TEORETYCZNE PODSTAWY METODY NEWTONA PRZYBLIŻONEGO ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "TEORETYCZNE PODSTAWY METODY NEWTONA PRZYBLIŻONEGO ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH"

Transkrypt

1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/2, 211, str TEORETYCZNE PODSTAWY METODY NEWTONA PRZYBLIŻONEGO ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Alesader Strasburger, Wacława Tempczy Katedra Zastosowań Matematyi, Szoła Główa Gospodarstwa Wiejsiego w Warszawie s: alesader_strasburger@sggw.pl; waclawa_tempczy@sggw.pl Streszczeie: Artyuł przedstawia podstawowe pojęcia teoretycze i sformułowaia leżące u podstaw wielowymiarowej metody Newtoa ostruowaia przybliżoych rozwiązań uładu rówań ieliiowych, a użytej w pracach [Strasburger i ii (29), Strasburger i ii (211)] dla modelowaia pewych aspetów teorii osumpcji. Metoda ta orzysta ze stosuowo prostych pojęć matematyczych i staowi bardzo elastycze arzędzie zarówo do rozważań teoretyczych ja i obliczeń umeryczych. Metoda ta z pewością zasługuje a to, by być lepiej zaą w społeczości eoomistów matematyczych. Słowa luczowe: wielowymiarowa metoda Newtoa, metoda olejych przybliżeń, aprosymacja umerycza. WSTĘP W opubliowaych iedawo dwóch pracach [Strasburger i i. 29, Strasburger i i. 211] jede z autorów (A.S.) razem z A. Zembrzusim przedstawili umerycze symulacje pewych zagadień teorii osumpcji, oparte a wyorzystaiu wielowymiarowej metody Newtoa rozwiązywaia rówań ieliiowych. Jedaże w pracach tych acis był położoy a procedurę obliczeiową, atomiast teoretycze podstawy samej metody Newtoa ie zostały tam omówioe. Obecy artyuł ma charater przeglądowy i jego zamierzeiem jest opisaie podstaw tej metody i przedstawieie waruów umożliwiających jej zastosowaie.

2 358 Alesader Strasburger, Wacława Tempczy Metoda Newtoa (azywaa czasami metodą Newtoa-Raphsoa) polega a ostruowaiu przybliżoych rozwiązań rówaia f ( =, gdzie f ( jest zadaą fucją jedej zmieej, algebraiczą lub awet trascedetą. Metoda ta jest podawaa w więszości podręcziów aalizy matematyczej. Pomimo że jest oa względie prostym zastosowaiem podstawowych idei aalizy, jest oa jedocześie metodą bardzo suteczą i mającą wiele zastosowań. Mówiąc w srócie, metoda polega a iteracyjej ostrucji ciągu ( x ) przybliżeń tego pierwiasta za pomocą astępującej procedury: w ażdym rou ostrucji fucję f ( zastępujemy przez jej liiowe przybliżeie l ( = a x + b ze środiem w pucie x będącym atualym przybliżeiem, a jao astępe przybliżeie x + 1 pierwiasta rówaia f ( =, obieramy pierwiaste rówaia l ( =. Mówiąc doładiej, przypomijmy, że dla różiczowalej fucji f ( jej liiowe przybliżeie ze środiem w pucie x dae jest wzorem l( = f ( + f '( ( x (1) gdzie f ' ozacza pochodą fucji f. Ciąg olejych przybliżeń rozwiązaia zaday jest przez wybór początowej wartości x za pomocą reurecyjej formuły 1 x+ 1 = x f ( x ) (2) f '( x ) Jest oczywiste, że fucja f musi spełiać odpowiedie warui, aby ciąg iteracji był oreśloy i zbieży do pierwiasta rówaia f ( =. Możliwych jest wiele wyborów waruów zapewiających tę zbieżość podamy sformułowaie zaczerpięte z podręczia [Walter 1992]. Twierdzeie 1 [Walter (1992)] Załóżmy, że fucja f jest oreśloa i trzyrotie różiczowala w sposób ciągły a przedziale [ a, b] osi rzeczywistej. Jeżeli pochoda f '( ie zia a przedziale [ a, b] i pierwiaste ξ rówaia f ( = jest zawarty wewątrz przedziału [ a, b], to ciąg iteracji ( x ) jest zbieży do pierwiasta ξ iezależie od wyboru putu początowego x z pewego otoczeia putu ξ. Kwestią szczególej wagi, ie wspomiaą w tym sformułowaiu, jest wybór dopuszczalej iteracji początowej, gwaratujący zbieżość ciągu iteracji. Późiej odiesiemy się do tego problemu ieco szerzej.

3 Teoretycze podstawy metody Newtoa 359 Na zaończeie tych wstępych rozważań dodajmy uwagę o szybiej zbieżości metody Newtoa w porówaiu z iymi metodami przybliżoymi. Jest to osewecją wadratowego oszacowaia dla błędu przybliżeia, 2 ξ x + 1 cost ξ x tóre wyia po iesompliowaych rachuach ze wzoru (2). Doładość, o tórej mowa, moża zaobserwować a załączoym rysuu, tóry przedstawia 3 ila początowych przybliżeń pierwiasta rówaia x 2x 5 =, tóre było rozpatrywae przez samego Newtoa w ieopubliowaym ręopisie datowaym a 1669 r. 3 Rysue 1 Ilustracja olejych przybliżeń pierwiasta rówaia x 2x 5 = 12 1 x,f x stycza 2 x1,f x1 stycza1,x2,x1,x x Źródło: obliczeia włase w programie Mathematica ver. 5. WIELOWYMIAROWA METODA NEWTONA Samo sformułowaie problemu w przypadu wielowymiarowym iewiele się różi od przypadu jedowymiarowego. Przy daym uładzie fucji zależych

4 36 Alesader Strasburger, Wacława Tempczy od zmieych, φ ( x, x2, x ), i = 1, i 1, poszuiway jest tai put ( x 1, x2,..., ), że ażda z fucji przyjmuje w tym pucie wartość, φ i ( x1, x2,..., ) =, i = 1,2, 3) Użycie w tym miejscu odpowiediej termiologii, bazującej a pojęciu fucji przyjmującej wartości w przestrzei, pozwala sformułować problem w sposób formalie idetyczy, co w przypadu jedowymiarowym. Wprowadźmy w tym celu odwzorowaie (fucję o wartościach wetorowych) Φ : zdefiiowae wzorem φ1( x1, x2, ) ϕ1( Φ( x1, x2, ) = =, ( 1, 2,, ) ( ) φ x x ϕ x gdzie x = x, x,... x ) ( 1 2 Wówczas powiedzieć, że ( x 1, x2,..., ) jest wspólym miejscem zerowym uładu rówań (3) ozacza doładie tyle, co powiedzieć, że w tym pucie fucja Φ przyjmuje wartość (oczywiście, tutaj ). Szuać pierwiasta czy putu stałego? Pratycze zastosowaia, szczególie w problemach eoomiczych, prowadzą częściej do zagadieia wyzaczeia putu stałego odwzorowaia iż do problemu wyzaczeia pierwiasta rówaia. Z tego względu orzystiej zastąpić problem poszuiwaia pierwiasta rówaia (uładu rówań) przez rówoważy mu problem wyzaczaia putu stałego odpowiediego odwzorowaia, tym bardziej, że to podejście stawia do dyspozycji poaźy zapas efetywych arzędzi wypracowaych w teorii putów stałych, w szczególości ta dopasowaych do stosowaia metod umeryczych, ja metoda olejych przybliżeń. W dalszej dysusji będziemy używać astępującej termiologii w odiesieiu do odwzorowaia Φ : U U : Putem stałym Φ azywa się tai put ξ U, że Φ ( ξ ) = ξ. Dla dowolej liczby aturalej > 1 -rote złożeie Φ = Φ Φ... Φ odwzorowaia Φ azywamy iteracją stopia. W teorii uładów dyamiczych ciąg x o elemetach oreśloych reurecyjie przez zadaie jaiegoś elemetu początowego x U i przyjęcie 1 x = Φ( x ) = Φ ( x ) dla aturalych 1, azywa się orbitą putu x

5 Teoretycze podstawy metody Newtoa 361 używaa jest też azwa ciąg iteroway o pierwszym elemecie (lub początowej iteracji) x. Będziemy mówili, że odwzorowaieφ jest otracją (odwzorowaiem zbliżającym) ze współczyiiem α, gdzie 1 > α jest stałą, jeśli dla wszystich putów x, y U zachodzi ierówość Φ( Φ( y) α x y Łatwo zauważyć, że dowola otracja ie może mieć dwóch różych putów stałych, a zae twierdzeie Baacha o odwzorowaiach zbliżających podaje warue dostateczy istieia putu stałego. Dla aszej aalizy wystarczający jest astępujący szczególy przypade tego twierdzeia. Twierdzeie 2. Niech U będzie zbiorem domiętym oraz Φ : U U otracją ze współczyiiem α, α < 1. W zbiorze U istieje doładie jede put stałyξ odwzorowaia Φ i jest o graicą orbity dowolego putu x U, Iaczej mówiąc, dla dowolego putu x U ciąg iteracji o elemecie początowym x i wyrazach oreśloych zależością + 1 x = Φ( x ), =,1, jest zbieży do putu stałego ξ odwzorowaia Φ, lim x = ξ. Szybość zbiegaia ciągu iteracji ( x ) do graicy moża oszacować za pomocą ierówości ( α ) 1 x ξ x x x x (4) 1 α 1 α Wielowymiarowa metoda Newtoa w pigułce Przypomijmy w tym miejscu elemety współczesej otacji rachuu różiczowego wielu zmieych, tóra sprawia, że zapis metody Newtoa w przypadu wielowymiarowym prawie ie odbiega od sposobu zapisu w przypadu jedowymiarowym. Jeśli x = ( x1, x2, ) jest wetorem przestrzei wymiarowej, (we wzorach zapisujemy wetory w postaci wetora olumowego) i Φ : U U jest odwzorowaiem o ciągłych pochodych cząstowych, to symbolem Φ '( ozaczaa jest pochoda (macierz Jacobiego pochodych cząstowych odwzorowaia Φ ). Stosując dla pochodych cząstowych srótowe ozaczeie ϕ j i ϕ j ( = (, gdzie i, j = 1,2,, xi zapisujemy pochodą odwzorowaia Φ w postaci astępującej macierzy (macierzy Jacobiego)

6 362 Alesader Strasburger, Wacława Tempczy 1ϕ 1(... ϕ1( Φ'( = 1ϕ (... ϕ ( Dla ozaczeia iloczyu macierzy i wetora olumowego a ogół ie będziemy używać specjalego symbolu, a jedyie w przypadach wątpliwych będziemy rozdzielać je ropą jao zaiem możeia. Jeśli Φ' ( jest macierzą odwracalą, tj. det( Φ'( x )), to macierz do iej odwrotą ozaczamy 1 symbolem ( Φ'( x )). Załóżmy teraz, że pochoda Φ '( jest odwracala a zbiorze U. Wówczas odwzorowaie 1 Ψ : x x ( Φ'( ) Φ( (IN) jest dobrze oreśloe, a rówaie dla putu stałego tego odwzorowaia jest rówoważe rówaiu Φ( x ) = dla pierwiastów Φ, czyli wspólych miejsc zerowych uładu rówań (3). W te sposób problem wyzaczeia pierwiastów uładu ieliiowych rówań (3) zostaje sprowadzoy do problemu wyzaczeia putów stałych odwzorowaia Ψ oreśloego powyżej. Możliwość zastosowaia przedstawioego powyżej twierdzeia o pucie stałym otracji do rozważaego problemu wyzaczeia pierwiasta rówaia Φ( = zależy od dwóch czyiów: wyboru iezmieiczej dziedziy dla odwzorowaia Ψ ; wyazaia dość przecież restrytywego założeia o zbliżaiu dla Ψ. Te pierwszy wymaga oreśleia, dzięi umiejętemu wyborowi lub odpowiediej ostrucji, domiętego zbioru U, taiego, że Ψ ( U ) U, gdyż tylo wtedy moża uruchomić procedurę reurecyją. Iaczej mówiąc, przy taim założeiu moża w dowolym rou iteracji, wychodząc od sostruowaego już -tego elemetu ciągu x, oreślić astępy elemet ciągu wzorem x = Ψ( x ) = x ( Φ'( x )) Φ( x ). Te drugi warue zależy od aalityczych własości odwzorowaia Φ, tóre są iejao dae z góry w sformułowaiu zadaia i tórymi ie daje się maipulować trzeba je przyjąć z dobrodziejstwem iwetarza. W pratyce rzado się zdarza, aby bez dodatowych zabiegów warui te były spełioe oba a raz, lub awet jede z ich. Dlatego dostępe w literaturze przedmiotu rezultaty dotyczące wielowymiarowej metody Newtoa mają przeważie loaly charater i zapewiają zbieżość ciągu Newtoa jedyie pod waruiem odpowiediego wyboru putu początowego ciągu iteracji. Dodatowe utrudieie, szczególie ze względu a oszt umeryczych obliczeń, przyosi oieczość wyzaczaia pochodej Φ '( x ) przy ażdym olejym rou

7 Teoretycze podstawy metody Newtoa 363 iteracji. Dlatego często stosuje się ta zwaą modyfiowaą metodę Newtoa, w tórej zastępuje się we wzorze (IN) zależą od putu pochodą Φ '( przez stałą macierz J = Φ' ( rówą pochodej obliczoej w odpowiedio dobraym pucie x. Przytoczymy tu sformułowaie oparte a dysusji z moografii [Walter 1992] i [Strag 1986]. Twierdzeie 3. Niech x U będzie ta dobraym putem, że macierz J = Φ' ( jest odwracala. Niech dalej odwzorowaie Ψ : x x J Φ( 1 będzie otracją ze współczyiiem α = w otwartej uli K r ( U o środu 2 1 w x i promieiu r. Jeśli J Φ( < r, to odwzorowaie Φ ma w uli K r ( 2 doładie jede pierwiaste ξ. Ciąg iteracyjy Newtoa + 1 x = Ψ( x ) = x J Φ( x ), =,1,2, jest dobrze oreśloy dla dowolego putu początowego x Kr ( i zbiega do pierwiasta ξ rówaia Φ( x ) =, lim x = ξ. BIBLIOGRAFIA Dude H. (211) Sale ewiwaletości estymacja a podstawie ompletych modeli popytu, Wydawictwo SGGW, Warszawa. Kelley C. T. (23) Solvig oliear equatios with Newto s method, SIAM, Philadelphia. Kratz S. G., Pars H. R. (22) The Implicit Fuctio Theorem: History, Theory, ad Applicatios, Birhäuser, Bosto. Pae E. (2) Eoomia matematycza, Aademia Eoomicza w Pozaiu, Pozań. Strag, G. (1986) Itroductio to Applied Mathematics, Wellesley-Cambridge Press, Wellesley. Strasburger A., Zembrzusi A. (29) O applicatio of Newto's method to solve optimizatio problems i the cosumer ad productio theories, Polish J. of Evirometal Studies, 29, Vol. 18, 5B, pp Strasburger A., Zembrzusi A. (211) O applicatio of Newto s method to solve optimizatio problems i the cosumer theory. Expasio s paths ad Egel curves Metody Ilościowe w Badaiach Eoomiczych, No 1, pp Walter, W., (1991), Aalysis 1 & 2 (w jęz. iemiecim), Grudwisse Mathemati, Spriger Verlag, Berli.

8 364 Alesader Strasburger, Wacława Tempczy ON THEORETICAL FOUNDATIONS OF NEWTON S METHOD OF SOLVING NONLINEAR EQUATIONS Abstract: The paper surveys basic theoretical cocepts ad formulatios uderlyig the multidimesioal Newto s method of costructig approximate solutios to systems of oliear equatios., which was used i the papers [Strasburger et al. (29), Strasburger et al. (211)] for modelig certai aspects of cosumer s theory. This method is based o relatively simple mathematical cocepts ad is a very flexible tool for both theoretical argumets as well as for umerical computatios. It certaily deserves to be better ow i the commuity of mathematical ecoomists. Key words: multidimesioal Newto s method, method of successive approximatios, umerical approximatios

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Metoda najszybszego spadku

Metoda najszybszego spadku Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

WYKŁAD 1 INTERPOLACJA WIELOMIANOWA

WYKŁAD 1 INTERPOLACJA WIELOMIANOWA WYKŁAD INTERPOLACJA WIELOMIANOWA /6 Sformułowaie problemu iterpolaci. Metoda Lagrage a Rozważmy zaday uład putów {(, y ),,,..., }, zwaych dale węzłami iterpolacyymi. Poszuuemy wielomiau iterpolacyego zadaego

Bardziej szczegółowo

Zajęcia nr. 2 notatki

Zajęcia nr. 2 notatki Zajęcia r otati wietia 5 Wzory srócoego możeia W rozdziale tym podamy ila wzorów tóre ułatwiają obliczaie wielu zadań rachuowych Fat (wzory srócoego możeia) Dla dowolych liczb rzeczywistych a, b zachodzi:

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

INDUKCJA MATEMATYCZNA

INDUKCJA MATEMATYCZNA MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia

Bardziej szczegółowo

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli. KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a,, a będą dowolymi liczbami Sumę a + a + + a zapisuje się zazwyczaj w postaci (czytaj: suma od do a ) Za Σ to duża greca litera sigma,

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

APROKSYMACJA PRZY POMOCY OPERATORÓW BERNSTEINA

APROKSYMACJA PRZY POMOCY OPERATORÓW BERNSTEINA ISBN 978-83-94287-1- PORTAL CZM 215 APROKSYMACJA PRZY POMOCY OPERATORÓW BERNSTEINA BARBARA WOLNIK I JACEK GULGOWSKI STRESZCZENIE. W iiejszym artyule przedstawiamy wybrae własości aprosymacyje wielomiaów

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

x R, (1) Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci

x R, (1) Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci Metody rozwiązywaia rówań ieliiowyc i ic układów Rozwiązywaie rówań ieliiowyc Ogólie rówaie o jedej iewiadomej moża przedstawić w postaci 0 R gdzie jest wystarczająco regularą ukcją. Naszym celem ie jest

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego

1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego WYKŁD 4 3 Przestrzei Odwzorowaia Rząd acierzy Twierdzeie Croecera- Capellego 3 Przestrzeń Przestrzeń wetorowa Baza przestrzei wetorowej 78 (Przestrzeń ) Niech ozacza zbiór wszystich ciągów -eleetowych

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Problem. Jak praktycznie badać jednostajną ciągłość funkcji?

Problem. Jak praktycznie badać jednostajną ciągłość funkcji? EAIiIB-Iormatya - Wyład 3- dr Adam Ćmiel miel@.agh.edu.pl Ciągłość uji w puie e. Fuję : azywamy iągłą w puie jeżeli Heie Cauhy Uwaga: Put ale ie musi być putem supieia zbioru. Jeżeli jest putem izolowaym

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Fraktale - ciąg g dalszy

Fraktale - ciąg g dalszy Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 4 Rozwiązywanie równań nieliniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykład 4 Rozwiązywanie równań nieliniowych. Karol Tarnowski A-1 p. Aaliza umerycza Kurs INP002009W Wykład 4 Rozwiązywaie rówań ieliiowych Karol Tarowski karol.tarowski@pwr.wroc.pl A-1 p.223 Pla wykładu Metoda bisekcji Algorytm Aaliza błędu Metoda Newtoa Algorytm Aaliza

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M) Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Badanie stabilności układu sterowania statkiem z nieliniowym autopilotem

Badanie stabilności układu sterowania statkiem z nieliniowym autopilotem Baaie stabilości ułau sterowaia statiem z ieliiowym autopilotem Zliearyzowae rówaie wiążące ochyleie ursu statu (zmiaę ąta ursu wzglęem ursu zaaego) ψ z ątem wychyleia steru δ jest astępujące (tzw. moel

Bardziej szczegółowo

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego. Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik Opracował: Roma Szatai Rozład Poissoa I. Cel ćwiczeia Zapozaie ze statystyczym sposobem opisu zagadień związaych z promieiowaiem jądrowym oraz z rozładami statystyczymi stosowaymi w fizyce jądrowej. Pratycze

Bardziej szczegółowo

MOTYWACJA. x x x e x x x , sin( ) 0, 4 tan ( ) 0

MOTYWACJA. x x x e x x x , sin( ) 0, 4 tan ( ) 0 WYKŁAD 4 PODSTAWOWE METODY PRZYBLIŻONEGO ROZWIĄZYWANIA NIELINIOWYCH RÓWNAŃ ALGEBRAICZNYCH MOTYWACJA Wykład r 4 jest poświęcoy omówieiu elemetarych algorytmów wyzaczaia przybliżoych rozwiązań (pierwiastków)

Bardziej szczegółowo

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18 dr Aa Barbaszewska-Wiśiowska ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 17/18 1 Elemety logiki matematyczej Zdaia i formy zdaiowe fuktory zdaiotwórcze Tautologie Wartości logicze

Bardziej szczegółowo

Wykład 3 : Podstawowe prawa, twierdzenia i reguły Teorii Obwodów

Wykład 3 : Podstawowe prawa, twierdzenia i reguły Teorii Obwodów OBWODY SYNAŁY Wyład 3 : Podstawowe prawa, twierdzeia i reguły Teorii Obwodów 3. PODSTAWOWE PAWA TWEDZENA TEO OBWODÓW 3.. SCHEMAT DEOWY OBWOD Schematem ideowym obwodu (siecią) azywamy graficze przedstawieie

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11 Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19 47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9

Bardziej szczegółowo

Wiadowmości wstępne z rachunku prawdopodobieństwa

Wiadowmości wstępne z rachunku prawdopodobieństwa Biotechologia, Chemia, Chemia Budowlaa - Wydział Chemiczy - 1 Wiadowmości wstępe z rachuu prawdopodobieństwa Zdecydowaa więszość procesów fizyczych, techiczych, społeczych, eoomiczych itp, przebiega w

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo