SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

Wielkość: px
Rozpocząć pokaz od strony:

Download "SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska."

Transkrypt

1 SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa

2 FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA Cel lasyfac lnowe Wyznaczyć w przestrzen przyładów X powerzchnę dysrymnacyną (lnową) rozdzelaącą przyłady z różnych las. Powerzchne dysrymnacyne można oreślć pośredno na podstawe porównań wartośc K func dysrymnacynych g (), g (),..., g K () zdefnowanych dla ażde lasy. Funca dysrymnacyna g () ma tę własność, że dla wszystch przyładów należących do lasy zachodz: g() - g ( ) > g ( ),, =,,..., K, - - -

3 FUNKCJE DYSKRYMINACYJNE I MASZYNA LINIOWA Funce dysrymnacyne g () g () przyległych obszarów decyzynych defnuą powerzchnę dysrymnacyną rozdzelaąca te obszary: g ( ) = g ( ) Przymmy, że ażda lasa reprezentowana est przez punt prototypowy P = [p, p,... p,n ], np. środe lasy: N m = l, =,,..., K (numer lasy) N l= gdze N est lczbą przyladów z lasy ; lczbę wszystch przyładów oznaczmy N. Maszyna lnowa oblcza odległość pomędzy przyładem, a ażdym puntem prototypowym. Przyład zostae zalczony do te lasy, tórą reprezentue nablższy punt prototypowy. Nech marą odległośc będze wadrat odległośc euldesowe: ( ( P ) ( P ) ) = P P P P = + 3

4 FUNKCJE DYSKRYMINACYJNE I MASZYNA LINIOWA Nezależny od lasy sładn można pomnąć przyąć, że pozostałość ze znaem przecwnym podzelona przez będze pełnć rolę func dysrymnacyne: g ( ) = P. 5P Jest to funca lnowa ze współczynnem erunowym a = P wyrazem wolnym a, =..5P P Powerzchnę dysrymnacyną rozdzelaącą dwa przyległe obszary opsue równane: P P.5P P = P. 5P P W przypadu przyładów dwuwymarowych = [, ] lna decyzyna pomędzy lasą ma postać: p, + p,.5( p, + p, ) = p, + p,.5( p, + p, ) ( p =, p, ) +.5( p p,, p + p,, p, p, ) 4

5 MASZYNA LINIOWA a, a, g () a, n a, a n,k a n,k a,k a, a, K g () g () K Seletor masmum Klasa Lnowa separowalność Jeśl stnee K lnowych func dysrymnacynych g () o postac a + a, tach że: g ( ) > g ( ) dla ażdego lasy,, =,,..., K, to obszary zaweraące wyłączne punty z edne lasy (tzw. obszary decyzyne) są lnowo separowalne. 5

6 MASZYNA LINIOWA PRZYKŁAD Dane są punty prototypowe: P = [, ], P = [ 5, ], P 3 = [5, 5]. Zaproetu maszynę lnową. Wag func dysrymnacynych: a, =, a, =, a, =.5P P = 5 g ) = + 5 ( a, = 5, a, =, a, =.5P P = 4.5 g ) = ( a 3, = 5, a 3, = 5, a 3, =.5P 3 P3 = 5 g ) = ( Lne decyzyne: S : g( ) g ( ) = = S 3 = g( ) g3( ) = = S 3 = g ( ) g3( ) = = Klasyfaca nowego przyładu * = [, ]: 5-5 Kl. Kl. Kl. 3 g ( *) = 3, g ( *) =. 5, g ( *) = 35 lasy

7 REGUŁA PERCEPRONOWA Parametry maszyny lnowe wyznacza sę na podstawe puntów prototypowych w sposób analtyczny. W regule perceptronowe wartośc współczynnów hperpłaszczyzny dysrymnacyne uzysue sę w procese uczena z nauczycelem na podstawe zboru trenuącego. Reguła lasyfac w przypadu dwóch las ma postać (tzw. dychotomzator): a > a < lasy lasy gdze: = [,,..., n, ], a = [a, a,..., a n, a ] Szuamy tach współczynnów, tóre mnmalzuą ryterum: J ( a) = Z gdze: Z podzbór przyładów nepoprawne lasyfowanych, δ =, eśl lasy δ = +, eśl lasy. 7 δ a

8 REGUŁA PERCEPRONOWA Do znalezena mnmum można zastosować algorytm nawęszego spadu gradentu. W olenych teracach tego algorytmu modyfuemy współczynn, do momentu osągnęca mnmum ryterum (poprawne lasyfac wszystch przyładów uczących). J J J Gradent J ( a ) =,,..., ze znaem uemnym wsazue erune "przesunęca" a a a współczynnów: a a η J (a) gdze η > współczynnem uczena..8 Poneważ J ( a) = δ perceptronową regułę Z uczena możemy zapsać: J E.6.4. a a η Z δ.5.5 w -.5 a w a - - 8

9 REGUŁA PERCEPRONOWA ALGORYM. Wyberz losowo a, ustal η.. Powtarza.. Z =.. Powtarza dla =,,..., N... Jeśl δ, to Z = Z { } a.3. Jeśl Z =, to zaończ.4. a a η δ Z Algorytm przerywa dzałane, gdy znadze aąolwe płaszczyznę separuącą lasy. Jeśl przyłady są lnowo separowalne, algorytm zawsze znadue rozwązane w sończone lczbe roów (est zbeżny). 9

10 REGUŁA PERCEPRONOWA REGUŁA PERCEPRONOWA ALGORYM DLA WIELU KLAS W przypadu K las lnowo separowalnych oczeuemy: a > a dla ażdego lasy,, =,,..., K,. Wyberz losowo a dla =,,..., K, ustal η.. Powtarza.. Powtarza dla =,,..., N... Jeśl ma lasę dla pewnych l zachodz l a a (błędna lasyfaca), to: a a l a a l + η η.. Jeśl w pętl. ne nastąpła modyfaca żadnych współczynnów a, to zaończ.

11 REGUŁA PERCEPRONOWA PRZYKŁAD Przeprowadź trenng perceptronu dla przyładów należących do trzech las: = [,, ], = [, -5, ], 3 = [-5, 5, ]. Przym η = współczynn startowe a = [, -, ], a = [, -, -], a 3 = [, 3, ]. Przedstaw decyze perceptronu współczynn w olenych teracach. Przedstaw lne dysrymnacyne. Zobrazu rozwązane na wyrese.

12 FISHEROWSKA DYSKRYMINACJA LINIOWA Idea lasyfac Fshera Znadź erune a w przestrzen przyładów X, tóry po zrzutowanu na nego przyładów pozwala nalepe rozdzelć przyłady obu las. Mara separowalnośc uwzględna odległośc mędzy lasam rozrzut przyładów wewnątrz las. m m Kerune a to wetor współczynnów stoących przy zmennych w równanu proste w postac ogólne. Prosta dysrymnacyna est prostopadła do tego erunu. (, ) a prosta dysrymnacyna a +a =

13 FISHEROWSKA DYSKRYMINACJA LINIOWA o potępowana Metoda wymaga podzału zboru trenuącego na dwa podzbory: A przyłady z lasy, B przyłady z lasy. Zbór przyładów należących do dane lasy reprezentue środe lasy m macerz owaranc S nformuąca o ch rozrzutach w różnych erunach.. Wyznaczamy środ las ao średne wetorowe przyładów należących do poszczególnych las: m N = N l= l, =, (numer lasy) gdze N est lczbą przyladów z lasy ; lczbę wszystch przyładów oznaczmy N.. Jao mary rozrzutu przyładów w lasach wyznaczamy macerze owaranc: S = N ( N l=, l m )(, l m ), =, 3

14 FISHEROWSKA DYSKRYMINACJA LINIOWA 3. Wyznaczamy macerz owaranc wspólne dla obu las: W = ( N ) S + ( N ) S N Marą rozproszena przyładów wzdłuż erunu a est welość: a Wa. 4. Znadź erune a ~, dla tórego wyrażene ( a m a m) a Wa (*) osąga wartość masymalną. Zachodz to wtedy, gdy wadrat odległośc pomędzy średnm las m m zrzutowanym na ten erune (lczn) est a nawęszy, a rozrzut przyładów wzdłuż tego erunu (manown) est a namneszy. 5. Reguła lasyfac: zrzutu średne m m oraz nowy przyład na erune ~ a, zmerz odległośc pomędzy środam m wzdłuż erunu ~ a : ~ ~ a a m zalasyfu do te lasy, tóre środe leży blże. 4

15 FISHEROWSKA DYSKRYMINACJA LINIOWA Prosta (płaszczyzna, hperpłaszczyzna) dysrymnacyna wyna z p. 5 est to płaszczyzna prostopadła do erunu ~ a, przechodząca przez środe odcna łączącego ~ a m ~ a m. Wyznacza ą równość: ~ ~ a a m ~ ~ = a a m Przyrównuąc pochodne ryterum (*) do zera można znaleźć erune optymalny: ~ a = W ( m m ), wobec czego równane płaszczyzny dysrymnacyne można zapsać: ( m m) W [.5( m + m )] = Czyl eśl dla naszego przyładu zachodz: m m ) W [.5( m + m )] lasyfuemy go ( > do lasy. Gdy zachodz nerówność odwrotna przyład lasyfuemy do lasy. Równane proste dysrymnacyne w przypadu dwuwymarowym (prosta o współczynnach ~ a, przechodząca przez środe odcna łączącego m m ): a~ + a~ = a~, gdze = ~ a m + m ~ a 5

16 FISHEROWSKA DYSKRYMINACJA LINIOWA Problem welu las Dla wszystch możlwych zestawów par las tworzy sę odrębną płaszczyznę dysrymnacyną. W oblczenach przymue sę wspólną dla wszystch las macerz owaranc wewnątrzgrupowe: W = K N K = ( N ) S gdze K to lczba las. Każda hperpłaszczyzna lasyfue przyład do edne lasy. Jao lasę przyładu wybera sę lasę węszoścową. 6

17 FISHEROWSKA DYSKRYMINACJA LINIOWA Ogranczena Metoda Fshera załada, że macerze owaranc wewnątrz las są dentyczne, a rozłady las są gaussowse ednomodalne: Metoda zawodz, gdy węce nformac o położenu las zawartych est ne w ch środach, ale w waranc: 7

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y.

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie

Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie Lteratura przegląd etod Studu podyploowe Analty Fnansowy Metody tasonoczne Klasyfaca porządowane Dzechcarz J. (pod red.), Eonoetra: etody, przyłady, zadana, Wydawnctwo Aade Eonoczne we Wrocławu, Wrocław,

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 1 Ćwczene 2: Perceptron WYMAGANIA 1. Sztuczne sec neuronowe budowa oraz ops matematyczny perceptronu (funkcje przejśca perceptronu), uczene perceptronu

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych Najprostsza jest jednostka lnowa: Neuron lnowy potraf ona rozpoznawać wektor wejścowy X = (x 1, x 2,..., x n ) T zapamętany we współczynnkach wagowych W = (w 1, w 2,..., w n ), Zauważmy, że y = W X Załóżmy,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 5. SZTUCZNE SIECI NEURONOWE REGRESJA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wdzał Elektrczn Poltechnka Częstochowska PROBLEM APROKSYMACJI FUNKCJI Aproksmaca funkc przblżane

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma

Bardziej szczegółowo

exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B

exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Eksploracja danych. Grupowanie danych

Eksploracja danych. Grupowanie danych Esploracja danych grupowane danych Potr Lpńs Grupowane danych Cele grupowana danych jest podzał reordów danych na grupy, ta aby eleenty z tej saej grupy były do sebe podobne, a z różnych grup od sebe różne.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Neuronu dyskretny. Neuron dyskretny (perceptron prosty)

Plan wykładu. Sztuczne sieci neuronowe. Neuronu dyskretny. Neuron dyskretny (perceptron prosty) Plan wykładu Dzałane neuronu dyskretnego warstwy neuronów dyskretnych Wykład : Reguły uczena sec neuronowych. Sec neuronowe ednokerunkowe. Reguła perceptronowa Reguła Wdrowa-Hoffa Reguła delta ałgorzata

Bardziej szczegółowo

Zastosowanie procedur modelowania ekonometrycznego w procesach programowania i oceny efektywności inwestycji w elektroenergetyce

Zastosowanie procedur modelowania ekonometrycznego w procesach programowania i oceny efektywności inwestycji w elektroenergetyce Waldemar KAMRAT Poltechna Gdańsa Katedra Eletroenergety Zastosowane procedur modelowana eonometrycznego w procesach programowana oceny efetywnośc nwestyc w eletroenergetyce Streszczene. W pracy przedstawono

Bardziej szczegółowo

Filtracja adaptacyjna - podstawy

Filtracja adaptacyjna - podstawy Fltracja adaptacyjna - podstawy Współczynn fltrów adaptacyjnych są zmennym w czase w celu optymalzacje zadanego ryterum Powszechnym algorytmem dla fltrów adaptacyjnych jest algorytm LMS Least Mean Square)

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Małe drgania wokół położenia równowagi.

Małe drgania wokół położenia równowagi. ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach

n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach Problem decyzyny cel różne sposoby dzałana (decyze) warunk ogranczaące (determnuą zbór decyz dopuszczalnych) kryterum wyboru: umożlwa porównane efektywnośc różnych decyz dopuszczalnych z punktu wdzena

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 WYBRANE ZAGADNIENIA Z TEORII LICZB 1. Wybrane zagadnena z teor lczb Do onstruowana systemów ryptografcznych u Ŝ ywa sę czę sto wyrafnowanego aparatu matematycznego,

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady

Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady Plan yładu Wyład 10: Sec samoorganzuce s na zasadze spółzaodncta Sec samoorganzuace s na zasadze spółzaodncta: uczene nenadzoroane uczene onurencyne reguła WTA reguła WTM antoane etoroe mapa cech Kohonena

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic Zadane rograowana lnowego PL dla ogranczeń neszoścowch rz ogranczenach: a f c A b d =n, d c=n, d A =[ n], d b =, Postać anonczna zadana PL a c X : A b, Postać anonczna acerzowa zadana PL a Lczba zennch

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA J. Wyrwał Wyłady z mechan materałów.. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA... Wetor przemeszczena Rozważmy bryłę (cało materalne) o dowolnym ształce meszczoną w prostoątnym ładze odnesena Ox xx (rys.

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E bedze zborem zdarzen elementarnych danego doswadczena. Funcje X(e) przyporzadowujaca azdemu zdarzenu elementarnemu e E jedna tylo jedna lczbe X(e)x nazywamy ZMIENNA

Bardziej szczegółowo

Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM

Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM SVM Wprowadzene Support vector machnes (maszyny wektorów wsperających, maszyny wektorów nośnych) SVM służy do: w wersj podstawowej klasyfkacj bnarnej w wersj z rozszerzenam regresj wyboru najważnejszych

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Stansław Bogdanowcz Poltechna Warszawsa Wydzał Transportu Załad Logsty Systemów Transportowych METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Streszczene: Ogólna podstawa

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

min h = x x Algorytmy optymalizacji lokalnej Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji x x

min h = x x Algorytmy optymalizacji lokalnej Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji x x Nelnowe zaane optymalzacj bez ogranczeń numeryczne metoy teracyjne optymalzacj mn n x R ) = f x Algorytmy poszuwana mnmum loalnego la: f zaana programowana nelnowego bez ogranczeń zaana programowana nelnowego

Bardziej szczegółowo

Wykład Turbina parowa kondensacyjna

Wykład Turbina parowa kondensacyjna Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW

Bardziej szczegółowo

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

STATYSTYKA. Zmienna losowa skokowa i jej rozkład

STATYSTYKA. Zmienna losowa skokowa i jej rozkład STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra

Bardziej szczegółowo

Sortowanie szybkie Quick Sort

Sortowanie szybkie Quick Sort Sortowane szybke Quck Sort Algorytm sortowana szybkego opera sę na strateg "dzel zwycęża" (ang. dvde and conquer), którą możemy krótko scharakteryzować w trzech punktach: 1. DZIEL - problem główny zostae

Bardziej szczegółowo

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA REGULAMIN ndywdualnego rozlczena osztów energ ceplnej dostarczonej na potrzeby centralnego ogrzewana cepłej wody meszań w zasobach Spółdzeln Meszanowej Lębora. POSTANOIENIA OGÓLNE Regulamn oreśla zasady:

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

1. Wstęp. 2. Macierz admitancyjna.

1. Wstęp. 2. Macierz admitancyjna. 1. Wstęp. Znaomość stanu pracy SEE est podstawowym zagadnenem w sterowanu pracą systemu na wszystkch etapach: proektowana, rozwou, planowana stanów pracy oraz w czase beżące eksploatac. Kontrola rozpływów

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo