ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI
|
|
- Marian Sadowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące warunki (przy założeniu p x =0 oraz istnienia siły masowej skierowanej przeciwnie do osi Y): = F y (10.) = F x (10.3) y = F x y x (10.4) 4 F, y =0 (10.5) 4 4 x 4 4 x y 4 y 4 (10.6) y x y p x=0 (10.7) Sprawdzamy czy funkcja Airy'ego spełnia te warunki. y x y p y=0 (10.8) 3 F y x 3 F =0 (10.9) x y 3 F x y 3 F x y =0 (10.10) Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
2 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI Zadanie 1. Znaleźć stan naprężeń w dowolnym punkcie tarczy. p y p x x p x p y l y l 1 Rys Rysunek do zadania 1. Przyjmujemy taką funkcję by spełniała równania biarmoniczne warunek konieczny. Warunek dostateczny: Warunki brzegowe: F, y =ax bxy cy (10.11) = F = c (10.1) y = F = a (10.13) x y = b (10.14) 1 x=l (10.15) = p x y = p (10.16) c= p b= p (10.17) Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
3 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 3 c= p x b= p (10.18) x= l y (10.19) = p x y = p (10.0) Warunki zgodne. 3 y= l x (10.1) = p y y = p (10.) a= p y b= p (10.3) F = 1 p y x p xy p x y (10.4) Zadanie. Zginanie belki y l l l l l x b=1 l l Rys.10.. Rysunek do zadania. przyjmujemy funkcję F(x,y) Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
4 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 4 Warunek jest spełniony. F, y =a x b 3 x y d 5 y 3 y5 (10.3) 5 F =0 (10.4) 4 F =0 (10.5) 4 x 4 F y 4 = 4 d 5 y (10.6) 4 F x y =4 d 5 y (10.7) 1 = F y =d 5 6 x y 4 y 3 (10.8) = F x = a b 3 y d 5 xy 3 (10.9) 3 y = F y x = b 3 x 6 d 5 xy (10.30) Warunki brzegowe (wyrażone w naprężeniac). 1 y=± l x l y =0 (10.31) y= l x l = (10.3) 3 y= l x l =0 (10.33) 4a x= l xy dy1=l (10.34) 4b x= l xy dy1= l (10.35) Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
5 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 5 5 x=±l dy1=0 (10.36) 6 x=±l ydy1=0 (10.37) = y= (10.38) Po podstawieniu do wzoru (10.9) otrzymamy: =0 y= (10.39) { a b3 d 5 8 = a b 3 d =0 3 (10.40) Z układu otrzymamy: a = 4 (10.41) y =0 y= (10.4) Po podstawieniu do wzoru (10.30) otrzymamy: x b 3 6 d 5 4 =0 (10.43) Z równań (10.40) i (10.43) otrzymujemy: d 5 = ) b 3 = (10.45) Zatem Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
6 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 6 = 3 6 x y 4 y 3 (10.46) = 3 y = 3 y 3 y3 (10.47) x 6 x 3 y (10.48) I z =I = 13 1 (10.49) Zatem = 1 I = 1 I y = 1 I 3 y (10.50) Sprawdźmy warunki brzegowe (10.34)-10.37): Warunek spełniony. Warunek spełniony. 3 y (10.51) 1 4 y x (10.5) y dy=±l (10.53) dy=0 (10.54) ydy= 1 I l (10.55) Warunek nie jest spełniony czyli źle przyjęto funkcję F do przyjętej funkcji dodajemy F 1 F=F F 1 (10.56) gdzie F 1 =d 3 y 3 (10.57) Zatem Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
7 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 7 1 =6 d 3 y (10.58) 1 =0 (10.59) 1 xy =0 (10.60) Po zmodyfikowaniu σ x Wprowadźmy zmienione σ x wszystkie dotycczasowo spełnione warunki brzegowe są spełnione. = 1 I 3 y y 6 d 3 y (10.61) do ostatniego warunku brzegowego, którego spełnienie prowadzi do relacji: Ostatecznie σ x ma postać: d 3 = I l 10 (10.6) = I l x I 3 y 10 y (10.63) Rys Naprężenia = M I y (10.64) M = l x (10.65) σ x jest krzywą trzeciego stopnia. Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
8 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 8 przybl. dokł. Rys Naprężenia σ x Porównajmy maksymalne naprężenia w włóknac skrajnyc: d x p max = d (10.67) 1 3 =0,1 0,3 promil (10.68) 1l =0,5 1,7 promil (10.69) l =0,5 6,7 promil (10.70) Przyjęte do rozważań wzory określające zginanie belki są wystarczająco dokładne. Rys Naprężenia σ y, τ xy Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
9 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 9 Ekstremalne wartości σ y = << σ x zatem możemy je zaniedbać w obliczeniac. τ xy liczymy z wzoru znanego z wytrzymałości materiałów: g T = x (10.71) y = TS Ib (10.7) Płaski stan naprężeń: 9. Wyznaczenie przemieszczeń w belce. d y = 1 E = 1 E = u x = v y (10.73) (10.74) y = 1 G y y = 1 u y v x (10.75) W celu otrzymania u i v wykonujemy obustronne całkowanie nieoznaczone: = u x u, y = dx=... f 1 (10.76) Dla x w środku belki ze względu na symetrię geometryczną i obciążenia: u 0, y =0 f 1 =0 (10.77) = v y v x, y = dy=... f 1 (10.78) Wyznaczenie stałej całkowania: y = 4 EI 4 y y = 4 EI [ l x x3 3 x= 1 u y v 10 y x 4 x ] 1 df 1 dx (10.79) df 1 = dx EI [ x l xi x3 (10.80) 3 ] f 1 =... f 0 (10.81) Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
10 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10 v x, y = { y4 EI 1 4 EI [ l x x4 1 0 x y 3 1 y [ l x ]} 0 y ] 4 x f 0 (10.8) przyjmijmy następujące warunki: x=±l y=0 } v=0 (10.83) Wówczas otrzymamy: f 0 = l [ 5 EI ] 4 (10.84) 4 W wyniku podstawienia f 0 do f 1 otrzymamy wzory na ugięcie w dolnyc punktac belki (tylko w poziomie). v= 5 l 4 4 EI (10.85) 9.3 Płaskie zadania osiowo symetryczne (współrzędne biegunowe) Zadanie osiowo symetryczne to zadanie tak skonstruowane, że funkcja miejsca i obciążenia są zależne tylko od jednej zmiennej ( promień). Φ=Φ(r) funkcja naprężeń 1 r = 1 r d dr (10.86) = d dr (10.87) r =0 (10.88) = d d r 1 r = 4 d 4 dr 4 r d 3 dr 3 1 d r dr 1 r 3 d (10.89) dr d (10.90) dr 4 r =0 (10.91) Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
11 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 11 Istnieje tylko jedna funkcja która spełnia to równanie. r =Aln r Br ln r Cr D (10.9) Stan naprężeń i odkształceń łatwo możemy określić z definicji. r = A r B [1 ln r ] C (10.93) = A B [3 ln r ] C (10.94) r r =0 (10.95) Aściukiewicz P., Baron P., Gawron U., Krzysztoń A., Ratajczak D., Wojciecowski M.
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Bardziej szczegółowoDr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Bardziej szczegółowoPodstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Bardziej szczegółowoPrzykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Bardziej szczegółowoMateriały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Bardziej szczegółowoWyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
Bardziej szczegółowoRozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie
Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,
Bardziej szczegółowoTARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
Bardziej szczegółowo8. WIADOMOŚCI WSTĘPNE
Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny
Bardziej szczegółowoWytrzymałość materiałów
Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem
Bardziej szczegółowoLinie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
Bardziej szczegółowo1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz
1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
Bardziej szczegółowo7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:
7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić
Bardziej szczegółowo1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Bardziej szczegółowo9. PODSTAWY TEORII PLASTYCZNOŚCI
9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co
Bardziej szczegółowoTra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Bardziej szczegółowoPODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
Bardziej szczegółowoPręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowo4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Wytrzymałość Materiałów II Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 1 S 0 4 44-0 _0 Rok: II Semestr:
Bardziej szczegółowoPrzykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
Bardziej szczegółowoWykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Bardziej szczegółowoMetody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Bardziej szczegółowo4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
Bardziej szczegółowoRozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2
Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład
Bardziej szczegółowoZbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
Bardziej szczegółowoWzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)
Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy
Bardziej szczegółowo5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
Bardziej szczegółowoLABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
Bardziej szczegółowoRachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Bardziej szczegółowoBiotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
Bardziej szczegółowoMECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Bardziej szczegółowoII. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Bardziej szczegółowo[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Bardziej szczegółowo2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Bardziej szczegółowoAnaliza płyt i powłok MES
Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy
Bardziej szczegółowoWytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Bardziej szczegółowoLABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu
Bardziej szczegółowoLista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Bardziej szczegółowoMetody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Bardziej szczegółowoy + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.
1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)
Bardziej szczegółowo1 Równania różniczkowe drugiego rzędu
Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez
Bardziej szczegółowoAl.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Bardziej szczegółowoZGINANIE PŁASKIE BELEK PROSTYCH
ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej
Bardziej szczegółowoPrzykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Bardziej szczegółowoMatematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Bardziej szczegółowoLiczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Bardziej szczegółowoCzęść DZIAŁANIE MOMENTU SKRĘCAJĄCEGO 1 DZIAŁANIE MOMENTU SKRĘCAJĄCEGO ZALEŻNOŚCI PODSTAWOWE
Część 1. DZIŁNIE OENTU SKRĘCJĄCEGO 1 1 DZIŁNIE OENTU SKRĘCJĄCEGO 1.1. ZLEŻNOŚCI PODSTWOWE 1.1.1. Podstawy teorii skręcania swobodnego prętów sprężystych Rozważmy jednorodny, izotropowy, liniowo-sprężysty
Bardziej szczegółowoWytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń opracowanie: dr inŝ. Marek Golubiewski, mgr inŝ. Jolanta Bondarczuk-Siwicka
Bardziej szczegółowoMetoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
Bardziej szczegółowoDefinicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Bardziej szczegółowoNieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej
Wykład 6: Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności anicznej Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.co Literatura: [] Timoschenko S. Goodier A.J.N., Theory of
Bardziej szczegółowoWykład 8: Lepko-sprężyste odkształcenia ciał
Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat ćwiczenia:
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
Bardziej szczegółowoRozwiązanie stateczności ramy MES
Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek
Bardziej szczegółowoKrzywe Freya i Wielkie Twierdzenie Fermata
Krzywe Freya i Wielkie Twierdzenie Fermata Michał Krzemiński 29 listopad 2006 Naukowe Koło Matematyki Politechnika Gdańska 1 1 Krzywe algebraiczne Definicja 1.1 Krzywą algebraiczną C nad ciałem K nazywamy
Bardziej szczegółowoMatematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Bardziej szczegółowoTENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
Bardziej szczegółowoWYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Bardziej szczegółowowiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe
Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe
Bardziej szczegółowoIntegralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
Bardziej szczegółowoPYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
Bardziej szczegółowoNOŚNOŚĆ GRANICZNA
4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie
Bardziej szczegółowo27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Bardziej szczegółowo8. PODSTAWY ANALIZY NIELINIOWEJ
8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:
Bardziej szczegółowoPrzykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną
Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoII. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
Bardziej szczegółowoMETODY KOMPUTEROWE W MECHANICE
METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania
Bardziej szczegółowo7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
Bardziej szczegółowoLaboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie
Bardziej szczegółowoα k = σ max /σ nom (1)
Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,
Bardziej szczegółowoSpis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Bardziej szczegółowoRachunek różniczkowy funkcji dwóch zmiennych
Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza
Bardziej szczegółowoSpis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
Bardziej szczegółowoW wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb
Bardziej szczegółowo6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Bardziej szczegółowoTemat: Mimośrodowe ściskanie i rozciąganie
Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia
Bardziej szczegółowoRachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)
Bardziej szczegółowoCałka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
Bardziej szczegółowoRównanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
Bardziej szczegółowoPrzykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Bardziej szczegółowoSTATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Bardziej szczegółowoPręt nr 0 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr 1 z 13 Pręt nr 0 - Element żelbetowy wg PN-EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x=-0.120m,
Bardziej szczegółowoJ. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Bardziej szczegółowo6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Bardziej szczegółowoElementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Bardziej szczegółowo700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
Bardziej szczegółowoELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Bardziej szczegółowoĆ w i c z e n i e K 4
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Bardziej szczegółowoTRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH
TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH Aleksander SZWED, Stanisław JEMIOŁO, Marcin GAJEWSKI Instytut Mechaniki Konstrukcji Inżynierskich PW. WSTĘP W przypadku
Bardziej szczegółowo