R o z d z i a ł 1 PRZEDMIOT I METODOLOGIA FIZYKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "R o z d z i a ł 1 PRZEDMIOT I METODOLOGIA FIZYKI"

Transkrypt

1 R o d i ł 1 PRZEDMIOT I METODOLOGIA FIZYKI 1.1. Predmiot i podił fiki Od njdwniejsch csów cłowiek oserwuje i d różnorodne jwisk prrod str się je roumieć i wkorstć or nleźć prw które nimi rądą. Fik jest jedną nuk prrodnicch. Grecki wr phsis onc prrodę i w pierwotnm nceniu pre fikę roumino w ogóle nukę o prrodie. Nstępnie oddielono od niej niektóre dił które stworł wodręnione nuki np. chemię or te które są wnikiem specjlnch dń lu dń specjlnch oiektów np. stronomię geologię itp. W oecnm nceniu fik jest nuką o ogólnch prwch prrod nieożwionej i jej jwiskch pr cm cechmi odróżnijącmi ją od innch głęi prrodonwstw są rdiej metod dni niż sm predmiot dni. Woec olrmiej ilości jwisk które d fik podielono ją n nstępujące cęści oejmujące odręne gdnieni: mechnikę cli nukę o równowde i ruchu cił; kustkę nukę o jwiskch głosowch; termodnmikę nukę o jwiskch cieplnch; optkę nukę o jwiskch świetlnch i promieniowniu; elektrcność i mgnetm nukę o jwiskch elektrcnch i mgnetcnch or tomistkę nukę o udowie mterii i energii jądrowej. 5

2 1.. Wielkości ficne i ich pomir. Jednostki mir. Ukłd SI. Wżną rolę w dniu jwisk ficnch odgrwją wielkości ficne które umożliwiją ilościowe dni tch jwisk. Wielkościmi ficnmi nwm te włsności cił np. długość ojętość ciężr lu cech chrkterstcne jwisk np. cs ilość ciepł prędkość które możn mierć. Mierenie lo pomir jkiejkolwiek wielkości ficnej poleg n porównniu jej wielkością tego smego rodju prjętą umownie jednostkę mir to nc n określeniu ile r wielkość mieron jest mniejs lu więks od prjętej jednostki. Ocwiście porównwć możn tlko wielkości tego smego rodju wne jednorodnmi np. długość długością ciężr ciężrem itp. nie możn ntomist porównć długości i sił lu ciężru i ms. Pomir określonej wielkości ficnej może ć dokonn pośrednictwem innch wielkości; np. prędkość możn mierć mierąc pretą drogę i cs prcę mierąc siłę i długość presunięci jej punktu prłożeni itp. Spotk się również tkie wielkości ficne które wrżją się stosunkiem wielkości jednorodnch tm smm jednostki ich nie mją żdnego wmiru lu też wmir ich może ć trktown jko równ jedności (np. wdłużenie wględne cli stosunek prrostu długości do długości pocątkowej). Wielkości tkie nw się ewmirowmi i wrż się licą oderwną cli smą wrtością licową. Mierenie wielkości ficnch pociąg soą koniecność ustleni jednostek mir. Dokonując preglądu jednostek służącch do wrżeni powsechnie nnch wielkości ficnch np. tkich jk długość ms ciśnienie łtwo możn się prekonć że w tej diedinie istnieje jesce dowolność. Tk np. w Europie do wrżeni długości stosuje się około dwudiestu różnch jednostek do wrżeni ms jesce więcej. W wniku rku unifikcji powstł w presłości różne ukłd jednostek (np. CGS MKSA elektrosttcn CGS elektromgnetcn CGS technicn i inne). Wielkim krokiem npród w diedinie unifikcji jednostek mir ło proponownie w roku 1960 pre XI Generlną konferencję Mir jednolitego międnrodowego ukłdu jednostek mir wnego ukłdem SI (Sstème Interntionl d Unitès). Zlet tego ukłdu wiążą się nie tlko jego międnrodowm chrkterem. Ukłd ten jest tk pomśln że może ć stosown do wrżni prwie wsstkich wielkości w różnch diedinch wied: m on tem wżną cechę uniwerslności. 6

3 Tel 1.1. Wielkości podstwowe i uupełnijące ukłdu SI Wielkość Jednostk ukłdu SI Nw Oncenie A. Wielkości podstwowe długość ms cs ntężenie prądu elektrcnego tempertur termodnmicn świtłość B. Wielkości uupełnijące kąt płski kąt rłow metr kilogrm sekund mper Kelvin kndel rdin sterdin m kg s A K cd rd sr Ukłd SI opier się n seściu wielkościch podstwowch i dwóch uupełnijącch. Pierwsą grupę tch wielkości stnowią: długość ms cs ntężenie prądu elektrcnego tempertur or świtłość. Do grup drugiej nleżą: kąt płski i kąt rłow. W teli 1.1 podne jest estwienie wsstkich wmienionch wielkości (które dlej ędiem nwli owmi) wr ich jednostkmi mir w ukłdie SI i smolmi. Niżej estwiono definicje wsstkich jednostek podstwowch i uupełnijącch ukłdu SI. Metr jest długością równą długości fli w próżni ściśle określonego promieniowni monochromtcnego o rwie pomrńcowej emitownego pre iotop krptonu 86. Kilogrm jest msą międnrodowego worc prechowwnego w Międnrodowm Biure Mir w Sèvres pod Prżem. Sekund jest 1/ cęścią roku wrotnikowego Amper jest ntężeniem nie mienijącego się prądu elektrcnego któr płnąc w dwóch równoległch prostoliniowch nieskońcenie długich prewodch o prekroju okrągłm nikomo młm umiesconm w próżni w odległości jednego metr jeden od drugiego wwołuje międ tmi prewodmi siłę równą 10-7 niuton n kżd metr długości prewodu. 7

4 Kelwin jest jednostką tempertur termodnmicnej w skli w której tempertur punktu potrójnego (punkt potrójn odpowid stnowi równowgi międ fą stłą ciekłą i gową) wod jest równ dokłdnie 7316 K. 5 Kndel jest świtłością któr m w kierunku prostopdłm pole równe 1 10 m 6 powierchni cił doskonle crnego promieniującego w temperture krepnięci pltn pod ciśnieniem N/m. Rdin jest to jednostk mir łukowej kąt płskiego równ stosunkowi łuku l do promieni tego łuku r (rs.1.1): l α = r Rs.1.1. Łukow jednostk mir kąt płskiego. Słownie definicj rdin (rd) rmi: Rdin jest to kąt płski wrt międ dwom promienimi koł wcinjącmi jego okręgu łuk o długości równej promieniowi tego koł. Międ mirą kąt w rdinch jego mirą w stopnich chodi wiąek Z tego wiąku njdujem α π o α 180 ( rd) = ( stopnie) 1rd = o = o Kąt pełn wnosi π rd kąt półpełn π rd kąt prost π/ rd. Sterdin. Kąt rłow jest to cęść prestreni ogrnicon powierchnią stożkową. Jeżeli e środk pewnej powierchni kulistej o promieniu r poprowdim powierchnię stożkową wcinjącą cęść kuli o powierchni S to powierchni t ogrnic kąt rłow Ω równ stosunkowi powierchni S do kwdrtu promieni r (rs.1.): S Ω = r Jednostką mir kąt rłowego jest sterdin (sr). Jego definicj rmi: 8

5 Sterdin jest kątem rłowm o wierchołku w środku kuli wcinjącm jej powierchni cęść równą powierchni kwdrtu o oku równm promieniu tej kuli. Rs.1.. Jednostk mir kąt rłowego. Pełn kąt rłow wnosi 4π sr kąt półpełn π sr. Zrówno rdin jk i sterdin są jednostkmi ewmirowmi. Jednostki mir dielim pondto n jednostki główne i wtórne. W dnm ukłdie jednostek mir jednostkmi głównmi są jednostki podstwowe tego ukłdu or te jednostek pochodnch które wnikją epośrednio równń definicjnch. W ukłdie SI jednostkmi głównmi są np. m kg sek m/sek m N (niuton) = kg m/sek itp. Jednostkmi wtórnmi nwm jednostki stnowiące dowolne wielokrotności jednostek głównch np. 1 km = 1000 m 1 mm = 0001 m 1 min=60 sek itp. Tel 1.. Predrostki określjące krotności jednostek w ukłdie diesiętnm Predrostek ter gig meg kilo hekto dek dec cent mili mikro nn piko femto tto Oncenie T G M k h d d c m µ n p f Wielokrotność lu podwielokrotność

6 1.3. Podstwowe widomości o wektorch. Wielkości ficne dielim n wielkości kierunkowe (wektorowe) wne w skrócie wektormi i wielkości ekierunkowe wne sklrmi. Podcs opiswni wielkości wektorowch powinn ć podwn ich ewględn wrtość licow wn też modułem kierunek wrot i punkt prłożeni. Innmi słow wielkość wektorową możn predstwić geometrcnie jko odcinek skierown tj. odcinek leżąc n określonej prostej mjąc określon pocątek i koniec ( więc określon wrot) jk również określoną długość wrżjącą w pewnej skli ewględną wrtość dnego wektor (rs.1.3.). Prkłdowmi wielkościmi wektorowmi są: sił prędkość prspiesenie itp. Rs.1.3. Definicj wektor Sklrmi są wielkości którch opis ogrnic się do podni wrtości licowej. Do sklrów licm np.: cs temperturę prcę energię łdunek elektrcn itp. Ter prpomnijm krótko podstwowe diłni wkonwne n wektorch. Pr dodwniu wektorów stosuje się tw. sdę równoległooku (rs.1.4). Wektor c odpowidjąc prekątnej równoległooku udownego n wektorch i jest sumą geometrcną cli wpdkową wektorów i. Rs.1.4. Dodwnie wektorów Odejmownie wektorów i możn sprowdić do dodwni (rs.1.5). Do wektor dodjem wektor tn. wektor co do wrtości równ lec o wrocie preciwnm. Wektor - m swój pocątek w punkcie A i odpowid prekątnej równoległooku udownego w wektorch i. Z tego smego rsunku widć że pre 10

7 epośrednie połącenie końców wektorów i wprowdonch e wspólnego punktu A i ncenie wrotów do odjemnej otrmujem również wektor równ co do wrtości tlko równolegle presunięt. Rs.1.5. Odejmownie wektorów Mnożenie wektor pre sklr n dje w wniku now wektor n o wrtości licowej n r powięksonej i o wrocie godnm lu preciwnm wględem wektor leżnie od tego c sklr n jest dodtni c też ujemn. Pr mnożeniu wektor pre wektor roróżnim ilocn sklrn i ilocn wektorow. Ilocn sklrn wektorów i oncm smolicnie. Ilocn sklrn dwóch wektorów jest sklrem którego wrtość licow wrż się ilocnem wrtości licowch dnch wektorów pre cosinus kąt wrtego międ nimi cli = cos α. (1.1) Jk widć rs.1.6. OC = cosα jest utem wektor n kierunek wektor. A tem wrtość licow ilocnu sklrnego równ się ilocnowi wrtości jednego wektorów pre rut n niego wektor drugiego. Z mnożeniem sklrnm wektorów mm do cnieni w fice np. pr prc. Ilocn wektorow wektorów i oncm smolicnie. Ilocn wektorow jest nowm wektorem (rs.1.7). = c o określonej umownie wrtości licowej i kierunku. Wrtość licow wektor c cli c równ się: c = sin α (1.) gdie α jest kątem utworonm pre kierunki wektorów i. 11

8 Posługując się rs.1.7 łtwo możn stwierdić że ilocn sinα wrż pole równoległooku OBDA utworonego n wektorch i. Rs.1.6. Ilustrcj ilocnu sklrnego = cos α Rs.1.7. Ilustrcj ilocnu wektorowego c = Punkt prłożeni wektor c pokrw się pocątkmi wektorów i. Kierunek jego jest prostopdł do płscn wierjącej wektor i. Zwrot wektor c jest określon regułą śru prwoskrętnej wną również regułą korkociągu. Korkociąg ustwim prostopdle do płscn wektorów i opierjąc jego ostre w punkcie O. Rąckę korkociągu ustwim równolegle do pierwsego wektor wmienionego w ilocnie wektorowm więc w nsm prkłdie do wektor. Orcm rąckę tk po skręceniu o kąt mniejs od 180 o (w nsm prpdku o kąt α ncon n rs.1.7) jęł on położenie równoległe do wektor. Podcs tego orotu ostre korkociągu presuw się w określonm kierunku któr umownie prjęto wrot wektor c. Tk np. jeśli n rs.1.7 wektor i leż w płscźnie poiomej to podcs orotu ostre korkociągu presuw się w kierunku pionowm w górę. Tki też jest kierunek i wrot wektor c. Zmin kolejności wektorów w ilocnie wektorowm nie mieni jego wrtości licowej lec mieni wrot. Innmi słow =. Pojęcie ilocnu wektorowego spotkm wielokrotnie w kursie fiki. Wmienim dl prkłdu moment sił moment pędu c siłę elektrodnmicną itp. W prostokątnm ukłdie współrędnch (rs.1.8) wektor możem predstwić pomocą jego rutów n osie współrędnch prostokątnch (O). Niech długości tch rutów ędą odpowiednio i (rs.1.8). 1

9 13 Rs.1.8. Wersor osi k j i w prostokątnm ukłdie współrędnch Wprowdźm wektor jednostkowe k j i odpowiednio w kierunku osi. Wted wektor może ć predstwion jko sum wektorów skłdowch k. j i = (1.3) Oncjąc skłdowe wektor o kierunkch trech osi współrędnch (rs.1.9) odpowiednio pre k j i = = = otrmm pis skrócon. = Rs.1.9. Wektor = w prostokątnm ukłdie współrędnch W ukłdie (0) godnie (1.3) wektor i możem pisć: [ ] k j i = = (1.4) [ ] k j i = = (1.5)

10 Wted moduł = i = olicon woru Pitgors = = dodwnie i odejmownie wektorów = = [ ] [ ] (1.6) (1.7) mnożenie wektor pre sklr n [ n n n ] n = (1.8) ilocn sklrn = cos α = (1.9) ilocn wektorow i j k c = = = ( ) i ( ) j ( )k (1.10) różnickownie wektor () t = [ ( t) ( t) ( t) ] d() t d ( ) d ( t) t d ( t) = (1.11) dt dt dt dt 1.4. Podstwowe widomości rchunku różnickowego i cłkowego Pochodn funkcji. Pochodną funkcji f ( ) 0. = w punkcie o nwm grnicę iloru różnicowego pr ( ) f ( ) df f o o = f ( ) = lim (1.1) d 0 Wrżenie df = f d nw się różnicką funkcji f() ś d różnicką rgumentu. Olicnie pochodnej nwm różnickowniem. N prkłd = s ( to ) = ds / dt pochodn drogi po csie jest prędkością chwilową w momencie t o. ϑ : 14

11 Pochodn funkcji m prostą interpretcję geometrcną. Pochodn funkcji w dnm punkcie jest równ tngensowi kąt nchleni stcnej do wkresu funkcji w tm punkcie do osi : tg α = f ( ) o. (Ptr rs.1.10). Rs Interpretcj geometrcn pochodnej. Podstwowe włsności pochodnej [ f ( α) ] = αf ( ) [ f ( ) g( ) ] = f ( ) g ( ) [ f ( ) g( ) ] = f ( ) g ( ) f ( ) g ( ) [ f ( ) / g( ) ] = [ f ( ) g ( ) f ( ) g ( ) ] g ( ) [ f ( ) ( g( ) )] f ( ) g ( ) =. Pochodne niektórch funkcji elementrnch ( ) = 0 n n 1 ( ) = n ( e ) = e ( ) = ln( ) ( ln( ) ) = 1/ Ekstremum funkcji ( sin( ) ) = cos( ) ( cos( ) ) = sin( ) ( tg( ) ) = 1/ cos ( ) ( ctg( ) ) = 1/ sin ( ) ( rc sin( ) ) = 1 1 Funkcj = f () osiąg w punkcie o ekstremum gd ( ) 0 f o =. Cłką nieonconą funkcji f() nwm sumę funkcji pierwotnej F() tj. tkiej funkcji że ( ) f ( ) F = or dowolnej stłej C i oncm smolem ( ) d = F( ) C f (1.13) 15

12 Olicnie funkcji pierwotnej nwm cłkowniem. Podstwowe prw rchunku cłkowego [ f ( ) g( ) ] d f ( ) d g( )d f ( ) d f ( ) = = d ( ) d f ( g( t) ) g ( t) f = d - cłkownie pre podstwinie ( ) g ( ) d f ( ) g( ) f ( ) g( ) f = d - cłkownie pre cęści Cłki niektórch funkcji elementrnch n 1 n 1 d = C n 1 pr ( n 1) ; d cos ( ) = tg ( ) C 1 d = ln C; d = ln C n e d = e C; d sin ( ) = ctg ( ) C d sin 1 cos ( ) d = cos( ) C; = rc sin( ) C d 1 ( ) d = sin( ) C; = rc tg( ) C 1 sin = 4 ( ) d = sin( ) C; cos ( ) d sin ( ) C ( ) d = sin( ) cos( ) C; cos( ) d = cos( ) sin( ) C sin d 1 1 d = ln C; = C gdie Cłką onconą f() w grnicch od do nwm grnicę sum f ( i ) i i są prediłmi n które podielono predił () ntomist δn jest m ( i ) n i= 1 f ( ) d = lim f ( i ) i n δ 0 i= 1 Z powżsej definicji wnik prost geometrcn interpretcj cłki onconej (ptr rs.1.11). Z interpretcji tej wnik że punktmi i. f ( )d jest to pole pod krwą = f() międ 16

13 Rs Interpretcj geometrcn cłki onconej Jeżeli funkcj F() jest funkcją pierwotną dl funkcji f() to: f ( ) d = F( ) = F( ) F( ) N prkłd drogę jką preędie ciło porusjące się prostoliniowo prędkością v międ trecią piątą sekundą ruchu olicm e woru 5 s = vdt 3 17

Wykład z fizyki Budownictwo I BB-ZI. Dr Andrzej Bąk

Wykład z fizyki Budownictwo I BB-ZI. Dr Andrzej Bąk Wkłd fiki udownictwo I -ZI Dr ndrej ąk Dlcego wrto się ucć fiki? Powsechność jwisk ficnch W świecie, któr ns otc chodi mnóstwo jwisk ficnch, np.: jwisk meteorologicne: opd descu, śniegu, mgł, tęc, włdowni

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

ZASADY ZALICZANIA PRZEDMIOTU:

ZASADY ZALICZANIA PRZEDMIOTU: WYKŁADOWCA: dr h. inż. Ktrn ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, pw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 k@gh.edu.pl http://home.gh.edu.pl/~k 2010/2011, im 1 ZASADY ZALICZANIA

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

14. Krzywe stożkowe i formy kwadratowe

14. Krzywe stożkowe i formy kwadratowe . Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33

Bardziej szczegółowo

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Władysław Tomaszewicz Piotr Grygiel. Podstawy Fizyki. Część I Fizyka Klasyczna. (na prawach rękopisu)

Władysław Tomaszewicz Piotr Grygiel. Podstawy Fizyki. Część I Fizyka Klasyczna. (na prawach rękopisu) Włdysłw Tomszewicz Piotr Grygiel Podstwy Fizyki Część I Fizyk Klsyczn (n prwch rękopisu) Wydził Fizyki Technicznej i Mtemtyki Stosownej Politechnik Gdńsk 2002 Rozdził 1 Wstęp 1.1 Międzynrodowy ukłd jednostek

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie Mtemtk I /9 WYKŁD 8. UKŁDY RÓWNŃ LINIOWYCH II Mcierow ostć limincji Guss B gdie nn n n n B n Metod elimincji: () Odejmownie od pewnego równni wielokrotności (nieerowej) wrnego innego równni, nie mienijąc

Bardziej szczegółowo

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015 Fizyka w. 02 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Wektory ujęcie analityczne Definicja Wektor = uporządkowana trójka liczb (współrzędnych kartezjańskich) a = a x a y a z długość wektora: a = a 2 x +

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

2.2. ZGINANIE UKOŚNE

2.2. ZGINANIE UKOŚNE .. ZGINNIE UKŚNE Zginnie ukśne (dwukierunkwe) wstępuje wówcs, gd bciążenie ewnętrne redukuje się d wektr mmentu ginjąceg, leżąceg w płscźnie prekrju, któreg kierunek nie pkrw się żdną głównch, centrlnch

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdenie: Do cego służą wekor? Mp połąceń smoloowch Isige pokuje, skąd smolo wlują i dokąd dolują; pokne jes o pomocą srłek srłki e pokują premiescenie: skąd dokąd jes dn lo, rs.. Mimo, że rjekori lou

Bardziej szczegółowo

Sposób opisu symetrii figur lub brył skończonych

Sposób opisu symetrii figur lub brył skończonych Wkłd drugi - smetri Smetri (gr. συμμετρια podobn mir) dl figur lub brł - istnienie nietrwilnego prekstłceni, które odworowuje obiekt w smego siebie minie mogą ulegć współrędne prestrenne, cs, kolor itp.

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

Wykłady z fizyki FIZYKA I

Wykłady z fizyki FIZYKA I POLITECHNIKA OPOLSKA WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI Insttut Mtemtki i Fiki Ktedr Fiki Wkłd fiki FIZYKA I dr Brr Klimes SPRAWY ORGANIZACYJNE Wrunki liceni (RSPO): 1) licenie wsstkich form jęć

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Prawo Coulomba i pole elektryczne

Prawo Coulomba i pole elektryczne Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

Przykład 2.5. Figura z dwiema osiami symetrii

Przykład 2.5. Figura z dwiema osiami symetrii Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

I POCHODNA - INTERPRETACJA GEOMETRYCZNA

I POCHODNA - INTERPRETACJA GEOMETRYCZNA I ROK GOSPODARKA PRZESTRZENNA semestr I POCHODNA - INTERPRETACJA GEOMETRYCZNA Przpomnijm definicję ilorzu róŝnicowego : Definicj (ilorzu róŝnicowego) : Ilorzem róŝnicowm funkcji f : (,b) R odpowidjącm

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7 Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty)

1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty) 1. Alger wetorów Welość wetorową chrterue wrtość, cl moduł, erune, wrot. Możn ą predstwć w sposó grfcn o odcne serown o długośc proporconlne do modułu lu te w sposó nltcn. Sposó nltcn poleg n podnu rutów,,

Bardziej szczegółowo

I. Rachunek wektorowy i jego zastosowanie w fizyce.

I. Rachunek wektorowy i jego zastosowanie w fizyce. Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości

Bardziej szczegółowo

cz. 2 dr inż. Zbigniew Szklarski

cz. 2 dr inż. Zbigniew Szklarski Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1 Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

Praca, potencjał i pojemność

Praca, potencjał i pojemność Prc, potencjł i pojemność Mciej J. Mrowiński 1 listopd 2010 Zdnie PPP1 h Wyzncz wrtość potencjłu elektrycznego w punkcie oddlonym o h od cienkiego, jednorodnie nłdownego łdunkiem Q pierścieni o promieniu.

Bardziej szczegółowo

WYKRESY PARĆ HYDROSTATYCZNYCH

WYKRESY PARĆ HYDROSTATYCZNYCH dm Pweł Koioł WYKESY PĆ HYOSTTYNYH Prykłdy Wersj 1.d PK (2006-2013) Od utor Skrypt (eook) Wykresy prć hydrosttycnych jest prencony dl studentów studiów diennych, wiecorowych i ocnych wydiłów o kierunkch

Bardziej szczegółowo

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

a a a b M. Przybycień Matematyczne Metody Fizyki I

a a a b M. Przybycień Matematyczne Metody Fizyki I Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test,

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

DODATEK MATEMATYCZNO FIZYCZNY

DODATEK MATEMATYCZNO FIZYCZNY Spis treści DODTEK MTEMTYCZNO FIZYCZNY Podstwowe wor rchunku wektorowego...2 Podstwowe wor rchunku różnickowego...3 Podstwowe wor rchunku cłkowego...4 Inne leżności mtemtcne...5 Podstwowe Stłe Ficne...6

Bardziej szczegółowo

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:

Bardziej szczegółowo

Sprawdzian całoroczny kl. III

Sprawdzian całoroczny kl. III Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

LISTA ZADAŃ Z MECHANIKI OGÓLNEJ

LISTA ZADAŃ Z MECHANIKI OGÓLNEJ . RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur OPERONEM Fiyk i stronoi Poio roserony Listopd 0 W niniejsy schecie ocenini dń otwrtych są preentowne prykłdowe poprwne odpowiedi. W tego typu ch nleży również unć

Bardziej szczegółowo

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w

Bardziej szczegółowo

mechanika analityczna 2 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 2 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechnik nlityczn niereltywistyczn L.D.Lndu, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-8.06.07 środek msy w różnych ukłdch inercjlnych v = v ' u m v = P= P ' u m v ' m m u trnsformcj pędu istnieje

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

10. PROSTE ZGINANIE Stan naprężenia i odkształcenia przy prostym zginaniu

10. PROSTE ZGINANIE Stan naprężenia i odkształcenia przy prostym zginaniu . Wrwł Wkłd mechniki mteriłów 0. ROT ZGINNI 0.. tn nprężeni i odkstłceni pr prostm ginniu Zginnie proste (jednokierunkowe) wstępuje wówcs gd obciążenie ewnętrne redukuje się do wektor momentu ginjącego

Bardziej szczegółowo

f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw.

f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw. FUNKCJA KWADRATOWA Moduł - dził - Lp Lp temt z.p. z.r. Zkres treści Wykres f() = 1 1 wykres i włsności f() =, gdzie 0 Przesunięcie wykresu f() = wzdłuż osi OX i OY /o wektor/ Postć knoniczn i postć ogóln

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

ver magnetyzm

ver magnetyzm ver-2.01.12 magnetyzm prądy proste prądy elektryczne oddziałują ze soą. doświadczenie Ampère a (1820): F ~ 2 Ι 1 Ι 2 siła na jednostkę długości przewodów prądy proste w próżni jednostki w elektryczności

Bardziej szczegółowo

Treść programu (sem. I)

Treść programu (sem. I) 7-9-7 FIZYKA konsultcje: śod 5-7 Josłw Rutkowski pok. 63/S tel. 6 83 97 8 Teść pogmu (sem. I) Element chunku wektoowego. Ruch postoliniow. Pojęcie pochodnej. Ruch w kilku wmich. Mechnik ównni uchu(cłkownie).

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Całki oznaczone. wykład z MATEMATYKI

Całki oznaczone. wykład z MATEMATYKI Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Morfologia kryształów

Morfologia kryształów Morfologi krsztłów Morfologi krsztłu Ścin krsztłu = ogrniczjące powierzchnie Zleżą od ksztłtu komorek elementrnch i od fizcznch wrunków wzrostu krsztłu (T, p, otoczenie, roztwór itd.); Krsztł jest wielościnem

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fik dl Informki Sosownej Jcek Golk Semesr imow 08/09 Wkłd nr N sronie www predmiou hp://users.uj.edu.pl/~golk/eswf.hml możn nleźć: progrm wkłdu wrunki liceni ermin egminu spis polecnej lierur uupełnijącej

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną mturą. Sprwdzin. (poziom podstwow) Rozwiązni zdń Zdnie. ( pkt) 0,() < P.. Uczeń przedstwi liczb rzeczwiste w różnch postcich. Odpowiedź:., czli < Zdnie. ( pkt) P.. Uczeń rozwiązuje

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 3 Podstawowe wiadomości z fizyki Kalisz Dr inż. Janusz Dębiński 1 Jednostki i układy jednostek Jednostką miary wielkości fizycznej nazywamy wybraną w sposób

Bardziej szczegółowo

Zasa Za d sa y d d y d nam na iki Newtona (2) Prawo Praw o I I Przys zys es e ze s ni ze e e punkt punkt mat e iralneg ne o g j es e t s

Zasa Za d sa y d d y d nam na iki Newtona (2) Prawo Praw o I I Przys zys es e ze s ni ze e e punkt punkt mat e iralneg ne o g j es e t s Mechnik ogóln ykłd nr 1 prowdzenie i podstwowe pojęci. Rchunek wektorowy. ypdkow ukłdu sił. Równowg. 1 rzedmiot Mechnik: ogóln, techniczn, teoretyczn. Dził fizyki zjmujący się bdniem ruchu i równowgi cił

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

Zestaw wybranych wzorów matematycznych

Zestaw wybranych wzorów matematycznych Zestw wybrnych wzorów mtemtycznych mtemtyk elementrn pochodne cłki geometri nlityczn w 3D elementy trygonometrii sferycznej Piotr Choczyński p.j.choczynski@wp.pl www.e-korepetycje.net/pjchocz 9.0.07 v.

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo