Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa
|
|
- Adrian Krajewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017
2 kontakt, konsultacje, koordynator mail: konsultacje: ±roda, 13:30-14:30, 28 M strona na Niezb dniku: koordynator przedmiotu: dr Maria Ekes, maria.ekes@sgh.waw.pl Warunki zaliczenia (szczegóªy na Niezb dniku) 2 kolokwia, w ka»dym 5 zada«po 6 punktów zaliczenie wicze«(od 30 punktów) to warunek dopuszczenia do egzaminu egzamin: 5 zada«po 6 punktów plus punkty dodatkowe za zaliczone wiczenia: dst 0 punktów dst+ 1 punkt db 2 punkty db+ 3 punkty bdb 4 punkty Literatura Podr czniki obowi zkowe J. Kªopotowski, W. Marcinkowska-Lewandowska, M. Nykowska, I. Nykowski, Matematyka dla ekonomicznych studiów zaocznych i wieczorowych, Szkoªa Gªówna Handlowa w Warszawie M. D dys, S. Dorosiewicz, M. Ekes, J. Kªopotowski Matematyka. e-book, Szkoªa Gªówna Handlowa, platforma e-learningowa Podr czniki uzupeªniaj ce W. Dubnicki Matematyka. Denicje. Twierdzenia. Zadania, Wydawnictwo DRUKPOL S. Dorosiewicz, J. Kªopotowski, D. Koªatkowski Matematyka. Tom I, pod redakcj naukow S. Dorosiewicza, Szkoªa Gªówna Handlowa w Warszawie J. Laszuk Matematyka. Studium podstawowe, Ocyna Wydawnicza Szkoªy Gªównej Handlowej
3 Denicja Ci giem liczbowym nazywamy dowoln funkcj a : N R, gdzie N = {1, 2, 3,...} jest zbiorem liczb naturalnych, a R zbiorem liczb rzeczywistych. Warto± a n = a(n) nazywamy n-tym wyrazem ci gu. Ci g oznaczamy symbolem {a n : n N}, lub krócej (a n). Ci g naturalnych liczb nieparzystych mo»emy opisa : wymieniaj c kilka pocz tkowych wyrazów: 1, 3, 5, 7,..., podaj c wzór na n-ty wyraz ci gu: a n = 2n 1, n N, podaj c zale»no± rekurencyjn (tzn. odpowiedni liczb pocz tkowych wyrazów oraz ogóln zale»no± mi dzy wyrazem tego ci gu, a wyrazami go poprzedzaj cymi): a 1 = 1, a n+1 = a n + 2 dla n 1. Je»eli kapitaª pocz tkowy K zªo»ymy na n lat w banku, w którym oprocentowanie lokat wynosi p% w skali rocznej, to kapitaª ko«cowy K n wyra»a si wzorem: K n = K(1 + p 100 )n
4 Denicja Mówimy,»e (a n) jest ci giem rosn cym a n+1 > a n (a n+1 a n > 0), niemalej cym a n+1 a n, malej cym a n+1 < a n, nierosn cym a n+1 a n, staªym a n+1 = a n, Ci g maj cy jedn z wymienionych wªasno±ci nazywamy ci giem monotonicznym. Sprawdzimy, czy ci g o wyrazie ogólnym a n = 2n jest ci giem monotonicznym. n! W tym celu zbadamy znak wyra»enia dla n N. a n+1 a n
5 Denicja Mówimy,»e ci g (a n) jest ograniczony z góry ograniczony z doªu ograniczony a n M, M R a n m, m R m a n M. m,m R Zbadamy, czy ci g a n = 2n jest ograniczony. n! Denicja Mówimy,»e liczba g R jest granic (wªa±ciw ) ci gu (a n), je±li i piszemy a n g < ε ε>0 N ε N n>n ε an = g lub an g lub an g. n Je±li (a n) ma granic g R, to mówimy,»e jest zbie»ny do g. Je±li nie ma granicy (wªa±ciwej), mówimy,»e jest rozbie»ny.
6 Poka»emy z denicji,»e n 2 = 1. n Poka»emy,»e ci g a n = ( 1) n nie ma granicy. Twierdzenie Ci g zbie»ny ma dokªadnie jedn granic. Twierdzenie Ka»dy ci g zbie»ny jest ograniczony. Twierdzenie Ci g monotoniczny i ograniczony jest zbie»ny.
7 Twierdzenie (algebraiczne wªasno±ci granic wªa±ciwych) Je±li an = a oraz bn = b, gdzie a, b R, to (an ± bn) = a ± b, anbn = ab, a n = a, gdy b 0 i bn 0, b n b an = a. Twierdzenie (granice wybranych ci gów) a > 0 = n a = 1, n n = 1, an = 0 a < 1, a n > 0 an = a b > 0 = ban = b a an = a a > 0 = (an)α = a α
8 Denicja Mówimy,»e ci g (a n) ma granic niewªa±ciw + (odp. ), je±li a n > M (odp. a n < M) M R N M N n>n M i piszemy an = + (odp. ) lub an + (odp. ) lub an + n (odp. ). Je±li (a n) ma granic niewªa±ciw + (odp. ) to mówimy,»e jest rozbie»ny do + (odp. ). Wyka»emy,»e ci g o wyrazie ogólnym a n = 3n 4 jest rozbie»ny do. Dany jest ci g arytmetyczny (a n) o ró»nicy r R. Je±li r > 0, to a n. Je±li r < 0, to a n.
9 Twierdzenie (algebraiczne wªasno±ci granic niewªa±ciwych) Niech (a n) i (b n) b d ci gami liczbowymi. Je±li a n i b n, to a n + b n, a n b n ; je±li a n i b n, to a n + b n, a n b n ; je±li a n i b n, to a n b n, b n a n, a n b n ; a je±li a n a, gdzie a R i b n ±, to a n + b n ±, n 0; b n je±li a n a, gdzie a > 0 i b n ±, to je±li a n a, gdzie a < 0 i b n ±, to a n b n ± ; a n b n. Skrótowy zapis + =, =, + ( ) =, ( ) ( ) =, ( ) =, ( ) =, ( ) =, a + (± ) = ±, a ± = 0, 5 (± ) = ±, 1 (± ) =. 2
10 (y) n n [ 2n 1 = ] [ 1 ] = = 0 2(3 17n )(3 n 17) = [2 (3 )( 17) ] = [2 ( ) ] = [2 ] = 0. Twierdzenie (o trzech ci gach) Je±li zachodz warunki n>n 0 c n a n b n, cn = bn = g, to an = g. Obliczymy granice i cos( nπ) n n 2 n + 3 n + 5 n.
11 Symbole (wyra»enia) nieoznaczone (symbol [ 0 0 ] ) a n 0, b n 0, [ 0 0 a n b n [ 0 0 ] =? a n = 1 n 0, bn = 1 n 0, a n = 1 n 0, bn = 1 n 2 0, a n b n = 1 1, a n = n +, b n a n = ( 1)n 0, b n n = 1 n 0, a n = ( 1) b n - granica nie istnieje. n ] nazywamy symbolem nieoznaczonym. Symbole (wyra»enia) nieoznaczone [ ] [ + ] [ 0 0 ] [ ± ] ± [0 (± )] [1 ± ] [ 0] [0 0 ] (»e synbole nieoznaczone s nieoznaczone)
12 (wa»ny!) Rozwa»my ci g o wyrazie ogólnym a n = ( n ) n. Poka»emy,»e (a n) jest monotoniczny i ograniczony (a wi c zbie»ny). monotoniczno± : a n = ( n ) n = = ( n 0)( 1 n ) 0 + ( n 1)( 1 n ) 1 + ( n 2)( 1 n ) ( n n)( 1 n ) n = = 1 + n 1 n 1 + n(n 1) 2! n! n 2 n! 1 n n = = n (1 1 n 1 )...(1 ) n n. 2! n! a n+1 = ( ) n+1 n+1 = = ( n+1)( 1 ) 0 ( 0 n+1 + n+1 1 = 1 + (n + 1) 1 (n+1) 1 )( 1 n+1 + (n+1)n 2! ) 1 ( + n+1 )( 1 2 n+1 1 (n+1) 2 n 1 )...(1 n+1 n+1 ) = n (1 1 2! wyrazy sum otrzymujemy a n a n+1. ) 2 ( n+1 )( 1 n n (n+1)! (n+1)! 1 (n+1) n+1 = + (1 1 n+1 )...(1 n n+1 ) n! (n+1)! ) n ( + n+1 )( 1 ) n+1 n+1 n+1 =. Porównuj c kolejne
13 (c.d.) ograniczono± : z doªu: ci g (a n) jest niemalej cy, a wi c a n a 1 = 2 dla ka»dego n N, z góry: a n = n (1 1 n 1 )...(1 ) n n 2! n! ! + 1 3! n! n 1 = = ( 1 2 )n = 3. Granic ci gu ( n ) n nazywamy liczb Eulera i oznaczamy liter e ( 1 ) n 1 + = e = n Twierdzenie Je»eli an = lub an =, to (y) ( 1 ) an 1 + = e. a n
Matematyka. Justyna Winnicka. Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego.
Matematyka Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 2017/2018 kontakt, konsultacje, koordynator mail: justa kowalska@yahoo.com,
Bardziej szczegółowoZbiory ograniczone i kresy zbiorów
Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy
Bardziej szczegółowoOba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).
Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoFunkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)
Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem
Bardziej szczegółowo1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Bardziej szczegółowo1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Bardziej szczegółowoWYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Bardziej szczegółowoANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA 1 semestr zimowy 2015 dr Damian Wi±niewski, KAiRR Moje dane e-mail : dawi@matman.uwm.edu.pl www: http://wmii.uwm.edu.pl/ kairr/dawi godziny konsultacji : poniedziaªki 9:45-10:30, 12:45-14:00
Bardziej szczegółowoWykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Bardziej szczegółowoZdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy
Bardziej szczegółowoIndeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
Bardziej szczegółowoZbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
Bardziej szczegółowoCzym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,
Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym
Bardziej szczegółowoMacierze i Wyznaczniki
dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...
Bardziej szczegółowoMacierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
Bardziej szczegółowoMetodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
Bardziej szczegółowoMaksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,
VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si
Bardziej szczegółowoInformacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
Bardziej szczegółowoMatematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
Bardziej szczegółowoCiagi liczbowe wykład 4
Ciagi liczbowe wykład 4 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, r. akad. 2016/2017 Definicja (ciagu liczbowego) Ciagiem liczbowym nazywamy funkcję
Bardziej szczegółowoAnaliza matematyczna. 1. Ciągi
Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n
Bardziej szczegółowoMatematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
Bardziej szczegółowoa 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a
Bardziej szczegółowoZagadnienia na wej±ciówki z matematyki Technologia Chemiczna
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?
Bardziej szczegółowoMacierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Bardziej szczegółowoANALIZA MATEMATYCZNA. semestr zimowy dr Damian Wi±niewski, KAiRR
ANALIZA MATEMATYCZNA semestr zimowy 2015 dr Damian Wi±niewski, KAiRR Moje dane e-mail : dawi@matman.uwm.edu.pl www: http://wmii.uwm.edu.pl/ kairr/dawi godziny konsultacji : poniedziaªki 9:45-10:30, 12:45-14:00
Bardziej szczegółowoPochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +
Bardziej szczegółowo*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów
*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów
Bardziej szczegółowoMateriaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
Bardziej szczegółowoA = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Bardziej szczegółowoCAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016
WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego
Bardziej szczegółowoMetody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Bardziej szczegółowoWykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31
Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb
Bardziej szczegółowoWektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Bardziej szczegółowoMatematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie
Bardziej szczegółowoMatematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 3
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 3 Ciągi liczbowe Definicja Dowolną funkcję a: N R nazywamy ciągiem liczbowym. Uwaga Ze względu na tradycję tym
Bardziej szczegółowoFunkcje, wielomiany. Informacje pomocnicze
Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a
Bardziej szczegółowoStrategia czy intuicja?
Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),
Bardziej szczegółowoUkªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Bardziej szczegółowosin x 1+cos 2x. 3. Znajd¹ okres podstawowy funkcji: 6) f(x) = cos(4πx + 2), 8) f(x) = cos 2 x, 9) f(x) = tg πx 4) f 1 ([1, 9]), 5) f ([ 1, 1]),
WBiA In»ynieria rodowiska Matematyka wiczenia. Wyja±nij poj cia: funkcja dziedzina dziedzina naturalna przeciwdziedzina zbiór warto±ci iniekcja suriekcja bijekcja funkcja nie)rosn ca nie)malej ca wkl sªa
Bardziej szczegółowoTwierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Bardziej szczegółowoCiągi. Granica ciągu i granica funkcji.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na
Bardziej szczegółowoCiągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość
Bardziej szczegółowoJAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Bardziej szczegółowoWykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.
Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e
Bardziej szczegółowoMatematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.
Matematyka ZLic -. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Granica ciągu Ciąg a n ma granicę właściwą g R i piszemy jeśli lim n a n g lub a n g gdy n NN n N a n g
Bardziej szczegółowoPodstawy matematyki dla informatyków
Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru
Bardziej szczegółowoRozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Bardziej szczegółowoFunkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Bardziej szczegółowodet A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Bardziej szczegółowoWektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
Bardziej szczegółowoFunkcja. Poj cie funkcji i podstawowe wªasno±ci. Dziedzina
Poj cie unkcji i podstawowe wªasno±ci Alina Semrau-Giªka Uniwerstet Technoloiczno-Przrodnicz 30 stcznia 209 Funkcj ze zbioru X w zbiór Y nazwam odwzorowanie, które ka»demu elementowi ze zbioru X przporz
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoFinanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowo7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Bardziej szczegółowoFunkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu)
Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Denicja pochodnej Denicja. Niech : X R, X R oraz U(x 0, r) X dla pewnego r > 0. Ilorazem ró»nicowym unkcji
Bardziej szczegółowoElementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Bardziej szczegółowoTeoria grafów i jej zastosowania. 1 / 126
Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2
Bardziej szczegółowoWybrane poj cia i twierdzenia z wykªadu z teorii liczb
Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych
Bardziej szczegółowof(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:
Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci
Bardziej szczegółowoW poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji
W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt
Bardziej szczegółowoMaªgorzata Murat. Modele matematyczne.
WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia
Bardziej szczegółowoTw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.
Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic
Bardziej szczegółowoRelacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Bardziej szczegółowoŸ1 Oznaczenia, poj cia wst pne
Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.
Bardziej szczegółowoPodstawy logiki i teorii zbiorów wiczenia
Spis tre±ci 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Ró»nica symetryczna 4 5 Kwantykatory 5 6 Relacje 7 7 Relacje porz dku i równowa»no±ci 8 8 Funkcje
Bardziej szczegółowoRachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Bardziej szczegółowoPrzekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
Bardziej szczegółowoELEMENTARNA TEORIA LICZB. 1. Podzielno±
ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m
Bardziej szczegółowoRównania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
Bardziej szczegółowoWykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Bardziej szczegółowoLiczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:
Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór
Bardziej szczegółowoAnaliza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe
Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Bardziej szczegółowoEkstremalnie fajne równania
Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów
Bardziej szczegółowoLogika matematyczna (16) (JiNoI I)
Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 187857 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dane sa dwie
Bardziej szczegółowoc Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie
2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoMatematyka dyskretna dla informatyków
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne
Bardziej szczegółowoWykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27
Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim
Bardziej szczegółowoTreści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoAnaliza matematyczna dla informatyków Notatki z wykªadu. Maciej Paluszy«ski
Analiza matematyczna dla informatyków Notatki z wykªadu Maciej Paluszy«ski 7 grudnia 2007 Liczby rzeczywiste i zespolone Liczby rzeczywiste Nie b dziemy szczegóªowo zajmowa si konstrukcj zbioru liczb rzeczywistych.
Bardziej szczegółowoZagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr
Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr I. Wyrażenia wymierne: funkcja wymierna - Dziedzina wyrażenia wymiernego. - Skarcenie
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoElementy geometrii analitycznej w przestrzeni
Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoO pewnym zadaniu olimpijskim
O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby
Bardziej szczegółowoZadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość
Zadania z analizy matematycznej - sem II Funkcje ich granice i ciągłość Zadanie 1 Wyznaczyć i naszkicować dziedziny naturalne podanych funkcji: a f y = 2 y 3 25 2 +y 2 16 b g y = ln1 2 y 2 c h y = ln 2
Bardziej szczegółowoCiaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1
Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoI Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x
I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoPodzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska
Kombinatoryka Magdalena Lema«ska Zasady zaliczenia przedmiotu Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to 100 punktów = 100 procent. Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to
Bardziej szczegółowo1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:
ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +
Bardziej szczegółowop q, czyli p2 = 2q 2 gdzie p, q s wzgl dnie pierwsze. Mamy w takiej sytuacji trzy mo»liwo±ci: 2 = i) obie liczby p, q s nieparzyste;
Liczby rzeczywiste. Dlaczego nie wystarczaj liczby wymierne Analiza zajmuje si problemami, w których pojawia si przej±cie graniczne. Przykªadami takich problemów w matematyce b d¹ zyce mog by :. Poj cie
Bardziej szczegółowogranicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N
14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech
Bardziej szczegółowoZastosowania matematyki
Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent
Bardziej szczegółowoE-learning - matematyka - poziom rozszerzony. Granice ciągów. Materiały merytoryczne do kursu
E-learning - matematyka - poziom rozszerzony Granice ciągów Materiały merytoryczne do kursu N początku następnego: Przyjmiemy następujące oznaczenia: N - zbiór liczb naturalnych, N = {1, 2,..., }, Z -
Bardziej szczegółowo