Matematyka Lista 1 1. Matematyka. Lista Zapisać bez użycia symbolu wartości bezwzględnej a) 1 3, b) x + y, c) x + 1 x + 2 x 2 dla 1 x 2, x

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka Lista 1 1. Matematyka. Lista Zapisać bez użycia symbolu wartości bezwzględnej a) 1 3, b) x + y, c) x + 1 x + 2 x 2 dla 1 x 2, x"

Transkrypt

1 Matematyka Lista 1 1 Matematyka Lista 1 1. Zapisać bez użycia symbolu wartości bezwzględnej a) 1 b) + y c) dla 1 2 d) 8 e) + 1 f) Korzystając z geometrycznej interpretacji wartości bezwzględnej zaznaczyć na osi liczbowej zbiory punktów spełniających podany warunek. Zapisać rozwiązanie równania lub nierówności. a) + 4 = 2 b) 2 > 1 c) 6 2 d) + 2 = e) + > 1 f) + 6 = 1 g) = h) 5 + < 5 i) > 4.. Korzystając z geometrycznej interpretacji wartości bezwzględnej zapisać podane zbiory punktów przy pomocy. a) {4 18} b) {1 + + } c) < < d) e) ( 4) (10 + ) f) ( 2 [ ). 4. Wykazać że dla dowolnych a b R zachodzi nierówność trójkąta a + b a + b. 5. Rozwiązać równania lub nierówności a) + 2 = + 2 b) = 5 c) + 1 = d) 2 < e) 6 f) > Sprowadzić funkcje kwadratowe do postaci kanonicznej i postaci iloczynowej (jeżeli istnieje) oraz naszkicować ich wykresy: a) 2 + b) c) d) e) f) Dla jakich wartości parametru m funkcja f() = (m ) 2 + (m ) + m 2 a) jest funkcją liniową. Dla tej wartości m narysować wykres f() b) jest funkcją kwadratową mającą jeden pierwiastek. Dla znalezionej wartości m narysować wykres f() c) ma największą wartość dodatnią. 8. Dla jakich wartości parametru m funkcja f() = m m : a) ma miejsce zerowe b) ma dwa miejsca zerowe różnych znaków c) ma dwa miejsca zerowe dodatnie d) ma najmniejszą wartość będącą liczba dodatnią. 9. Określić liczbę g(m) punktów wspólnych prostej y = m i krzywej y = (m + 1) 2 + (2 m) 2 w zależności od parametru m. Narysować wykres funkcji g(m).

2 Matematyka Lista Wyznaczyć współczynniki i określić stopień funkcji wielomianowych: a) ( 4 + 1)( 2 + 4) b) y = ( )( 2) 2 c) W () = ( + 2) ( 1) 2 d) y = ( + 1) 2 (2 + ) Obliczyć iloraz i resztę z dzielenia wielomianu P przez wielomian Q: a) P () = Q () = b) P () = Q () = c) P () = Q () = ( 1). 12. Dla jakiej wartości parametru a reszta z dzielenia wielomianu W () = 2 + (a 2 + 1) 2 (a + 2) 6 przez dwumian Q() = + jest możliwie najmniejsza. 1. Znaleźć wszystkie pierwiastki całkowite podanych wielomianów: a) b) c) d) Znaleźć wszystkie pierwiastki wymierne podanych wielomianów: a) b) c) d) Podane wielomiany przedstawić w postaci iloczynu nierozkładalnych czynników: a) b) c) d) Rozwiązać równania: a) 2 = 0 b) = 0 c) = 0 d) = 0 e) 2 + = + 1 f) 2 = Rozwiązać nierówności: a) < 4 b) > 0 c) (1 2 )( ) 0 d) e) 2 < 2 f) 2 + > Rozwiązać równania: a) = b) = c) = d) + a + a = Rozwiązać nierówności: d) a) ( 1)2 ( + 1) 0 b) ( + 1) e) 2 5 < 2 c) < + 1 f) 2 1 2

3 Matematyka Lista 1 g) < 1 h) < i) < Przeprowadzić dyskusję istnienia rozwiązań równania i ich liczby w zależności od parametrów a i b: a) a + b = 2 b) 1 + b = a. 21. Uzasadnić że żadna liczba całkowita nie spełnia nierówności 22. Narysować wykresy funkcji: < a) f() = 6 2 b) f() = 6 c) f() = d) f() = e) f() = 2 + 1/( 1) f) f() = (2 )/( + 1) g) f() = 1/ h) f() = 2 i) f() = sgn( 1) j) f() = sgn( 2 ). Uwaga: funkcja sgn() (znak ) przyjmuje wartość +1 dla > 0 0 dla = 0 i 1 dla < 0.

4 Matematyka Lista 2 4 Matematyka Lista 2 1. Obliczyć lub uprościć zapis (zapisać jako potęgę): ( ) Która z liczb jest większa: 2 czy 2?. Rozwiązać równania wykładnicze: (a) = (b) = (c) = 128 (d) ( ) 2 (81 ) = (e) = 24 (f) ( ) 1 1 = Rozwiązać nierówności: (a) 4 2 < 9 2 (b) (c) > 0 (d) (e) 4 +8 < 6 2 (f) Dla jakich wyrażenie 1/(2 + 2 ) przyjmuje wartości z przedziału ( 1 2/5)? 6. Obliczyć lub uprościć: log 1 6 log log5 9 log 5 log log log ( ) 1 e ln 2 2 log 6 2+log 6 18 log 2 log 9 2 ln 2+log 2 e log 1 +log 2 4 +log 8. (Uwaga: e jest liczbą Eulera (Napiera); ln = log e ) 7. Która z liczb jest większa: log 2 a czy log a? 8. Częstość występowania określonej pierwszej cyfry w wielu rzeczywistych danych statystycznych wykazuje regularność nazywaną prawem Benforda. Prawdopodobieństwo wystąpienia cyfry k k = to P k = log 10 ((k + 1)/k). Rozkład Benforda jest stosowany do sprawdzania poprawności zeznań podatkowych bądź defraudacji gdyż ludzie wpisując liczby tak żeby wydawały się przypadkowe nie są świadomi że pewne cyfry występują częściej na pierwszej pozycji. ( Wyznacz częstotliwości występowania cyfr na pierwszej pozycji sugerowane przez prawo Benforda. 9. Jaki dochód przyniesie po 4 latach lokata w wysokości 1000 zł oprocentowana w wysokości 6% rocznie jeżeli odsetki dopisywane są raz w roku? O ile zmieni się dochód jeżeli kapitalizacja jest miesięczna?

5 Matematyka Lista Nominalne oprocentowanie lokaty wynosi 6% w stosunku rocznym. Jakie jest oprocentowanie efektywne jeżeli odsetki dopisywane są co miesiąc? 11. Wpłacasz do banku 100 zł w formie lokaty długoterminowej ze stałym oprocentowaniem 6% w stosunku rocznym. Po jakim czasie wartość lokaty przekroczy 1000 zł gdy odsetki dopisywane są: (a) raz w roku (b) co miesiąc. 12. Oprocentowanie lokaty wynosi r 100% w stosunku rocznym. Wyznaczyć efektywne oprocentowanie lokaty rocznej przy kapitalizacji: (a) miesięcznej (b) dziennej (c) n razy w roku w równych odstępach czasu. 1. Rozwiązać równania: (a) log (+1) = 2 (b) ln 2 + ln = 4 (c) log 2 +log 8 = 12 (d) log 5 + log 5 ( + 5) = 2 + log 5 2 (e) log 2 log = Rozwiązać nierówności: (a) log < 1 (b) log 1 2 (c) log 2 2 log 2 2 (d) log log 1 ( 1) log 1 6 (e) log 9 2 log + 1 > 0 (f) log 2 ( 1) 2 log( 1) > 0 (g) log 2 < Dla jakich wartości m równanie log 0.5 m = 0 ma dwa różne pierwiastki. 16. Rozwiązać układy: { 2 log log (a) y = 2 10 y = { { y = 6 (b) log y = 16 (c) y = 9 y = log Naszkicować wykresy funkcji: (a) y = (b) y = 2 (c) y = 2 + (d) y = 2 2 (e) y = log ( 1) (f) y = ln (g) y = log 2 (2) (h) y = log Czym różnią się wykresy funkcji y = log 2 i y = 2 log? Wskazówki i odpowiedzi do zadań. a) 8/11 b) 1 c) 1/2 d) 2 2 e) 2 f) 1/5. 4. d) e) (1 2) f) [1 ) (1.06) (1.005) [(1.005) %. 11. a) l: 100 (1.06) l > 1000 b) m: 100 (1.005) m > a) (1 + r/12) 12 1 b) (1 + r/65) 65 1 c) (1 + r/n) n a) 8 b) e 4 e c) 2 9 d) 5 e) 8 1/ a) (0 1/ ) b) 1/4 c) (0 1) d) e) ( 2 1). 16. a) = y = 1 lub = 6 y = 4 b) = 9 y = 4 lub = 4 y = 9 c) = y = 2 lub = 1/9 y = 1.

6 Matematyka Lista 6 1. Dla następujących macierzy: A = [ Matematyka Lista [ B = C = wykonać te działania A + B A C 2A B A B + C AC CA A T C T A C T C T B T (A T + C) T (C B T )A ABC ACB CA T B które są poprawne. 2. Znaleźć metodą Gaussa macierze odwrotne do podanych (sprawdź czy AA 1 = I): [ (a) (b) 9 4 (c) Rozwiązać równania macierzowe: [ [ (a) X = 4 4 ([ 1 0 (c) + 4X) = 5 2 [ (b) [ [ (d) X+ [ 1 X [ = 2 2 [ 5 6 = 7 8 X. 4. Rozwiązać układy metodą macierzy odwrotnej: (a) 2 y = + y = 2 (b) + 2y = 0 2 y = 5 (c) + y + z = y + z = + 2y + z = 1 (d) + y + z = 4 2 y + 5z = 5 + 2y z = Traktując P = [ y T jako punkt na płaszczyźnie R 2 zinterpretować geometrycznie rozwiązanie układów z zadania 4 a) i b). 6. Wykorzystując rozważania z zadania 5 uzasadnij ile rozwiązań może mieć układ A k2 X 21 = B k1 dla k = Jeśli P 1 = [ 1 y 1 T jest punktem płaszczyzny R 2 a A jest macierzą stopnia 2 to P 2 = A P 1 jest punktem P 2 = [ 2 y 2 T płaszczyzny R 2 - obrazem punktu P 1 w tym przekształceniu. Dla macierzy A (a) [ (b) [ (c) [ a) Wyznacz obrazy kilku punktów na płaszczyźnie. Czy widzisz jakąś regularność? b) Sprawdź co jest obrazem prostej w tym przekształceniu (tzn. jeśli punkty P 1 wypełniają prostą to jaką linię tworzą ich obrazy P 2?). c) Czy jest możliwe aby obrazem prostej była ta sama prosta? d) Czy to przekształcenie ma punkty stałe (tzn. takie że P 2 =P 1 czyli gdy punkt pokrywa się ze swoim obrazem)?.

7 Matematyka Lista 7 8. Układy równań z zadania 4 rozwiązać metodą eliminacji Gaussa. 9. Rozwiązać układy równań liniowych metodą eliminacji Gaussa. + 2y + z = 1 (a) 2 + y + z = + y + 2z = 2 (g) (c) (d) (e) (f) (b) + 2y + z = y z = 7 y + z = 2 + 4y + z + 2t = 6 + 8y + 2z + 5t = y + z + 10t = 1 5y + 2z + 4t = 2 7 4y + z + t = y 4z 6t = 2y + 5z + 4t = 2 6 4y + 4z + t = 9 6y + z + 2t = 4 + 2y + 2z + 2t = y + 2z + 5t = 9 + y + 4z 5t = y + z + 4t = y + 6z t = 7 2 y + z + 2t + u = 2 6 y + 2z + 4t + 5u = 6 y + 4z + 8t + 1u = 9 4 2y + z + t + 2u = 1.

8 Matematyka lista 4 8 Matematyka Lista 4 1. Podać wyraz a a n+1 a 2n gdy: (a) a n = n2 n + 1 (b) a n = ( 1) n+1 2. Zbadać monotoniczność ciągu: ( ) n 2 (c) a n = 1 n n + 1 2n. (a) a n = 2n + 7 (b) b n = ( 1) n n (c) c n = 1 2/n.. Wyznaczyć wyraz ogólny ciągu arytmetycznego oraz sumę S 20 dwudziestu początkowych wyrazów gdy: (a) a = a 12 = 21 (b) a 1 + a 2 + a = 18 a a a 2 = Obliczyć sumę wszystkich liczb trzycyfrowych podzielnych przez. 5. Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny. Długość najkrótszego boku jest równa p. Obliczyć pole tego trójkąta pole koła opisanego na tym trójkącie oraz pole koła wpisanego w ten trójkąt. 6. Wyznaczyć wyraz ogólny ciągu geometrycznego oraz sumę S 20 dwudziestu początkowych wyrazów gdy: (a) a = 54 a 6 = 2 (b) iloraz q = 1/2 oraz S 7 = 127/ Zamienić na ułamek zwykły (a) (b) Rozwiązać równanie = 1/2. 9. W okrąg o promieniu r wpisujemy kwadrat. W ten kwadrat wpisujemy okrąg. Powtarzamy tę operację uzyskując nieskończony ciąg okręgów i kwadratów. Obliczyć sumę pól tych kwadratów. 10. Obliczyć granice ciągów: (a) a n = 2n2 n + 1 n n (b) b n = n6 n 2 n 7 + (c) c n = n4 n + 2 2n + (d) d n = n n 2 1 (f) f n = n + 2 n n 2 n (g) g n = (e) e n = n( n n) ( 1 1 n ( n) n (h) h n = (i) i n = n n (j) j n = 1 n n n n (k) k n = n n + 2 n (l) l n = 1 n n n 2 + n. 11. Oprocentowanie lokaty wynosi r 100% w stosunku rocznym. Wyznaczyć efektywne oprocentowanie lokaty rocznej przy kapitalizacji ciągłej (graniczny przypadek kapitalizacji n razy w roku w równych odstępach czasu gdy n ). Jakie jest efektywne oprocentowanie po czasie t lat (t 0) przy kapitalizacji ciągłej?

9 Matematyka lista Obliczyć granice przy + oraz przy dla funkcji f(): (a) (b) (c) + 1 (d) + 1 (e) 2 ( 2 + 1)( + ) (f) (g) Obliczyć (gdy istnieją) granice: 2 9 (a) lim + 1 (b) lim (c) lim 1 1 (d) lim Na stożku o promieniu podstawy r i wysokości opisano kulę. Niech R() oznacza jej promień. Obliczyć granicę lim 0+ R() lim R(). Czy można podać te granice nie wyznaczając funkcji R()? 15. Wyznaczyć wszystkie asymptoty funkcji: (a) y = (b) y = (c) y = (d) y = 16. Zbadać ciągłość funkcji: (a) f() = 2 (b) f() = 2 2 ( 1)( ). 17. Dobrać parametry a b R tak aby podana funkcja f() była ciągła: 1 1. (a) f() = { b + : < a : 1 (b) f() = { : a + b : > Wykazać że każde z poniższych równań ma pierwiastek: (a) + = (b) + = (dokładnie jeden) (c) + = (d) + 2 = (dokładnie trzy). 19. Uzasadnić że równanie 4 + = 5 ma dokładnie jeden pierwiastek dodatni. Obliczyć na kalkulatorze ten pierwiastek z dokładnością Wskazówki i odpowiedzi do zadań 2. a) b) nie monoton. c).. a) a 1 = 1 r = 2 b) r = 2 a 1 = 4 lub r = 2 a 1 = S 00 = (( )/2)00 = p 2 / 5p/6 p/. 6. a) a 1 = 486 q = 1/ b) a 1 = a) 17/9 b) 1/ = 1/ r a) 2 b) 0 c) + d) 0 e) 1 f) 1 g) e 2 h) 1/e i) 1/4 j) 1/2 k) l) e r 1; e rt a) + b) 0 + c) 0 0 d) 1 1 e) 1 1 f) 1 1 g) 2/9 2/9. 1. a) 6 b) /2 c) 1/2 d) nie istnieje a) y = 2 w ± = 0 b) y = 1 w ± = 2 = 2 c) y = w ± = 2 d) y = 1 w ± = 0 lewostr. 17. a) b = a b) a = 1 b = 1.

10 Matematyka lista 5 10 Matematyka Lista 5 1. Znaleźć przyrost y funkcji y = 2 /2 przy = 2 zakładając przyrost zmiennej niezależnej równy (a) 0.5 (b) 0.2. Wykonać odpowiedni rysunek. 2. Wyznaczyć przyrost y i iloraz różnicowy y/ odpowiadające przyrostowi argumentu dla funkcji: (a) y = a+b (b) y = 1/(2+1). Wyznaczyć pochodną funkcji y = y() jako granicę ilorazu różnicowego.. Obliczyć pochodne funkcji: (a) y = a + b + c (b) y = (c) y = 2 (d) y = 5 2 (e) y = (f) ( 2) ln (g) y = 1 (h) y = e (i) (ln e ) (j) 2 ln e + (k) y = 2 4 ( (l) v = (4z 2 5z+1) 5 (m) s = 2 7t 2 4 ) 6 t + 6 (n) y = 5e 2 (o) y = 5 +2 (p) y = (r) y = ln ln (s) s = ln 1 + t 1 t 4. (a) W jakim punkcie styczna do linii y = ( 8)/( + 1) tworzy z osią O kąt równy połowie kąta prostego? (b) Znaleźć na linii y = e punkt w którym styczna jest równoległa do prostej y + 7 = 0. (c) Jaki związek powinien zachodzić pomiędzy współczynnikami równania paraboli y = 2 + p + q aby ta parabola była styczna do osi odciętych? (d) W jakim punkcie krzywej logarytmicznej y = ln styczna jest równoległa do prostej y = 2? 5. Korzystając z różniczki obliczyć przybliżoną wartość: (a) 6 (b) e 0.07 (c) 1.98 (d) ln Wykazać prawdziwość nierówności: (a) > ln(1 + ) > 0 (b) e Wyznaczyć przedziały monotoniczności funkcji: (a) y = ( 2 ) (b) y = /(1 + 2 ) (c) y = Wyznaczyć przedziały wypukłości wklęsłości oraz punkty przegięcia funkcji: (a) y = 2 (b) y = /(1 + 2 ) (c) y = e (d) y = + 1/.

11 Matematyka lista Znaleźć ekstrema lokalne funkcji: (a) y = (b) y = 1 (c) y = Znaleźć największą i najmniejszą wartość funkcji w przedziale: (a) y = w [ 2 2 (b) y = w [ Zbadać przebieg zmienności funkcji: (a) y = (b) y = 2 2 ln (c) y =. 12. Liczbę 20 rozłożyć na sumę takich dwóch składników dodatnich których suma kwadratów jest najmniejsza. 1. W kulę o promieniu R wpisano walec. Obliczyć przy jakiej wartości promienia r podstawy walca pole jego powierzchni bocznej S będzie największe. Wskazówki i odpowiedzi do zadań. a) a 2 b/ 2 b) c) 9/( 2) 2 d) 2/(5 5 ) e) 2/( 1) 2 f) ( 2)/ + ln g) 1/(( ) 2 (1 ) 2 ) h) 2 ( + )e i) (ln e )/( 2 ) + (1/ e ) j) ((2 1/)(e + ) ( 2 ln )(e + 1))/(e + ) 2 k) / 2 4 l) 5(4z 2 5z + 1)(8z 5) m) 12(7t 2 4/t + 6) 5 (14t+4/t 2 ) n) 10e 2t o) 5 ln 5+2 ln 2 p) ( ln ) + 2 r) (1/ ln ) (1/) s) 1/(1 t 2 ). 4. a) ( 4 4) lub (2 2) b) (0 1) c) y = 0 y = 0: p 2 +4q = 2 d) (2 ln 2). 5. a) 4 1/48 b) c) 1/2+1/800 d) a) Niech f() = ln(1 + ) dla [0 ); f () = /(1 + ) > 0 dla > 0 czyli f() rosnąca na [0 ); f(0) = 0 więc f() > 0 dla > 0. b) Niech f() = e ( + 1) dla R; f () = e 1 stąd f() malejąca na ( 0 i rosnąca na [0 ); f min = f(0) = 0 więc f() 0 dla R. 7. a) : [0 1 : > 1 b) : [ 1 1 : na < 1 i na > 1 c) : na ( 2 i na ( 2 ) : [ a) : (1 ) : ( 1) pp: = 1 b) : ( 0) : (0 ) pp: = a) y ma = y( 6) y min = y( 2) b) y ma = y(2/) c) y min = y( 1) y min = y(1). 10. a) ma: y( 2) = y(2) = 1 min: y( 1) = y(1) = 4 b) ma: y() = 10 min: y(1) = ; wyznaczyć jako wartość największą odpowiedniej funkcji. 1. S = 4πr R 2 r 2 osiąga ma dla r = R/ 2.

12 Matematyka lista 6 12 Matematyka Lista 6 1. Obliczyć całki nieoznaczone: (a) ( +2 1)d (b) ( 1)( 2)d (d) d (e) d (f) (h) ( ) 2 2 d (i) d (j) (c) d (g) + d d e 2 5 d. 2. Obliczyć całki całkując przez części: (a) e d (b) ln d (c) 2 e d (d) ln d (e) ln d (f) 2 ln d (g) ln d (h) (ln ) 2 d.. Obliczyć całki całkując przez podstawienie: (a) a d (b) (5 ) 10 d (c) + b d (d) e 2 d (e) d (f) ln 2 d (g) ln d. 4. Obliczyć całki oznaczone: (a) d (b) 1 1 ( + 1)d (c) 2 1 d. 5. Wyznaczyć wzór na prędkość v(t) i drogę s(t) w ruchu prostoliniowym ze stałym przyspieszeniem a(t) = a gdy v(0) = v 0 i s(0) = s Obliczyć całki stosując podstawienie: (a) 4 0 d 1 + = t2 (b) d (c) 2 d Obliczyć całkując przez części: (a) 2 0 e d (b) e ln d (c) e 1 ( ) 2 ln d. 8. Obliczyć pole obszaru ograniczonego (a) parabolą y = 2 2 i prostą + y = 0 (b) parabolami y = 2 y 2 = (c) krzywą y = ln osią 0 i prostą = e

13 Matematyka lista 6 1 (d) krzywą y = (1 2 )5 i osiami układu (e) krzywymi y = 4/ y = y = 4 (f) krzywymi y = 1 2y 4 = 0 y = W jakim stosunku parabola y 2 = 2 dzieli pole koła 2 + y 2 8? 10. Punkt materialny o masie m porusza się po linii prostej z prędkością v = (12t t 2 ) m/s. Jaką drogę przebędzie ten punkt od chwili początkowej do chwili gdy prędkość będzie 0? Wskazówki i odpowiedzi do zadań 1. a) (/4) 4 + (4/) + c b) 4 / c c) ln / + c d) 6 ln + c; e) arctg + c g) (1/) ln( + 8) + c h) 81/5 5 18/ / c i) /8 8 6/ a) e ( + 1)/ + c b) ln + c c) 2 (2 ln 1)/4 + c d) (1 + ln )/ + c e) arctg (1/2) ln( 2 +1)+c f) (ln ) 2 2 ln +2+c.. a) e 2 /2+c b) (5 ) 11 /+c c) ( 2 + 1) /+c d) (ln ) 2 /2+c e) (1/2)arctg( 2 )+c f) 2( a + b) /b + c. 4. a) 2 (2 ln 7)/ b) 2 c) 5/2. 5. v(t) = at + v 0 s(t) = at 2 /2 + v 0 t + s a) 4 2 ln c) 1/2. 7. a) 1 /e 2 c) 2 5/e. 8. a) 9/2 b) 1/ c) 1 d) 1/. 10. s = 12 0 (12t t2 )dt = 288 m.

14 Matematyka lista 7 14 Matematyka Lista 7 1. Zbadać przekroje wykresów funkcji z = z( y) i na tej podstawie naszkicować te wykresy: (a) + 2y + z 6 = 0 (b) z 2 = 2 + y 2 (c) z = 2 + y 2 (d) z = y. 2. Obliczyć pochodne cząstkowe rzędu pierwszego i drugiego funkcji: (a) z = y (b) z = e y (c) z = 2 y + ln(y).. Znaleźć ekstrema lokalne funkcji z = z( y): (a) z = 2 + y + y 2 2 y (b) z = y 2 (6 y). 4. Znaleźć maksimum funkcji (funkcji produkcji Cobba-Douglasa) u( y) = y = 1/2 y 1/2 opisującej wartość produkcji w przypadku gdy wielkości i y spełniają warunek 7 + y = Znaleźć najmniejsze i największe wartości funkcji z = z( y) w podanym obszarze: (a) z = 2 + 2y 4 + 8y w obszarze D : y 2 (b) z = + y 2 2y 1 w obszarze D : 0 y 0 + y 1 (c) z = 2 y + y 2 w obszarze D : + y Wyznaczyć odległość punktu A = (0 0) od powierzchni y = z. 7. Liczbę dodatnią a przedstawić w postaci sumy takich trzech liczb dodatnich aby ich iloczyn był największy. 8. Prostopadłościenny magazyn ma mieć objętość V = 64 m. Do budowy ścian magazynu używane są płyty w cenie 0 zł/m 2 do budowy podłogi w cenie 40 zł/m 2 a sufitu 20 zł/m 2. Znaleźć długość a szerokość b i wysokość c magazynu którego koszt budowy będzie najmniejszy. 9. Całkowity roczny dochód ze sprzedaży dwóch towarów wyraża funkcja D( y) = y 8y 2 gdzie i y oznaczają ilość sprzedanych w ciągu roku sztuk każdego z towarów. Koszt produkcji sztuk towaru pierwszego i y sztuk towaru drugiego jest następujący: K( y) = y 2 + 2y. Wyznaczyć ilość sztuk każdego z towarów wyprodukowanych i sprzedanych dla których osiągany jest maksymalny zysk. Podać wartość tego zysku oraz wartość odpowiadającego mu kosztu i dochodu. 10. Dysponując budżetem w wysokości 4 mln zł wyznaczyć jakie kwoty należy przeznaczyć na surowce i y aby uzyskać minimalne koszty produkcji określone zależnością f( y) = 2 + y 2 y Rozdzielić dzienną produkcję energii 100 MWh między dwie elektrownie tak by dzienne koszty zużycia paliwa opisane funkcją: f( y) = 2( 1) 2 + (y ) 2 gdzie oznacza zużycie paliwa w elektrowni I y - zużycie paliwa w elektrowni II było możliwie najniższe. Wiadomo ponadto że z 1 tony paliwa w elektrowni I uzyskuje się 5 MWh energii a w elektroniw II - MWh. Podać dzienne koszty zużycia paliwa w obu tych elektrowniach.

15 Matematyka lista 7 15 Wskazówki i odpowiedzi do zadań 1. a) płaszczyzna; b) stożek; c) paraboloida obrotowa; d) siodło. 2. a) z = y z y = z y = z y = 1 z = z yy = 0; b) z = (y + 1)e y z y = 2 e y z y = z y = (2 + 2 y)e y z = (2y + y 2 )e y z yy = e y ; c) z = 2y+1/ z y = 2 +1/y z y = z y = 2 z = 2y 1/ 2 z yy = 1/y 2.. a) z min = z(1 0) = 1; b) z ma = z( 2) = a) 17; b) 4 1; c) a/ + a/ + a/. 8. a = b = c = = 20 y = = y = = 11 y = 15.

Matematyka Lista 1 1. Matematyka. Lista 1

Matematyka Lista 1 1. Matematyka. Lista 1 Matematyka Lista 1 1 Matematyka Lista 1 1. Sprowadzić funkcje kwadratowe do postaci iloczynowej (jeżeli istnieje) i postaci kanonicznej oraz naszkicować ich wykresy: a) 2 + b) 2 2 + 1 c) 2 + 2 d) 2 + +

Bardziej szczegółowo

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę):

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę): Matematyka Lista 1 1 Matematyka Lista 1 1. Obliczyć lub uprościć zapis (zapisać jako potęgę): 3 3 3 ( ) 1 4 2 5 8 3 100 3 2 4 1 3 4 2 4 9 1 3 3 9 3. 5 2. Rozwiązać równania i nierówności: 4 2x+1 = 8 5x

Bardziej szczegółowo

WSTĘP DO ANALIZY I ALGEBRY, MAT1460

WSTĘP DO ANALIZY I ALGEBRY, MAT1460 WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III A LP

Wymagania edukacyjne z matematyki w klasie III A LP Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza II

Model odpowiedzi i schemat oceniania do arkusza II Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x . Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Egzamin wstępny z Matematyki 1 lipca 2011 r.

Egzamin wstępny z Matematyki 1 lipca 2011 r. Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4 Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny. Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny Zestaw I 1) Przedstaw i omów postać kanoniczną i iloczynową funkcjikwadratowej Daną funkcję przedstaw w postaci kanonicznej: y = ( )(

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka poziom ROZSZERZONY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

1 Wyrażenia potęgowe i logarytmiczne.

1 Wyrażenia potęgowe i logarytmiczne. Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n

Bardziej szczegółowo

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1 KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)). MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),

Bardziej szczegółowo

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y= Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo