Treść programu (sem. I)
|
|
- Mikołaj Grzelak
- 7 lat temu
- Przeglądów:
Transkrypt
1 7-9-7 FIZYKA konsultcje: śod 5-7 Josłw Rutkowski pok. 63/S tel Teść pogmu (sem. I) Element chunku wektoowego. Ruch postoliniow. Pojęcie pochodnej. Ruch w kilku wmich. Mechnik ównni uchu(cłkownie). Pw chowni. Dgni. Fle. Pol elektosttcne i mgnetcne.
2 7-9-7 EFEKTY KSZTAŁCENIA Po ukońceniu jęć student: m wiedę w kesie fiki nieędną do oumieni podstwowch jwisk ficnch n podstwowe pw i sd fiki kesu mechniki i teoii pól n podstw chunku wektoowego i óżnickowego oumie jwisk ficne m umiejętność wkostni pw pod w technice i żciu codiennm potfi stosowć pis mtemtcn do ilościowego opisu jwisk ficnch m świdomość wżności chowwni się w sposó pofesjonln, koniecności pestegni sd etki wodowej Litetu Auto Ttuł Wd. D. Hllid, R. Resnick, J. Wlke Podstw fiki, c. -5, PWN, Wsw 3 A. Roglski Podstw fiki dl elektoników, Skpt WAT P. Hewitt Fik wokół ns, PWN, Wsw Jel Wlke Z. Rsewski i inni Z. Rsewski i inni WWW Podstw fiki, ió dń, Wsw, Wdwnictwo Nukowe PWN Fik ogóln. Pkłd i dni fiki, c. I. Rowiąni i odpowiedi do dń fiki, c.ii. Skpt WAT Skpt do ćwiceń chunkowch fiki ogólnej (ston www)
3 7-9-7 Rgo licenie ćwiceń (ktwność n jęcich + dw kolokwi w sem.) licenie pedmiotu ocen e spwdinu pod koniec semestu, +/- ocen ćwiceń (pod wunkiem liceni ćwiceń) Istot fiki posukiwnie i ponwnie podstwowch pw pod ścisł wiąek fiki techniką fik jest nuką ścisłą mtemtcn opis pw ficnch fik opie się n pomich 3
4 7-9-7 Rowiąwnie polemów ficnch identfikcj dnego polemu cel owiąni łożeni polemu: jki wó i jk go owiąć pepowdenie oliceń spwdenie jednostek ocen wników c moje owiąnie m sens? Jednostki ukłdu SI 3 kg=meggm=ton cnnik pedostek smol 6 meg M 3 kilo k - cent c -3 mili m -6 miko -9 nno n wielkość nw smol j. wielokotne długość met m centmet cm ms kilogm kg gm g cs sekund s mikosekund s pąd elektcn mpe A nnompe na tempetu kelwin K milikelwin mk licność mteii mol mol świtłość kndel cd 4
5 7-9-7 Jednostki pochodne Z pomocą jednostek podstwowch definiuje się jednostki pochodne odpowidjące wsstkim poostłm wielkością ficnm sił m Newton N kg s moc P F m W t m wt W kg s F s t 3 Wekto wekto i skl opecje n wektoch 5
6 7-9-7 Wekto i skl kieunek pocątek dl uchu jednowmiowego kieunek wóżnim nkiem do opisu uchu w pesteni tójwmiowej stosujem pojęcie wekto wekto posid wtość i kieunek diłni n wektoch podlegją pwom chunku wektoowego wielkości wektoowe: pemiescenie, pędkość, pspiesenie, sił wielkości sklne: tempetu, ciśnienie, enegi, ms, cs nie wkują żdnego kieunku w pesteni A, koniec moduł B wot Diłnie n wektoch geometcne dodwnie wektoów skłdowe wektoów wekto jednostkowe dodwnie wektoów n skłdowch mnożenie wektoów: ilocn skln ilocn wektoow 6
7 7-9-7 Geometcne dodwnie wektoów Sukm sum tch wektoów A s B Pw dodwni: pemienność łącność c c c łącne pemiescenie jest sumą wektoową pemiesceń skłdowch Odejmownie wektoów to dodwnie wekto peciwnego d d Skłdowe wektoów skłdowe wekto Skłdową wekto nwm jego ut n wną oś np., postokątnego ukłdu współędnch cos sin Dn wekto jest jednoncnie okeślon pe: wielkości i, skłdowe i lu Wielkości te są powiąne leżnościmi: tg Z eguł diłni mtemtcne powdim n skłdowch wekto 7
8 7-9-7 Wekto jednostkowe Wektoem jednostkowm nwm wekto o długości ównej, skieown w okeślonm kieunku. W ppdku pwoskętnego ukłdu współędnch wekto jednostkowe donich kieunków osi, i oncm iˆ, ˆ, j kˆ ĵ î j ˆ kˆ i j iˆ ˆj ˆj, Ukłd współędnch Z A A k j A i A X wekto jednostkowe i,, j,, k,, Y ukłd odniesieni - ktejński ukłd współędnch postokątnch ukłd pwoskętn położenie cąstki podnie współędnch cąstki (wekto położeni) (,, ) i j k A (, 3,. 5) 8
9 7-9-7 Ukłd sfecn X Z k i j A Y wiąek pomięd współędnmi ukłdu ktejńskiego i sfecnego sin cos sin sin cos w ukłdie sfecnm położenie cąstki okeślm pe podnie: odległości od śodk ukłdu kąt mutlnego w płscźnie XY kąt iegunowego jki two wekto donią półosią OZ (,, ) A ( 3,, ) 4 4 Dodwnie wektoów n skłdowch,,,,,, skoo wekto jest tki sm jk wekto to i ich skłdowe musą ć jednkowe,, 3 3,,,, 3 9
10 7-9-7 Mnożenie wekto pe licę k,, k,,,,, k, k k Ilocn wekto pe licę k dje now wekto o wtości licowej k powięksonej i o wocie godnm lu peciwnm wględem wekto F m m kg F F F kg s Mnożenie wektoów ilocn skln jest wielkością sklną ówną ilocnowi modułu jednego wekto i skłdowej dugiego wekto w kieunku piewsego nich Jeśli nm współędne cos wektoów to ilocn skln ówn jest sumie ilocnów odpowiednich skłdowch cos Olicć kąt pomięd wektomi:,, cos 4
11 7-9-7 Mnożenie wektoów ilocn wektoow c sin c jest to wekto postopdł do płscn w któej leżą, o wocie wncon pe egułę pwej dłoni i długości ównej c i wekto postopdł do eknu i skieown w głą c c skieown do ns Wncnie ilocnu wektoowego wekto postopdł do eknu i skieown w głą c k j i,,,, k j i,, c k j i c c c c
12 7-9-7 Pkłd ilocnów wektoów w fice pc W F stumień E S moment sił M F pędkość w uchu ootowm PODSTAWY KINEMATYKI Kinemtk klsfikcj i poównwnie óżnch uchów (jk min uchu leżą od csu?)
13 7-9-7 Ruch mechnicn uch mechnicn min położeni cił koniecne wsknie innch cił wględem, któch uch się odw (wględne pemiescnie się cił) Ruch min w pesteni i w csie ukłd odniesieni ió nieuchomch wględem sieie cił służąc do optwni uchu innch cił i eg odmiejąc cs Ruch tego smego cił wględem óżnch ukłdów odniesieni óżn chkte (psże w pociągu) opis uchu podnie położeni dl kżdej chwili csu punkt mteiln ciło o nikomo młch omich w wunkch dnego gdnieni, o dnej msie i położeniu, któe możn okeślić jk położenie punktu geometcnego Geck duż lite (delt) okeśl minę dnej wielkości Ruch postoliniow uch chodąc tlko wdłuż linii postej położenie cił, cli współędną punktu w jkim się ono njduje, wncm wględem punktu odniesieni (pocątku osi) podjąc współędną punktu m, 5 m 3 pemiescenie, min położeni punktu mteilnego nk pemiesceni okeśl kieunek uchu pocątek osi [m] m 3
14 (m) Sposó pedstwini uchu wkes (t) spocnek uch f t t(s) 3, t, 7 t, 5 t 5 Pędkość śedni jk sko pous się cąstk? pędkość śedni jednostk (m/s) ś t t t pemiescenie t śedni wtość ewględnej pędkości ś s t clkowit dog t 4
15 (m) Wncnie pędkości 6 m śedniej ś m s t 3 s t 6 =-(-4)=6 m t=4-=3 s t(s) pędkość śedni jko nchlenie postej (współcnnik kieunkow) Pędkość chwilow cli po postu pędkość jk sko pous się cąstk w dnej chwili lim t t d P mniejsniu się t śedni pędkość dąż do gnic, któą jest pędkość w dnej chwili jest skością min położeni cąstki p minie csu w dnej chwili ( jest pochodną wględem t) wtość jest ówn nchleniu postej stcnej do wkesu =f(t) 5
16 położenie [m] (m) pędkości chwilow 3 m t 3 s s m s 5 m 5 t s 3 s, m s =3-(-)=5 m =--(-4)=3 m t=4-= s t=4-=3 s t(s) pędkość chwilow jko nchlenie stcnej do wkesu (t) Pochodn - gficnie funkcj =t pochodn =4t [(t=)=4] 3 t, s ś m s t 3,, 4 6 ś 8 m s t 3 6 ś 3 6 m s t 3 lim t t d tg 4 m s t cs [s] t n śn 4, n,, 4 m s 6
17 7-9-7 Pochodn funkcji on. d d df d Funkcj f() Pochodn f () stł n n n- sin() cos() cos() - sin() e e ln() / on. d t df Włściwości pochodnej: () = (+) = + ( ) = + (/) = ( - )/ d t d d d Pspiesenie gd pędkość cąstki się mieni tn. że donje on pspieseni pspiesenie śednie ś t t t jednostk m s pspiesenie chwilowe lim t t d d d d d 7
18 7-9-7 Spdek swoodn Kżde ciło ucone w góę lu w dół w poliżu powiechni Ziemi donje pspieseni o stłej wtości skieownego w dół. Pspiesenie to nwm pspieseniem iemskim, jego wtość ewględn wnosi g = 9,8 m/s. Pspiesenie swoodnego spdku cił jest więc ówne = -g = -9,8 m/s. Nie leż ono od włściwości pedmiotu: ms, kstłtu. Ruch w dwóch lu tech wmich położenie, pemiescenie pędkość i pspiesenie 3D ut ukośn uch jednostjn po okęgu 8
19 7-9-7 Klsfikcj uchów to: postoliniowe kwoliniowe (po okęgu, ut poiom) pestenne i płskie wtość pędkości: jednostjne =const. = jednostjnie mienne const. =const. niejednostjne const. const. Ruch w tech wmich A X Z A k i to j A A B Y dog s odległość pomięd położeniem pocątkowm i końcowm mieon wdłuż tou pemiescenie położenie cąstki podnie współędnch cąstki (wekto położeni) (,, ) i j k A (, 3,. 5) (, 4, ) uch min położeni wględem ukłdu odniesieni to (tjektoi) cąstki lini któą keśl pousjąc się cąstk pemiescenie B A B A B, 4 3,. 5,,. 5) 9
20 7-9-7 Pędkość cąstk pous się po kwoliniowm toe punktu A do B w csie t pewjąc dogę s pędkość śedni t pędkość chwilow d lim t t wtość licow pędkości jest ówn pochodnej dogi wględem csu s lim t t ds A s B to t t t i j k d d d d i j k i j k,, Pspiesenie d lim t t wtość pspieseni d d d d i i j k,, d d j d d k, Pkłd: t to cos t, 3t sin t, 6t 4 cos t, 6
21 7-9-7 Ruch e stłm pspieseniem Gd pspiesenie jest stłe (=const.) to pspiesenie śednie ówne jest chwilowemu: t ś t Podonie: ś śt t Pędkość mieni się liniowo w csie, więc: ś t Podstwowe ównni uchu e stłm pspieseniem t t Pspiesenie stcne i nomlne i t d d di i i t d t n di t R Pkłd: t t t n pspiesenie stcne skość min wtości pspiesenie nomlne skość min kieunku uchu (R pomień kwin) cos t, 3t t n sin t, 6t t to d 8 sin t cos t 7t 4 sin t 36t t 4 sin t 36t
22 7-9-7 m Rut ukośn m uch pędkością pocątkową i pspieseniem iemskim g t t t wekto pędkości pocątkowej możem pedstwić w postci sum jego skłdowch w kieunku poiomm i pionowm i j gdie = cos = sin w ucie ukośnm uch cąstki w kieunku poiomm i kieunku pionowm możn tktowć jko nieleżne, le chodąc w tm smm csie żden nich nie wpłw n dugi uch w poiomie: = const. = + t = uch w pionie: = -g = + t gt / = t g jest to ównnie tou m Rut ukośn ównnie tou: g tg cos m ównnie poli uch w poiomie: = = cos uch w pionie: = gt = sin gt sin g t w mksmln wsokość: m gd = cli = sin gt w m t w sin t w tw g sin g sin g sin g poniewż t w =t s to t c =t w sin tc g g cos sin sięg utu: m
23 7-9-7 Stelec i młp to pocisku e gwitcji spdek pocisku poc koko sin t gt d tg gt to pocisku gwitcją d Pocisk wse tfi w kokos g spotknie gd poc = koko poc cos t d koko d t cos poniewż d cos sin t sin d tg więc poc = koko Ruch jednostjn po okęgu cos i pomień jest stł =const., wtość pędkości nie mieni się i jest on stcn do tou i j cos sin sin i cos j i j d d d i j i sin j j cos i sin j cos i sin j cos sin Pspiesenie nomlne (dośodkowe) n 3
24 7-9-7 Skłdow nomln pspieseni Ruch jednostjn więc: n Z podoieństw tójkątów n i n n n sin lim lim t t t t i skieowne jest godnie kieunkiem wekto cli do śodk okęgu Pędkość kątow i pspiesenie kątowe s ds d W ukłdie iegunowm do opisu uchu stosujem: - położenie kątowe d - pędkość kątową e - pspiesenie kątowe d e n Pspiesenie liniowe: t s d d d d d tożsmość ( c) ( c) c( ) t n e n Pspiesenie stcne i nomlne (dośodkowe) 4
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
RACHUNEK WEKTOROWY W FIZYCE
Wdił EAIiE Kieunek: Elektotechnik Pedmiot: Fik RACHUNEK WEKTOROWY W FIZYCE Mteił do wkłdu 2 2010/2011, im 1 Wdił EAIiE Kieunek: Elektotechnik Pedmiot: Fik Pln Pojęcie wekto Diłni ni n wektoch Wekto w ktejńskim
Elektryczność i magnetyzm
Elektcność i mgnetm II ok, III semest Cs twni: wkłd 60 god., ćwiceni 60 god. Zlicenie pedmiotu licenie ćwiceń min.30 pkt: egmin testow 25 pkt egmin ustn 25 pkt Powdąc: d Jcek Semnik Litetu 1. R.P. Fenmn,
KINEMATYKA. Pojęcia podstawowe
KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu
A r promień wektor. r = f 1 (t), φ = f 2 (t) y r φ. x, = 0
1 Ruchem cił wm chodącą w csie mię jego położei wględem iego cił, któe umowie pjmujem ieuchome. Rówi uchu puktu we współędch postokątch l pomień wekto W ppdku gd pukt pous się, cli miei upłwem csu swoje
Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii
Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu
Wykład z fizyki Budownictwo I BB-ZI. Dr Andrzej Bąk
Wkłd fiki udownictwo I -ZI Dr ndrej ąk Dlcego wrto się ucć fiki? Powsechność jwisk ficnch W świecie, któr ns otc chodi mnóstwo jwisk ficnch, np.: jwisk meteorologicne: opd descu, śniegu, mgł, tęc, włdowni
Ruch kulisty bryły. Kinematyka
Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
=I π xy. +I π xz. +I π yz. + I π yz
GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π
PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Mając więc bardzo uproszczone wyobraŝenie atomu, jako obiektu o symetrii sferycznej, moŝemy go naszkicować w następujący sposób: m
Wpowdenie Skl pestenn jwisk ficnch Tpowm oiektem pestennm dosteglnm jesce gołm okiem jest włos ludki. Jego śednic to około 0.1 mm1. 10-4 m100. 10-6 m100µm. Oko ludkie jest w stnie uwŝć pedmiot o omie około
RACHUNEK WEKTOROWY W FIZYCE
Pzedmiot: Fizk RACHUNEK WEKTOROWY W FIZYCE Wkłd 2 2015/2016, zim 1 Pzedmiot: Fizk Pln Pojęcie wekto Dziłni n wektoch Wekto w ktezjńskim ukłdzie współzędnch Pzkłd wkozstni wektoów i dziłń n nich w fizce
Coba, Mexico, August 2015
Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm
ZASADY ZALICZANIA PRZEDMIOTU:
WYKŁADOWCA: dr h. inż. Ktrn ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, pw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 k@gh.edu.pl http://home.gh.edu.pl/~k 2010/2011, im 1 ZASADY ZALICZANIA
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Pola siłowe i ich charakterystyka
W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
Grzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy
3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty.
3 Kinemk uchu jednosjnego zmiennego jednosjnie zmiennego zu Wbó i opcownie zdń 3-3: Bb Kościelsk zdń 33-35: szd J Bczński 3 Zleżność dogi pzebej pzez punk meiln od czsu możn opisć ównniem: () A B C 3 gdzie
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie
Mtemtk I /9 WYKŁD 8. UKŁDY RÓWNŃ LINIOWYCH II Mcierow ostć limincji Guss B gdie nn n n n B n Metod elimincji: () Odejmownie od pewnego równni wielokrotności (nieerowej) wrnego innego równni, nie mienijąc
2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar
2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.
Sposób opisu symetrii figur lub brył skończonych
Wkłd drugi - smetri Smetri (gr. συμμετρια podobn mir) dl figur lub brł - istnienie nietrwilnego prekstłceni, które odworowuje obiekt w smego siebie minie mogą ulegć współrędne prestrenne, cs, kolor itp.
6. Kinematyka przepływów
6. Kinemk pepłwów Podswowe deinije To jekoi elemenu płnu jes o miejse geomene kolejnh położeń pousjąego się elemenu płnu upłwem su. Równnie óżnikowe ou elemenu płnu: d d d d Lini pądu o lini spełniją wunek
ELEMENTY RACHUNKU WEKTOROWEGO
Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
TEORIA SPRĘŻYSTOŚCI 10
W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,
Wiadomości wstępne. Info dla studentów:
Wiadomości wstępne WYKŁADY D hab. inż. Andej Kołowski, pof. AGH E-mail: kolow@agh.edu.pl Info dla studentów: http://gala.uci.agh.edu.pl/~kolow/ C1, pok. 0, tel. 38-19 PODRĘCZNIKI Z. Kąkol, Fika dla Inżnieów
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
REZONATORY MIKROFALOWE
RZONATORY MIKROFALOW Reonto mikofow jest to pewien obs mknięt. Pe obs mknięt oumie się obs pe bei któeo nie m pepłwu eneii, tn. wunki beowe wmusją w kżdm punkcie beu niknie skłdowej stcnej po eektcneo
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu
9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)
Ruch dwu i trójwymiarowy
Wkład z fizki. Piot Posmkiewicz 1 W Y K Ł A D Ruch dwu i tójwmiaow 3-1 Wekto pzemieszczenia. JeŜeli uch odbwa się w dwu lub tzech wmiaach, to pzemieszczenie ma okeśloną zaówno watość, jak i kieunek w pzestzeni.
mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,
Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł
14. Krzywe stożkowe i formy kwadratowe
. Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33
Wstęp matematyczny. Pochodna funkcji
Wstęp mtemtcn Pochodn funkcj Ze wględu n ognconą dokłdność pądów pomowch, posługujem sę skońconm postm welkośc, np. Δ, Δt, ΔV, td. Cęsto d sę, że jedn welkość fcn wż sę pe stosunek postów dwóch nnch welkośc,
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
MECHANIKA III (Mechanika analityczna)
MECHNIK III (Mechanika analicna) Semes: I, ok akad. 2018/2019 Licba godin: - wkład 15 god., ćwicenia 15 god. *) egamin Wkładając: pof. d hab. inż. Edmund Wibod Kaeda Mechaniki i Mechaoniki p. 101 (sekeaia
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej
Przykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1
Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,
Prof. dr hab. Józef Korecki C-1, IIp, pok. 207 Wydział Fizyki i Informatyki Stosowanej Katedra Fizyki Ciała Stałego
Pof. d h. Jóef Koeck C-1, IIp, pok. 07 Wdł Fk Infomk Sosowne Ked Fk Cł Słego Konsulce: cwek, god. 10-1 Fk 1 (I semes hp://slluskk.gh.edu.pl/013-014/pl/mgnese/modules/151 Fk (II semes hp://slluskk.gh.edu.pl/013-014/pl/mgnese/modules/1969
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Sieć odwrotna. Fale i funkcje okresowe
Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus
Dynamika punktu materialnego. Ciało o znanych właściwościach Otoczenie Warunki początkowe (prędkość) Jaki będzie ruch ciała? masa ciężar ilość materii
Dnik punku eilnego iło o nnch łściościch Oocenie Wunki pocąkoe pękość Jki ęie uch cił? s cięż ilość eii sił Sił nie jes poen o uni cił uchu le o jego in. 564-64 64-77 IZYKA - 6 W-5 hp://.if.p.lo.pl/ogn.oloski/
5. Mechanika bryły sztywnej
W ozdzie dpowiedzi i wskzówki znjdują się odpowiedzi do wszystkich zdń, znjdziesz tm ównież wskzówki do ozwiązń tudnych zdń. Pełne ozwiązni zdń możesz uzyskć pzysyłjąc e-mi n des: kons@x.wp.p 5. Mechnik
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur OPERONEM Fiyk i stronoi Poio roserony Listopd 0 W niniejsy schecie ocenini dń otwrtych są preentowne prykłdowe poprwne odpowiedi. W tego typu ch nleży również unć
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
magnetycznym. Rozwiązanie: Na elektron poruszający się z prędkością υ w polu B działa siła Lorentza F L, wektorów B i υ.
Zdni do ozdziłu 8. Zd.8.. Elekton (o msie 3 9 m 9, 0 kg i łdunku elektycznym e.6 0 C ) wpd z pędkością υ 0 7 m / s w obsz jednoodnego pol mgnetycznego o indukcji B 0 T postopdle do linii sił tego pol.
= przy założeniu iż wartość momentu pędu ciała jest różna od zera: 0. const. , co pozwala na określenie go w sposób jednoznaczny.
Z 6 sei I ozszezone Chce znleźć to ch cił n któe ził sił centln: F, pz złożeni iż wtość oent pę cił jest óżn o ze: Do ozwiązni ożn wkozstć np wzó l ównowżn je wzó const ± spowzjąc pole po wpowzeni postwini
2.2. ZGINANIE UKOŚNE
.. ZGINNIE UKŚNE Zginnie ukśne (dwukierunkwe) wstępuje wówcs, gd bciążenie ewnętrne redukuje się d wektr mmentu ginjąceg, leżąceg w płscźnie prekrju, któreg kierunek nie pkrw się żdną głównch, centrlnch
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
DODATEK MATEMATYCZNO FIZYCZNY
Spis treści DODTEK MTEMTYCZNO FIZYCZNY Podstwowe wor rchunku wektorowego...2 Podstwowe wor rchunku różnickowego...3 Podstwowe wor rchunku cłkowego...4 Inne leżności mtemtcne...5 Podstwowe Stłe Ficne...6
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM
Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Dynamika relatywistyczna 9-1
Dnik elwisn 9-9. Dnik elwisn Zsd howni ęd ówi, że w kłdie odosonion wieją n ąsek ih łkowi ęd olion w hwili i ęd w dowolnej hwili óźniejsej są jednkowe: ( ( Dl skłdowej on o w sególnośi, że n n i - edkosi
Teoria Pola Elektromagnetycznego
Teoia Pola Elektomagnetcnego Wkład 1 Pojęcia anali wektoowej 5.0.006 Stefan Filipowic Wstęp Teścią niniejsego wkładu jest makoskopowa teoia pola elektomagnetcnego. Podstaw tej teoii ostał sfomułowane i
Znajdowanie analogii w geometrii płaskiej i przestrzennej
Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec
Odpowiadają na pytanie: dlaczego ruch zachodzi?
ZASADY DYNAMIKI Odpowidją n pytnie: dlczego uch zchodzi? Są dziełem lileusz ( zsd bezwłdności) i Newton lileusz (1564-164) Newton (1643-177) I ZASADA DYNAMIKI (ZASADA BEZWŁADNOŚCI) Jeśli n ciło nie dził
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
Kwantowy opis atomu jednoelektronowego - wyjście poza model Bohra, analiza w oparciu o dyskusje rozwiązań równania Schrödingera niezależnego od
Kwntow opis tou jednoelektonowego - wjście po odel Bo, nli w opciu o dskusje owiąń ównni Scödinge nieleżnego od csu- ównni włsnego dl opeto Hilton ) Moent pędu w ecnice kwntowej. Równni włsne dl opetoów
Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe
Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc
Energia kinetyczna i praca. Energia potencjalna
Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson
Pręty silnie zakrzywione 1
Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Pomiary parametrów światłowodów WYKŁAD 11 SMK. 1. Wpływ sposobu pobudzania włókna światłowodu na rozkład prowadzonej w nim mocy
Pomiy pmetów świtłowodów WYKŁAD SMK. Wpływ sposobu pobudzni włókn świtłowodu n ozkłd powdzonej w nim mocy Ilość modów wzbudznych w świtłowodch zleży od pmetów świtłowodu i wykozystywnej długości fli. W
KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p
KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni
Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci
ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f
Momenty bezwładności figur płaskich - definicje i wzory
Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem
Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 05 skle.oeon.l/mtu
KINEMATYKA. Kinematyka jest częścią mechaniki opisującą ruch obiektów bez wchodzenia w
KINEMATYKA Kinematka jet częścią mechaniki opiującą uch iektów bez wchodzenia w pzczn wtępowania uchu Ruch jet względn i zawze jet opiwan w okeślonm układzie wpółzędnch nazwanm układem odnieienia Układ
Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor
Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.
23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA
. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna
Wykłady z fizyki FIZYKA I
POLITECHNIKA OPOLSKA WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI Insttut Mtemtki i Fiki Ktedr Fiki Wkłd fiki FIZYKA I dr Brr Klimes SPRAWY ORGANIZACYJNE Wrunki liceni (RSPO): 1) licenie wsstkich form jęć
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA
ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
PODSTAWY LINIOWEJ TEORII SPRĘŻYSTOŚCI
PODSTAWY LINIOWJ TORII SPRĘŻYSTOŚCI Pestenne dnie egowe teoii sężstości Metod owiąwni dń egowch teoii sężstości Rowiąnie łskiego dni egowego teoii sężstości w nężenich Rowiąnie łskiego osiowosmetcnego
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
MECHANIKA III (Mechanika analityczna)
MECHNIK III (Mechanika analicna) Semes: I, ok akad. 2013/2014 Licba godin: - wkład 15 god., ćwicenia 15 god. *) egamin Wkładając: pof. d hab. inż. Edmund Wibod Kaeda Mechaniki i Mechaoniki p. 103 (sekeaia
POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA
Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni
cz. 1. dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
dr inż. Zbigniew Szklarski
Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.