POLE MAGNETYCZNE W PRÓŻNI
|
|
- Edyta Król
- 7 lat temu
- Przeglądów:
Transkrypt
1 POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi. Właściwościami tych oddziaływań zajmuje się dział fizyki zwany magnetyzmem. Nazwą magnetyzm określa się zespół zjawisk fizycznych związanych z polem magnetycznym. Pole to może yć wytwarzane zarówno przez prąd elektryczny jak i przez materiały magnetyczne. W ramach szczególnej teorii względności Einsteina magnetyzm jest ściśle powiązany z elektrycznością. W szczególności, zjawisko ojawiające się dla jednego oserwatora jako czysto elektryczne, może dla innego oserwatora ojawić się jako czysto magnetyczne i odwrotnie. Względny udział elektryczności czy magnetyzmu w danym zjawisku jest zależny od wyoru układu odniesienia. W opisie relatywistycznym elektryczność i magnetyzm mieszają się wzajemnie w jedno zjawisko zwane elektromagnetyzmem, analogicznie do mieszania się w tym opisie przestrzeni i czasu w tzw. czasoprzestrzeń. Pole magnetyczne w próżni 1
2 Oddziaływanie prądów Z doświadczenia wiadomo, że dwa długie, cienkie przewodniki, w których płynie prąd, przyciągają się wzajemnie, jeżeli prądy płyną w nich w tych samych kierunkach, i odpychają się, jeżeli prądy płyną w kierunkach przeciwnych. Pole magnetyczne Oddziaływanie prądów odywa się za pośrednictwem pola magnetycznego (Oersted, 18 r.). Pole magnetyczne ma charakter kierunkowy i stąd charakteryzowane jest wielkością wektorową. Za wielkość wektorową charakteryzującą pole magnetyczne przyjmuje się wektor indukcji magnetycznej B. B - indukcja magnetyczna. Z doświadczenia widomo, że Pole magnetyczne wytwarzane jest przez ładunki ędące w ruchu. Pole magnetyczne nie działa na ładunek znajdujący się w spoczynku. Pole magnetyczne w próżni
3 Pole magnetyczne, cd. Zasada superpozycji dla pola magnetycznego Pole B wytwarzane przez kilka poruszających się ładunków (prądów) równe jest wektorowej sumie pół B i wytwarzanych przez każdy ładunek (prąd) z osona: B= Bi. i Pole poruszającego się ładunku Rozważmy pole magnetyczne wytwarzane w pewnym punkcie P przez ładunek punktowy q poruszający się z prędkością υ. Doświadczenie pokazuje, że dla υ c indukcja magnetyczna poruszającego się ładunku wyraża się wzorem qυ r 1N B = [B]= =1T ( tesla) 4π r 1A 1m 7 N 7 H = 4π 1 = 4π 1 - stała magnetyczna. A m 1 ε = c 8 c = 1 m/s - prędkość światła w próżni. Pole magnetyczne w próżni
4 Prawo Biota-Savarta Oliczmy indukcję pola magnetycznego wytwarzanego w punkcie r przez element dl cienkiego przewodnika, w którym płynie prąd I. Pole od pojedynczego nośnika prądu e znajdującego się w tym elemencie e( υ + u) r B = 4π r B = 1 N Bi N i = 1 υ - prędkość chaotycznego ruchu nośnika, u - prędkość uporządkowanego ruchu nośnika. Indukcja B, średnia dla wszystkich nośników ładunku w elemencie dl wynosi e( υ + u ) r eu r N N 1 1 B = = υ = υi =, u = ui 4π r 4π r N i= 1 N i = 1 Przyjmijmy, że w jednostce ojętości przewodnika jest n nośników ładunku. Wtedy przyczynek db do całkowitej indukcji magnetycznej oserwowanej w punkcie r wynosi S dl ( ne u ) r db = B n S dl =, S - powierzchnia przekroju przewodnika. 4 Pole magnetyczne w próżni 4
5 Prawo Biota-Savarta, cd. S dl ( ne u ) r db = B n S dl = 4, ne u = j I j - wektor gęstości prądu. j = eu S S dl j r db =, j dl = j dl 4 S j dl r db = 4 Sj = I Jean-Baptiste Biot ( ) Prawo Biota-Savarta I dl r db = 4 Całkowitą indukcję magnetyczną B wyznacza się całkując różniczkowe elementy indukcji db wzdłuż całej długości l przewodnika B = db l Felix Savart ( ) Pole magnetyczne w próżni 5
6 Pole magnetyczne od prądu prostego (nieskończenie długiego cienkiego przewodu prostoliniowego) db I dl r = 4 db I dl sinα = 4 Tutaj wszystkie elementy db w punkcie oserwacji są współliniowe i prostopadłe do płaszczyzny rysunku. rdα dα r =, dl = = sinα sinα sin α Idαsinαsin α I db = = sinαdα 4π sin α 4π B B π I sin d I I = α α = = 4π 4π π I = π Pole magnetyczne w próżni 6
7 Siła Lorentza Siła magnetyczna - Siła działająca na ładunek poruszający się w polu magnetycznym. Na drodze doświadczalnej ustalono, że siła magnetyczna F działająca na ładunek q poruszający się z prędkością υ w polu magnetycznym B wyraża się wzorem F = qυ B Siła magnetyczna jest zawsze prostopadła do prędkości poruszającej się cząstki, a więc nie wykonuje pracy nad cząstką. Stałe pole magnetyczne nie może zmienić energii poruszającej się cząstki naładowanej. Jeśli cząstka znajduje się jednocześnie w polu elektrycznym i magnetycznym, to na cząstkę działa siła F = qe + qυ B - siła Lorentza. Hendrik A. Lorentz ( ) Pole magnetyczne w próżni 7
8 Działanie pola magnetycznego na przewodnik z prądem Znajdźmy wyrażenie na siłę działającą na przewodnik, w którym płynie prąd, umieszczony w polu magnetycznym. W tych warunkach na każdy z nośników ładunku działa siła F = e( υ + u) B υ - prędkość chaotycznego ruchu nośnika, u - prędkość uporządkowanego ruchu nośnika. Po uśrednieniu F = e( υ + u ) B = eu B Siła działająca na odcinek dl przewodnika df = F n S dl = ( ne u ) B S dl j = ne u dv = S dl S - powierzchnia poprzecznego df = j B dv przekroju przewodnika. Pole magnetyczne w próżni 8
9 Działanie pola magnetycznego na przewodnik z prądem, cd. df = j B dv F = j B jv - Gęstość siły, siła działająca na jednostkową ojętość przewodnika. df = j B S dl j S dl = j S dl = I dl Na umieszczony w polu magnetycznym o indukcji magnetycznej B odcinek dl przewodnika o długości dl, przez który płynie prąd o natężeniu I, działa siła F, którą określa wzór: df = I dl B Siła elektrodynamiczna (magnetyczna) - siła, z jaką działa pole magnetyczne na przewód, w którym płynie prąd elektryczny. Pole magnetyczne w próżni 9
10 Oliczenie siły oddziaływania dwóch znajdujących się w próżni, nieskończenie długich prądów prostych df = I dl B df = I B dl sinα = I B dl B F I1 = π df = = I B = dl I I π j 1 F 1 j - moduł wektora siły działającej na jednostkę długości przewodu z prądem I. Zachodzi również F1 j = F1 j, F1 j = F1 j. F j II 4π 1 = - Siła oddziaływania przypadająca na jednostkę długości każdego z przewodników wiodących prądy I 1 i I i ędących we wzajemnej odległości. (Ampère, 18 r.) Pole magnetyczne w próżni 1
11 Definicje jednostek natężenia prądu elektrycznego i wielkości ładunku elektrycznego 1 amper - (1 A) Natężenie niezmieniającego się prądu, który płynąc w dwóch przewodnikach prostoliniowych o nieskończonej długości i zaniedywalnie małym przekroju w kształcie koła, umieszczonych względem sieie w odległości 1 m w próżni, wytwarza siłę oddziaływania między nimi równą 7 1 N na każdy metr długości tych przewodników. 1 kulom - (1 C) Ładunek przepływający w ciągu 1 s przez przekrój przewodnika, w którym płynie prąd stały o natężeniu 1 A. Pole magnetyczne w próżni 11
ver magnetyzm
ver-2.01.12 magnetyzm prądy proste prądy elektryczne oddziałują ze soą. doświadczenie Ampère a (1820): F ~ 2 Ι 1 Ι 2 siła na jednostkę długości przewodów prądy proste w próżni jednostki w elektryczności
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a
POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat
Pojęcie ładunku elektrycznego
Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z
Wykłady z Fizyki. Magnetyzm
Wykłady z Fizyki 07 Magnetyzm Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski
Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy
Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty.
Magnetostatyka Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Magnetyzm Nazwa magnetyzm pochodzi od Magnezji
Ramka z prądem w jednorodnym polu magnetycznym
Ramka z prądem w jednorodnym polu magnetycznym Siła wypadkowa = 0 Wypadkowy moment siły: τ = w F + w ( ) F ( ) = 2 w F w τ = 2wF sinθ = IBl 2 sinθ = θ=90 o IBl 2 θ to kąt między wektorem w i wektorem F
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.
Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt
Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.
Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Pole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Pole magnetyczne Linie pola magnetycznego analogiczne do linii pola elektrycznego Pole magnetyczne jest polem bezźródłowym (nie istnieje monopol magnetyczny!) Prawo Gaussa dla pola
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 011 1 Definicja wektora indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.
Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna
Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności
Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji
Magnetyzm Dane ogólne do zadań: ładunek elektronu: masa elektronu: masa protonu: masa neutronu: 1,6 19 9,11 C 31 1,67 1,675 kg 7 7 kg kg Własności magnetyczne substancji 1. (1 pkt). ( pkt) 3. ( pkt) Jaka
Elektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych
6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych
Indukcja elektromagnetyczna Faradaya
Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska
Lekcja 40. Obraz graficzny pola elektrycznego.
Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał
Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
dr inż. Zbigniew Szklarski
Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza F L Jeżeli na dodatni ładunek q poruszający
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Rozdział 4. Pole magnetyczne przewodników z prądem
Rozdział 4. Pole magnetyczne przewodników z prądem 2018 Spis treści Prawo Ampere'a Zastosowanie prawa Ampere'a - prostoliniowy przewodnik Zastosowanie prawa Ampere'a - cewka Oddziaływanie równoległych
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
4.1 Pole magnetyczne. Siła Lorentza. Wektor indukcji
Rozdział 4 Magnetostatyka 4.1 Pole magnetyczne. Siła Lorentza. Wektor indukcji magnetycznej Przez magnetostatykę rozumiemy tę część nauki o magnetyzmie, która dotyczy stałych, niezależnych od czasu pól
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I
Podstawy fizyki sezon 2 4. Pole magnetyczne 1
Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego
Fizyka 2 Podstawy fizyki
Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html
Wykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych
Zjawisko Halla Referujący: Tomasz Winiarski
Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:
PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II
POGAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II Opracowała: mgr Joanna Kondys Cele do osiągnięcia: etapowe udział w olimpiadzie fizycznej udział w konkursie fizycznym dla szkół średnich docelowe
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
ELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego
Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Magnetyzm. Wykład 13.
Szczęście to łza, która się otarło i uśmiech, który się wywołało. Maxence van der Meersch Wykład 13. Magnetyzm 13.1. Pole magnetyczne Siła Lorentza Efekt Halla Siła magnetyczna 13.2. Prawo Biota-Savarta
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha opracowane na podstawie: Halliday & Resnick, J. Walker Fundamentals of Physics extended 10th Edition, John Wiley & Sons, Inc. AGH,
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II
Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się
Ruch ładunków w polu magnetycznym
Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Potencjał pola elektrycznego
Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
k e = 2, Nm 2 JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE.
JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE. Pokazano na czym polega jedność pola elektrycznego, pola magnetycznego i pola grawitacyjnego. Po raz pierwszy w historii fizyki obiektywnie porównano ze sobą
DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA
71 DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA dr hab. inż. Roman Partyka / Politechnika Gdańska mgr inż. Daniel Kowalak / Politechnika Gdańska 1. WSTĘP
POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego
POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.
Magnesy krótka historia
Siła Lorentza Magnesy krótka historia Magnetyczne właściwości rud żelaza znane były w starożytności Te naturalne magnesy nie był silne i wystarczały do demonstrowania działania siły magnetycznej na lekkie
Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu
Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013
Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Lp. Temat lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą
Pole magnetyczne Wykład LO Zgorzelec 13-01-2016
Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu
Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.
Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. 1. Elektromagnes 2. Zasilacz stabilizowany do elektromagnesu 3.
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Electromagnetic interactions. Oddziaływania elektromagnetyczne
Electromagnetic interactions Oddziaływania elektromagnetyczne Odziaływania grawitacyjne - siła powszechnego ciążenia (Newton) F = G grawit m m 1 2 r 2 G = 6.67 10 11 Nm 2 s 2 http://universeadventure.org/universe_4-6.html
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Wyk³ady z Fizyki. Magnetyzm. Zbigniew Osiak
Wyk³ady z Fizyki 07 Magnetyzm Zbigniew Osiak ORCID Linki do moich publikacji naukowych i popularnonaukowych, e-booków oraz audycji telewizyjnych i radiowych są dostępne w bazie ORCID pod adresem internetowym:
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Indukcja elektromagnetyczna
ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu
Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych
napisał Michał Wierzbicki Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych Rozważmy tak zwaną linię Lechera, czyli układ dwóch równoległych, nieskończonych przewodników, o przekroju