5. MES w mechanice ośrodka ciągłego

Wielkość: px
Rozpocząć pokaz od strony:

Download "5. MES w mechanice ośrodka ciągłego"

Transkrypt

1 . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m t t x t y t z Równane równowag cała S tds + ρbd Statyczne warun brzegowe t σn gdze σ tensor naprężeń Wyorzystuąc twerdzene Greena Gaussa Ostrogradzego σnds dvσd S 3.

2 .. Stan równowag P.Pucńs Równana Navera (dvσ + ρb) d dvσ + ρb σ, + ρb P Notaca tensorowa σ x τ xy τ xz t σn gdze σ τ xy σ y τ yz τ xz τ yz σ z, n n x n y n z Notaca ogt a dvσ L T s gdze L σ x σ y t m T σ s gdze s z τ yz τ xz τ xy x y z z y z x y x Równane Navera w notac ogt a, m n x n y n z n z n y n z n x n y n x gdze L macerz operatorów różnczowych L T s + ρb Sformułowane słabe funca wagowa w δu nematyczne dopuszczana waraca przemeszczena (zgodna z nematycznym warunam brzegowym zasada prac wrtuanych) (Lδu) T sd + S (Lδu) T sd + ( ) (δu) T L T s + ρb d (Lδu) T sd praca sł wewnętrznych t (δu) T m T s S δu ds + (δu) T ρbd (δu) T tds + (δu) T ρbd S (δu) T tds + (δu) T ρbd praca sł zewnętrznych 3.

3 .. Dysretyzaca MES (nlwe, N LSSU, ELEU) P.Pucńs.. Dysretyzaca MES (nlwe, N LSSU, ELEU) Aprosymaca poa przemeszczeń n u eh N e (ξ, η, ζ) d e N e de N e 3 3n N e... N e n N e... N e n N e... N e n d e 3n d e... d e n x 3 z 9 y 6 7 d e 3n ITe d 3n NN n ξ ζ m o p η IT e macerz transformac uwzgędnaąca topoogę cosnusy erunowe pomędzy osam uładu gobanego oanego.3. Równane równowag uładu zdysretyzowanego Równane równowag (ρb e f e wetor sł obętoścowych) { } (L e δu e ) T s e d e (δu e ) T t e ds e (δu e ) T f e d e e S e e { B e } (L e N e δ d e ) T s e d e (N e δ d e ) T t e ds e (N e δ d e ) T f e d e e S e e IT e { } ( δ d δd) e T B et s e d e N et t e ds e N et f e d e e S e e { E (δd) T } IT et B { } et s e d e N et t e ds e N et f e d e e S e e } δd IT et B { et s e d e N et t e ds e N et f e d e e S e e { } } IT et B et s e d e IT et N {S et t e ds e + N et f e d e e e e sły wewnętrzne sły zewnętrzne 3.3

4 .. Eementy prętowe P.Pucńs Uwzgędnene zwązów nematycznych onstytutywnych nowa sprężystość (zw. onstytutywny) : s De nowy zwąze nematyczny : e Lu s e D e L e u e D e L e N e d e D e B e IT e d { } IT et B et D e B e d e IT e d e } IT {S et N et t e ds e + N et f e d e e e IT et { e B et D e B e d e K e } IT e d IT et { S e N et t e ds e p e b + e N et f e d e p e } IT et K e IT e d IT et p e b + IT et p e IT et K e IT e K d IT et p e b p b + IT et p e p Kd p b + p.. Eementy prętowe... Eement ratowy y d e d e d e e, u e d e d e x e α e d e 3 d e d e Wetor func przemeszczeń u {u(x)} Wetor uogónonych odształceń e {ε x } 3.

5 .. Eementy prętowe P.Pucńs Wetor uogónonych naprężeń s {N(x)} Wetor obcążena po długośc eementu f {f x } Macerz zwązów onstytutywnych D EA Macerz operatorów różnczowych L d dx Aprosymaca u e (x) N e (x) d e N e L e Le d, d e d L e ( xe ) e L e ( xe ) e Macerz sztywnośc K e K e e B et D e B e d EA EA e EA EA Macerz transformac c cos(α e ) s sn(α e ) T e c s c s Wzory transformacyne K e T et K e T e x e T et, T e x e 3.

6 .. Eementy prętowe P.Pucńs Wetor zastępnów f e x p e e N et f e d da f x const f x { } y e e p e fx, fx α e x... Eement beowy y, v e d e 3 de 3 de d e d e de e Wetor func przemeszczeń d e de Wetor uogónonych odształceń x u {v(x)} e {κ} Wetor uogónonych naprężeń s {M(x)} Wetor obcążena po długośc eementu f {f y } Macerz zwązów onstytutywnych D EI Macerz operatorów różnczowych L d dx 3.6

7 .. Eementy prętowe P.Pucńs Aprosymaca u e (x) N e (x) d e N e H e Ĥ e H e Ĥ e, d e d d d 3 d H e( xe ) e H e( xe ) Ĥ e( xe ) e Ĥ e( xe ) e e Macerz sztywnośc e K e B et D e B e d e 6 6 K e EI Macerz transformac bra Wetor zastępnów f e y da f y const f y p e e N et f e d { } y e e p e fy, fy, fy, f y x..3. Eement ramowy, v e d e de 6 d e y d e d e d e d e 3 d e e, u e d e d e d e x e α e d e 6 d e d e d e d e 3 3.7

8 .. Eementy prętowe P.Pucńs Wetor func przemeszczeń u {u(x), v(x)} Wetor uogónonych odształceń e {ε x, κ} Wetor uogónonych naprężeń s {N(x), M(x)} Wetor obcążena po długośc eementu f {f x, f y } Macerz zwązów onstytutywnych Macerz operatorów różnczowych D L EA EI d dx d dx Aprosymaca u e (x) N e (x) d e L N e e L e H e Ĥ e H e d e d d d 3 d d d 6 Ĥ e L e ( xe ) e L e ( xe ) e H e ( xe ) e H e( xe ) e Ĥ e( xe ) e Ĥ e( xe ) e Macerz sztywnośc K e e B et D e B e d 3.

9 .. Zagadnene D P.Pucńs K e EI 3 A I A I A I A I e Macerz transformac c cos(α e ) s sn(α e ) T e c s s c c s s c f e x Wetor zastępnów f e y p e e N et f e d da f x const f x f y const f y { } y e e p e fx, fy, fy, fx, fy, f y x α e.. Zagadnene D Wetor func przemeszczeń u {u(x, y), v(x, y)} Wetor odształceń e {ε x, ε y, γ xy } Wetor naprężeń s {σ x, σ y, τ xy } Wetor ntensywnośc sł brzegowych t {t x, t y } 3.9

10 .. Zagadnene D P.Pucńs Wetor ntensywnośc sł powerzchnowych f {f x, f y } Macerz operatorów różnczowych L x y y x Macerz zwązów onstytutywnych PSN: σ z ε z ν E (σ x + σ y ) D E ν ν ν ν Macerz zwązów onstytutywnych PSO: ε z σ z ν(σ x + σ y ) E D ( + ν)( ν) ν ν ν ν ν Macerz sztywnośc (da PSO h e m) K e B et D e B e h e da e A e Wetor obcążena eementu (da PSO h e m) p e N et f e h e da e A e Γ e A e Wetor sł brzegowych (da PSO h e m) p e b N et t e h e dγ e Γ e 3.

11 .6. Eementy sończone D P.Pucńs.6. Eementy sończone D Eement trówęzłowy N e u e (x, y) N e (x, y) d e N e N e N e N e N e N e, d e d d d 3 d d d 6 d 6 d d d e d d 3 N (, ) N (, ) N (, ) Eement czterowęzłowy u e (x, y) N e (x, y) d e N e N e N e N e N e N e N e N e N e, d e d d d 3 d d d 6 d 7 d d d 7 d 6 d d d e d d3 N (x, y) N (x, y) N (x, y) N (x, y) 3.

12 .7. Przyłady P.Pucńs.7. Przyłady.7.. Statya tarczy. Dane 3 N/m 7. N/m E GPa ν. h. m m m m Y Dysretyzaca d d 7 d d 3 d d d 9 X d d 3 d 6 nr. eem. nr. węzł. eem. 3. Macerz zwązów onstytutywnych 6 D. D Pa 6 Pa 3. Wyznaczene macerzy func ształtu N e macerzy sztywnośc K e Eement y () Dysretyzaca d 7 d d d 7 d d d d d 6 d d 3 d 9 d d 3 x () d d 3 N (x (), y () ) x() y () x () y () +, N (x (), y () ) x() y () N (x (), y () ) x() x () y (), N (x (), y () ) y() x () y () 3.

13 .7. Przyłady P.Pucńs K Eement N B (x (), y () ) N N N N N N N N y () y() y () y() x () x() x() x() x () B T DB h dx () dy () y () x() y() x () y () x() y() y () Dysretyzaca d d 3 d d 9 d 6 d x () d d 3 d 3 d d d 6 N (x (), y () ) y(), N (x (), y () ) y() x () N N (x (), y () ) x() N N N N N N - B (x (), y () ) K B T DB ha

14 .7. Przyłady P.Pucńs. Wetor p b 3 N/m 6 N/m 7. N/m m m m Eement p b Γ w.b. N T t dγ + wspóna rawędź równowaga sł wzdłuż n -: t t Γ N T tdγ+ Γ N T tdγ+ Γ N T tdγ ( ) T N (x (), y () ) ( ) Ttdy + N (x (), y () () ) r r + r7 r ) 3 ( x() 6 x() dx () Eement p b Γ wspóna rawędź równowaga sł wzdłuż n -: t w.b. t N T t dγ + N T tdγ+ N T tdγ Γ Γ ( ) T N (x (), y () ) ) dx 6 ( () x() 7. x()

15 .7. Przyłady P.Pucńs. Agregaca Macerze Booe a IB Eement y () d 7 d d d 7 d d d d d 6 d d 3 d 9 d d 3 x () d d 3 IB nr. o Eement nr. gob y () d d 3 d d 9 d 6 d x () d d 3 d 3 d d d 6 IB nr. gob nr. o Agregaca - Macerz sztywnośc K IB T K IB + IB T K IB K Agregaca - Wetor obcążena p b IB T p b + IB T p b, p 3.

16 .7. Przyłady P.Pucńs p b r 7 r r r r r 7 r r. Uład równań MES: Kd p + p b d d d 3 d d d 6 d 7 d d 9 d r r r 7 r 9. Uwzgęnene warunów brzegowych d 3 d d d 6 d 9 d r r r 7 r Rozwązane: d { } m r { } N. Powrót do eementu Eement d IB d { } 3.6

17 .7. Przyłady P.Pucńs Eement e s.93y.936.3x.93x.3y.6.976y x.7y.9 6.x 6.66x.y e B d, e (, ) s De, s (, ) d IB d { } 7 Pa e s e B d s De.93 Pa 3.. Wyznaczene wartośc przemeszczeń w wybranych puntach Eement punt (x (), y () ) u (, ) Eement punt (x ()., y ().) u (x (), y () ) N (x (), y () )d u (.,.) u (x (), y () ) N (x (), y () )d m m 3.7

18 .7. Przyłady P.Pucńs.7.. Zagadnene PSO. Dane 3 N/m 7. N/m E GPa ν. m m m Y Dysretyzaca d d 7 d d 3 d d d 9 X d d 3 d 6 nr. eem. nr. węzł. eem. 3. Macerz zwązów onstytutywnych 6 D ( +.)(.) D Pa 3. Wyznaczene macerzy func ształtu N e macerzy sztywnośc K e Eement Pa y () Dysretyzaca d 7 d d d 7 d d d d d 6 d d 3 d 9 d d 3 x () d d 3 N (x (), y () ) x() y () x () y () +, N (x (), y () ) x() y () N (x (), y () ) x() x () y (), N (x (), y () ) y() x () y () 3.

19 .7. Przyłady P.Pucńs K Eement N B (x (), y () ) N N N N N N N N y () y() y () y() x () x() x() x() x () B T DB dx () dy () y () x() y() x () y () x() y() y () Dysretyzaca d d 3 d d 9 d 6 d x () d d 3 d 3 d d d 6 N (x (), y () ) y(), N (x (), y () ) y() x () N N (x (), y () ) x() N N N N N N - B (x (), y () ) K B T DB A

20 .7. Przyłady P.Pucńs. Wetor p b 3 N/m 6 N/m 7. N/m m m m Eement p b Γ w.b. N T t dγ + wspóna rawędź równowaga sł wzdłuż n -: t t Γ N T tdγ+ Γ N T tdγ+ Γ N T tdγ ( ) T N (x (), y () ) ( ) Ttdy + N (x (), y () () ) r r + r7 r ) 3 ( x() 6 x() dx () Eement p b Γ wspóna rawędź równowaga sł wzdłuż n -: t w.b. t N T t dγ + N T tdγ+ N T tdγ Γ Γ ( ) T N (x (), y () ) ) dx 6 ( () x() 7. x()

21 .7. Przyłady P.Pucńs. Agregaca Macerze Booe a IB Eement y () d 7 d d d 7 d d d d d 6 d d 3 d 9 d d 3 x () d d 3 IB nr. o Eement nr. gob y () d d 3 d d 9 d 6 d x () d d 3 d 3 d d d 6 IB nr. gob nr. o Agregaca - Macerz sztywnośc 7. Agregaca - Wetor obcążena K IB T K IB + IB T K IB K p b IB T p b + IB T p b, p 3.

22 .7. Przyłady P.Pucńs p b r 7 r r r r r 7 r r. Uład równań MES: Kd p + p b d d d 3 d d d 6 d 7 d d 9 d r r r 7 r 9. Uwzgęnene warunów brzegowych d 3 d d d 6 d 9 d r r r 7 r Rozwązane: d { } m r { } N. Powrót do eementu Eement d IB d { } e B d 3.

23 .7. Przyłady P.Pucńs Eement e s.y.773.6x.x.6y y.x y.373x x.y , e (, ) s De, s (, ) σ z ν(σ x + σ y).(.).6 Pa d IB d { } 7 Pa s.3 7. Pa, e e B d σ z ν(σ x + σ y).(.3). Pa. Wyznaczene wartośc przemeszczeń w wybranych puntach Eement punt (x (), y () ) u (, ) Eement punt (x ()., y ().) u (x (), y () ) N (x (), y () )d u (.,.) u (x (), y () ) N (x (), y () )d m m 3.3

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

MES w zagadnieniach ośrodka ciągłego 2D i 3D

MES w zagadnieniach ośrodka ciągłego 2D i 3D MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej

Bardziej szczegółowo

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły 6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

MES w zagadnieniach ośrodka ciągłego 2D i 3D

MES w zagadnieniach ośrodka ciągłego 2D i 3D MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika

Bardziej szczegółowo

MES dla stacjonarnego przepływu ciepła

MES dla stacjonarnego przepływu ciepła ME da staconarngo przpływu cpła Potr Pucńs -ma: ppucn@l5.p.du.p Jrzy Pamn -ma: pamn@l5.p.du.p Instytut Tchnoog Informatycznych w Inżynr Lądow Wydzał Inżynr Lądow Potchn Kraows trona domowa: www.l5.p.du.p

Bardziej szczegółowo

Budownictwo, II rok sem IV METODY OBLICZENIOWE. dr inŝ. Piotr Srokosz IP Temat 8

Budownictwo, II rok sem IV METODY OBLICZENIOWE. dr inŝ. Piotr Srokosz IP Temat 8 Bdownctwo, II rok sem IV MEODY OBLICZEIOWE dr nŝ. Potr Srokosz IP- emat 8 emat 8 Równana róŝnczkowe cząstkowe Metoda Elementów Skończonch (MES) Zagadnene brzegowe Sformłowane zagadnena fzcznego Równana

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

Zagadnienie statyki kratownicy płaskiej

Zagadnienie statyki kratownicy płaskiej Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz 1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

MES w zagadnieniach nieliniowych

MES w zagadnieniach nieliniowych MES w zagadnieniach nieliniowych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: A. Wosatko, A. Winnicki ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO DIANA http://www.tnodiana.com

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

4. Elementy liniowej Teorii Sprężystości

4. Elementy liniowej Teorii Sprężystości 4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Wytrzymałość materiałów

Wytrzymałość materiałów Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem

Bardziej szczegółowo

MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW

MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW Materiały pomocnicze do wykładu (Inżynieria Środowiska) PWSZ w Elblągu dr hab. inż. Cezary Orlikowski Instytut Politechniczny MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3 TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu

Bardziej szczegółowo

Rozwiązywanie zagadnień nieliniowych

Rozwiązywanie zagadnień nieliniowych Rozwiązywanie zagadnień nieliniowych Wykład 4 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika Krakowska Podziękowania:

Bardziej szczegółowo

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie. Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie

Bardziej szczegółowo

4. RÓWNANIE PRACY WIRTUALNEJ

4. RÓWNANIE PRACY WIRTUALNEJ Część 1 4. RÓWNANIE PRACY WIRTUALNEJ 1 4. 4. RÓWNANIE PRACY WIRTUALNEJ Rozdzał ten pośwęcony et wyprowadzenu twerdzena o pracy wrtuane, edna wywód naeży poprzedzć wyaśnenem dwóch zagadneń: przemezczena

Bardziej szczegółowo

WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH

WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2010/2011 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. EN :2004

Pręt nr 1 - Element żelbetowy wg. EN :2004 Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800

Bardziej szczegółowo

MES dla ustrojów prętowych (statyka)

MES dla ustrojów prętowych (statyka) MES dla ustrojów prętowych (statyka) Jrzy Pamin -mail: jpamin@l5.pk.du.pl Piotr Pluciński -mail: pplucin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki

Bardziej szczegółowo

czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda

czastkowych Państwo przyk ladowe zadania z rozwiazaniami:   karpinw adres strony www, na której znajda Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania

Bardziej szczegółowo

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 1 10. 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10.1. Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...

Bardziej szczegółowo

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera: Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej

Bardziej szczegółowo

7. Obciążenia ekwiwalentne dla elementu prętowego

7. Obciążenia ekwiwalentne dla elementu prętowego 7. Obciążenia ekwiwalentne dla elementu prętowego 7.. Obciążenia ekwiwalentne dla elementu prętowego rozciąganego lub ściskanego q() d p = q d u = q N u e d 0 0 p = u e q N d 0 Q Q e = Q u e Q = Q Q u

Bardziej szczegółowo

Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN :2004

Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN :2004 Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN 1992-1- 1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y0.000m); 1 (x6.000m, y0.000m)

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z) v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d

Bardziej szczegółowo

PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM

PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Sprężystość

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Przykład 2.3 Układ belkowo-kratowy.

Przykład 2.3 Układ belkowo-kratowy. rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Spis wszystkich symboli

Spis wszystkich symboli 1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon

Bardziej szczegółowo

Część DZIAŁANIE MOMENTU SKRĘCAJĄCEGO 1 DZIAŁANIE MOMENTU SKRĘCAJĄCEGO ZALEŻNOŚCI PODSTAWOWE

Część DZIAŁANIE MOMENTU SKRĘCAJĄCEGO 1 DZIAŁANIE MOMENTU SKRĘCAJĄCEGO ZALEŻNOŚCI PODSTAWOWE Część 1. DZIŁNIE OENTU SKRĘCJĄCEGO 1 1 DZIŁNIE OENTU SKRĘCJĄCEGO 1.1. ZLEŻNOŚCI PODSTWOWE 1.1.1. Podstawy teorii skręcania swobodnego prętów sprężystych Rozważmy jednorodny, izotropowy, liniowo-sprężysty

Bardziej szczegółowo

Integralność konstrukcji w eksploatacji

Integralność konstrukcji w eksploatacji 1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego. Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym

Bardziej szczegółowo

mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia

mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

q (s, z) = ( ) (λ T) ρc = q

q (s, z) = ( ) (λ T) ρc = q M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E

Bardziej szczegółowo

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie

Bardziej szczegółowo

Łagodne wprowadzenie do Metody Elementów Skończonych

Łagodne wprowadzenie do Metody Elementów Skończonych Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -

Bardziej szczegółowo

Wyznaczanie przemieszczeń

Wyznaczanie przemieszczeń ór Maxwea-Mora δ ynacane premesceń ór Maxwea-Mora: Bea recywsym obcążenem δ MM JE NN E ( ) M d g N o P q P TT κ G ór służy do wynacena premescena od obcążena recywsego. równanu wysępuą weośc, wywołane

Bardziej szczegółowo

Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP

Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP Ekran 1 - Dane wejściowe Materiały Beton Klasa betonu: C 45/55 Wybór z listy rozwijalnej

Bardziej szczegółowo

MECHANIKA BUDOWLI 4. Słowa kluczowe: praca wirtualna, przemieszczenie wirtualne

MECHANIKA BUDOWLI 4. Słowa kluczowe: praca wirtualna, przemieszczenie wirtualne Oga Kopacz, Aa Łoygows, Wocech Pawłows, Mchał Płotowa, Krzysztof Tyber Konsutace nauowe: prof. r hab. JERZY RAKOWSKI Poznań / MECHANIKA BUDOWI 4 Rozzał ten pośwęcony est wyprowazenu twerzena o pracy wrtuane,

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Stateczność układów ramowych

Stateczność układów ramowych tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. PN-B-03264

Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru

Bardziej szczegółowo

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja 19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

Nierówności symetryczne

Nierówności symetryczne Nierówności symetryczne Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul Chopina 1 18, 87 100 Toruń (e-mail: anow@matunitorunpl) Sierpień 1995 Wstęp Jeśli x, y, z, t

Bardziej szczegółowo

Sekantooptyki owali i ich własności

Sekantooptyki owali i ich własności Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo