo wektory wag. 2. Podaj wybrany wzorzec na wejcie sieci. 3. Wyznacz odpowiedzi wszystkich neuronów wyjciowych
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Elementy Sztucznej Inteligencji
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe Plan Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie reguł delta Perceptron wielowarstwowy i jego uczenie
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne
Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )
Modele wielorównaniowe. Problem identykacji
Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
1 Granice funkcji wielu zmiennych.
AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java
J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,
sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski
sieci jednowarstwowe w ATLABie LABORKA Piotr Ciskowski trzy funkcje do obsługi sieci jednowarstwowej : init1.m - tworzy sieć, inicjuje wagi (losowo) dzialaj1.m symuluje działanie sieci (na pojedynczym
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec
Systemy agentowe Sieci neuronowe Jędrzej Potoniec Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku
Marcin Pełka Uniwersytet Ekonomiczny we Wrocławiu SIECI NEURONOWE DLA DANYCH SYMBOLICZNYCH: PERCEPTRON WIELOWARSTWOWY
Marcin Pełka Uniwersytet Ekonomiczny we Wrocławiu SIECI NEURONOWE DLA DANYCH SYMBOLICZNYCH: PERCEPTRON WIELOWARSTWOWY 1. Wstęp Jedną z najczęściej stosowanych struktur sieci neuropodobnych jest wielowarstwowa
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Algorytmiczna teoria grafów
18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych
Zbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
Obliczenia Naturalne - Sztuczne sieci neuronowe
Literatura Wprowadzenie Obliczenia Naturalne - Sztuczne sieci neuronowe Paweł Paduch Politechnika Świętokrzyska 13 marca 2014 Paweł Paduch Obliczenia Naturalne - Sztuczne sieci neuronowe 1 z 43 Plan wykładu
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
Przekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Wstęp do sztucznych sieci neuronowych
Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna
Elementy Sztucznej Inteligencji
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe wykład Elementy Sztucznej Inteligencji - wykład Plan Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie reguł
PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:
Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow
Sztuczna inteligencja
Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Podstawowe architektury
Interpolacja Lagrange'a, bazy wielomianów
Rozdziaª 4 Interpolacja Lagrange'a, bazy wielomianów W tym rozdziale zajmiemy si interpolacj wielomianow. Zadanie interpolacji wielomianowej polega na znalezieniu wielomianu stopnia nie wi kszego od n,
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław PŁACZEK* DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI W artykule
Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec
Systemy agentowe Sieci neuronowe Jędrzej Potoniec Złe wieści o teście To jest slajd, przy którym wygłaszam złe wieści. Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
6. Perceptron Rosenblatta
6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:
Funkcje wielu zmiennych
Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl
1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Rozdziaª 13. Przykªadowe projekty zaliczeniowe
Rozdziaª 13 Przykªadowe projekty zaliczeniowe W tej cz ±ci skryptu przedstawimy przykªady projektów na zaliczenia zaj z laboratorium komputerowego z matematyki obliczeniowej. Projekty mo»na potraktowa