Nierówności symetryczne
|
|
- Maria Kulesza
- 7 lat temu
- Przeglądów:
Transkrypt
1 Nierówności symetryczne Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul Chopina 1 18, Toruń ( anow@matunitorunpl) Sierpień 1995 Wstęp Jeśli x, y, z, t są dodatnimi liczbami rzeczywistymi, to: (01) x + y xy, (0) x 5 + y 5 x 3 y + y 3 x, (03) x + y + z xy + yz + zx, (04) x 3 + y 3 + z 3 3xyz, (05) x y + y z + z x x yz + xy z + xyz, (06) x 3 + y 3 + z 3 + t 3 xyz + xyt + xzt + yzt Pewne z tych nierówności są prawdziwe nawet dla dowolnych liczb rzeczywistych (niekoniecznie dodatnich) Rozważać będziemy jednak tylko liczby dodatnie Pokażemy, że wszystkie powyższe nierówności są szczególnymi przypadkami pewnego twierdzenia udowodnionego w 1903 roku przez R E Muirheada Przed wysłowieniem tego twierdzenia wprowadzimy najpierw kilka nowych pojęć i oznaczeń 1 Podziały Podziałem długości k liczby naturalnej n nazywamy każdy k-wyrazowy ciąg α = (α 1,, α k ) nieujemnych liczb całkowitych spełniających następujące dwa warunki: (1) α 1 α 1 α k, () α 1 + α + + α k = n Zbiór wszystkich podziałów długości k liczby n oznaczać będziemy przez P(n, k) W szczególności zbiór P(4, 3) składa się z 4 elementów: Natomiast zbiór P(7, 4) ma 11 elementów: (4, 0, 0), (3, 1, 0), (,, 0), (, 1, 1) (7, 0, 0, 0), (6, 1, 0, 0), (5,, 0, 0), (5, 1, 1, 0), (4, 3, 0, 0), (4,, 1, 0), (4, 1, 1, 1), (3, 3, 1, 0), (3,,, 0), (3,, 1, 1), (,,, 1) Jeśli n < 10, to elementy zbioru P(n, k) zapisywać będziemy bez nawiasów i bez przecinków Elementami zbioru P(4, 3) są więc podziały: 400, 310, 0, 11, a elementami zbioru P(7, 4) podziały: 7000, 6100, 500, 5110, 4300, , 3310, 30, 311, 1 1
2 A Nowicki, Sierpień 1995, Nierówności symetryczne Porównywanie podziałów Załóżmy, że α = (α 1,, α k ), β = (β 1,, β k ) są podziałami należącymi do zbioru P(n, k) Mówić będziemy, że podział α jest większy lub równy od podziału β, co zapisywać będziemy jako α β, jeśli: α 1 β 1, α 1 + α β 1 + β, α 1 + α + α 3 β 1 + β + β 3, α 1 + α + α α k β 1 + β + β β k Spójrzmy na przykłady Ciągi 41 i 3 są podziałami długości 3 liczby 7 Zachodzi nierówność 41 3, gdyż: 4 > 3, 4 + > 3 +, = W ten sam sposób sprawdzamy, że: 70 5, , , 0 11 Łatwo udowodnić: Stwierdzenie Niech α, β, γ będą podziałami należącymi do zbioru P(n, k) Wtedy: (1) α α; () jeśli α β i β α, to α = β; (3) jeśli α β i β γ, to α γ W zbiorze P(3, 3) mamy elementy 300, 10, 111 i zachodzi: Wszystkie elementy zbioru P(4, 3) uporządkowane są następująco: Podobnie jest w zbiorze P(5, 3): Widzimy tutaj, że każde dwa elementy α, β zbioru P(n, k) są w relacji: albo α β albo β α Na ogół tak jednak nie musi być Elementy α = 411 i β = 330 zbioru P(6, 3) nie są w żadnej relacji; nie jest prawdą, że α β i nie jest prawdą, że β α 3 Wielomiany symetryczne Jeżeli k jest ustaloną liczbą naturalną, to przez S k oznaczać będziemy zbiór wszystkich permutacji zbioru {1,,, k} Przypomnijmy, że zbiór S k ma k! elementów Niech f(x 1,, x k ) będzie wielomianem zmiennych x 1,, x k Mówimy, że wielomian ten jest symetryczny, jeśli dla każdej permutacji σ należącej do zbioru S k zachodzi równość f(x σ(1), x σ(),, x σ(k) ) = f(x 1, x,, x k ) Załóżmy, że mamy tylko dwie zmienne x 1 i x (tzn k = ) Zmienne te oznaczmy odpowiednio przez x i y W tym przypadku wielomian f(x, y) jest symetryczny dokładnie wtedy, gdy f(y, x) = f(x, y) W szczególności wielomiany xy, x 5 + y 5, x 3 + y 3 13xy są symetryczne Natomiast wielomiany x + 4y, x + y 3, xy + 5y nie są symetryczne Rozważmy teraz trzy zmienne x = x 1, y = x, z = x 3 (tzn k = 3) W tym przypadku wielomian f(x, y, z) jest symetryczny dokładnie wtedy, gdy f(x, y, z) = f(x, z, y) = f(y, x, z) = f(y, z, x) = f(z, x, y) = f(z, y, x)
3 A Nowicki, Sierpień 1995, Nierówności symetryczne 3 Wielomiany xyz, x 9 + y 9 + z 9, xy + yz + zx, 5xyz 1x 1y 1z są symetryczne Wielomiany xyz, x + 5y + z, x + y + z nie są symetryczne Zanotujmy jeszcze kilka przykładów wielomianów symetrycznych większej ilości zmiennych x 1 + x + x 3 + x 4 + x 5 + x 6, x x3 + x3 3 + x3 4 + x3 5 + x3 6, x 1 x + x 1 x 3 + x 1 x 4 + x x 3 + x x 4 + x 3 x 4, x 1 x x 3 + x 1 x x 4 + x 1 x 3 x 4 + x x 3 x 4 Łatwo udowodnić, że suma wielomianów symetrycznych jest wielomianem symetrycznym Podobnie jest z iloczynem 4 Wielomian symetryczny stowarzyszony z podziałem Niech α = (α 1,, α k ) będzie podziałem długości k liczby naturalnej n Oznaczmy przez A α jednomian zmiennych x 1,, x k zdefiniowany następująco: A α = A α (x 1,, x k ) = x α 1 1 xα xα k k Przykłady: A 1 (x, y) = x y, A 43 (x, y, z) = x 4 y 3 z, A 5100 (x, y, z, t) = x 5 y W dalszym ciągu istotną rolę odgrywać będzie wielomian symetryczny zmiennych x 1,, x k, którego oznaczać będziemy przez T α lub T α (x 1,, x k ) Wielomian ten definiujemy następująco: T α = T α (x 1,, x k ) = σ S k A α (x σ(1), x σ(),, x σ(k) ) W szczególności, dla dwóch zmiennych x i y, mamy: natomiast dla trzech zmiennych x, y, z: T α (x, y) = A α (x, y) + A α (y, x), T α (x, y, z) = A α (x, y, z) + A α (x, z, y) + A α (y, x, z) + A α (y, z, x) + A α (z, x, y) + A α (z, y, x) Przykłady: T 3 (x, y) = x 3 y + y 3 x, T 31 (x, y, z) = x 3 y z + x 3 z y + y 3 x z + y 3 z x + z 3 x y + z 3 y x, T 3300 (x, y, z, t) = 4x 3 y 3 + 4x 3 z 3 + 4x 3 t 3 + y 3 z 3 + 4y 3 t 3 + 4z 3 t 3, T 4110 (x, y, z, t) = x 4 (yz + yt + zt) + y 4 (xz + xt + zt)+ z 4 (xy + xt + yt) + t 4 (xy + xz + yz), T (x, y, z, t, u) = 4(x 5 + y 5 + z 5 + t 5 + u 5 ), T (x, y, z, t, u) = 10xyztu 5 Twierdzenie Muirheada Teraz możemy już wysłowić zapowiedziane wcześniej Twierdzenie Muirheada Twierdzenie Niech α, β będą podziałami długości k liczby naturalnej n Następujące dwa warunki są równoważne
4 4 A Nowicki, Sierpień 1995, Nierówności symetryczne (1) α β (1) Dla dowolnych nieujemnych liczb rzeczywistych x 1,, x k zachodzi nierówność T α (x 1,, x k ) T β (x 1,, x k ) Dowód tego twierdzenia nie jest trudny Można go znaleźć np w [3], [] lub [1] 6 Dowody nierówności podanych we Wstępie Przykład 61 x + y xy Dowód Rozpatrzmy podziały 0 i 11 Są to podziały długości liczby Poniewż 0 11, więc (na mocy Twierdzenia Muirheada) x + y = T 0 (x, y) T 11 (x, y) = xy Przykład 6 x 5 + y 5 x 3 y + y 3 x Dowód Rozpatrzmy podziały 50 i 3 Są to podziały długości liczby 5 Poniewż 50 3, więc (na mocy Twierdzenia Muirheada) x 5 + y 5 = T 50 (x, y) T 3 (x, y) = x 3 y + y 3 x Przykład 63 x + y + z xy + yz + zx Dowód Wynika to z Twierdzenia Muirheada dla podziałów α = 00, β = 110 Przykład 64 x 3 + y 3 + z 3 3xyz Dowód α = 300, β = 111 Przykład 65 x y + y z + z x x yz + xy z + xyz Dowód α = 0, β = 11 Przykład 66 x 3 + y 3 + z 3 + t 3 xyz + xyt + xzt + yzt Dowód α = 3000, β = Zadania Korzystając z Twierdzenia Muirheada wykazać, że zachodzą następujące nierówności Wszystkie liczby rzeczywiste x, y, z,, x 1, x,, wysępujące w tych nierównościach, są dodatnie 71 x k 1 + xk + + xk k kx 1x x k 7 x 4 + y 4 + z 4 xyz(x + y + z) 73 x 5 + y 5 + z 5 xyz(xy + yz + zx) 74 (x + y + z )(x + y + z) 9xyz 75 x 3 yz + y3 xz + z3 xy x +y z + y +z x + x +z y x + y + z
5 A Nowicki, Sierpień 1995, Nierówności symetryczne 5 76 x y+z + y x+z + z x+y 3 77 x 1 x +x 3 + +x n + x x 1 +x 3 + +x n + + x n x 1 +x + +x n 1 n n (x 4 + y 4 ) (x + y) 4 79 (x 3 y 3 ) (x y )(x 4 y 4 ) 710 (x + y)(x 4 + y 4 ) (x + y )(x 3 + y 3 ) x+y+z + 1 x+y+t + 1 x+z+t + 1 y+z+t 16 x+y+z+t x 6 +y 6 x+y x +y x3 +y 3 x n+m +y n+m xn +y n xm +y m Literatura [1] A Berent, Twierdzenie Muirheada i nierówności symetryczne, Praca magisterska, UMK Toruń, 1991 [] S W Dworianinow, E A Jasinowyj, Jak otrzymuje się nierówności symetryczne, (po rosyjsku), Kwant, 7(1985), [3] G H Hardy, J E Littlewood, G Polya, Nierówności, (po rosyjsku), Moskwa, 1948
Dwa równania kwadratowe z częścią całkowitą
Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to
Bardziej szczegółowoW. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe
Bardziej szczegółowoPodstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Bardziej szczegółowoWielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i
Bardziej szczegółowo1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Bardziej szczegółowoII. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Bardziej szczegółowoVI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Bardziej szczegółowoFunkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Bardziej szczegółowoCO TO SĄ BAZY GRÖBNERA?
CO TO SĄ BAZY GRÖBNERA? Wykład habilitacyjny, Toruń UMK, 5 czerwca 1995 roku Andrzej Nowicki W. Gröbner, 1899-1980, Austria. B. Buchberger, Austria. H. Hironaka, Japonia (medal Fieldsa). Bazy, o których
Bardziej szczegółowoRegionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 3 (2-26.0.2009) Omówienie zadań I serii zawodów
Bardziej szczegółowoPokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Bardziej szczegółowoGrupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
Bardziej szczegółowo1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Bardziej szczegółowoZasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Bardziej szczegółowoF t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Bardziej szczegółowoRÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
Bardziej szczegółowo1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Bardziej szczegółowoPrzestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Bardziej szczegółowo3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Bardziej szczegółowoIndukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Bardziej szczegółowoVII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Bardziej szczegółowoLista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Bardziej szczegółowo(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];
Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoModelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Bardziej szczegółowoRachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Bardziej szczegółowon=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Bardziej szczegółowoDefinicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
Bardziej szczegółowoPrzykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Bardziej szczegółowoŁatwy dowód poniższej własności pozostawiamy czytelnikowi.
Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:
Bardziej szczegółowoInformacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Bardziej szczegółowoKONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
Bardziej szczegółowo13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje
Bardziej szczegółowo1 Wartości własne oraz wektory własne macierzy
Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione
Bardziej szczegółowoZadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoZbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Bardziej szczegółowoWielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s) = s n + 1 s n 1 ++a 1 s+a 0, 1) gdzie n N, a i R i = 0,,n), 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i i = 0,,n)
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
Bardziej szczegółowoO pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
Bardziej szczegółowoPodróże po Imperium Liczb
Podróże po Imperium Liczb Część 01. Liczby Wymierne Rozdział 9 9. Liczby postaci / + / + + x s / Andrzej Nowicki 7 grudnia 2011, http://www.mat.uni.torun.pl/~anow Spis treści 9 Liczby postaci / + / + +
Bardziej szczegółowo1. Wielomiany Podstawowe definicje i twierdzenia
1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy
Bardziej szczegółowoCiała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Bardziej szczegółowoLiczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Bardziej szczegółowoIII. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Bardziej szczegółowoGAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
Bardziej szczegółowo1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Bardziej szczegółowo2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Bardziej szczegółowo1. ODPOWIEDZI DO ZADAŃ TESTOWYCH
R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie
Bardziej szczegółowoUkłady równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Bardziej szczegółowo3. Funkcje wielu zmiennych
3 Funkcje wielu zmiennych 31 Ciagłość Zanim podamy definicję ciagłości dla funkcji wielu zmiennych wprowadzimy bardzo ogólne i abstrakcyjne pojęcie przestrzeni metrycznej Przestrzeń metryczna Metryka w
Bardziej szczegółowoIndukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Bardziej szczegółowoFormy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
Bardziej szczegółowoInformacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Bardziej szczegółowoFunkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A
Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja
Bardziej szczegółowoSzeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego
Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum
Bardziej szczegółowoRozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.
Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu
Bardziej szczegółowoRÓWNANIA KWADRATOWE ZBIGNIEW STEBEL. Podstawy matematyki szkolnej
RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL Podstawy matematyki szkolnej WAŁBRZYCH 01 Spis treści 1 Wstęp Równania stopnia drugiego.1 Teoria i przykłady............................. Podstawowe wzory skróconego
Bardziej szczegółowo1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
Bardziej szczegółowoFunkcje dwóch zmiennych, pochodne cząstkowe
Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi
Bardziej szczegółowoĆWICZENIA Z ARYTMETYKI TEORETYCZNEJ 1. LICZBY NATURALNE. x + 1 = x, x + y = (x + y). ( y + (z + w) ) + w = x + (d) jeśli (x) = 1, to x = 1,
ĆWICZENIA Z ARYTMETYKI TEORETYCZNEJ 1. LICZBY NATURALNE. Dodawanie liczb naturalnych. Przypomnijmy, że dodawanie "+" jest działaniem scharakteryzowanym jednoznacznie przez warunki: (1 + ) (2 + ) x + 1
Bardziej szczegółowoPrzestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Bardziej szczegółowoLI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
Bardziej szczegółowoTreści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
Bardziej szczegółowoJeśli lubisz matematykę
Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków
Bardziej szczegółowo1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
Bardziej szczegółowoWielkopolskie Mecze Matematyczne
Wielkopolskie Mecze Matematyczne edycja druga 3 kwietnia 2015r. W okresie renesansu we Włoszech matematycy stworzyli ciekawą formę rywalizacji intelektualnej. Wymieniali się zadaniami, a po kilku tygodniach
Bardziej szczegółowoIndukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Bardziej szczegółowoWyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Bardziej szczegółowo1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Bardziej szczegółowoFUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Bardziej szczegółowoPojęcie pierścienia.
Pojęcie pierścienia. Definicja: Niech R będzie zbiorem niepustym. 1. Algebrę pr, `, q nazywamy pierścieniem, gdy pr, `q jest grupą abelową, działanie jest łaczne oraz rozdzielne względem działania `, to
Bardziej szczegółowoSchemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej
Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)
Bardziej szczegółowoFunkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
Bardziej szczegółowoAlgebra Boole a i jej zastosowania
lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz
Bardziej szczegółowoOLIMPIADA MATEMATYCZNA
OLIMPIADA MATEMATYCZNA Na stronie internetowej wwwomgedupl Olimpiady Matematycznej Gimnazjalistów (OMG) ukazały się ciekawe broszury zawierające interesujące zadania wraz z pomysłowymi rozwiązaniami z
Bardziej szczegółowoEGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 30=3.0, 36=3.5, 42=4.0, 48=4.5, 54=5.0
EGZAMIN, ANALIZA A, 5.0.04 zadań po 5 punktów, progi: 30=3.0, 36=3.5, 4=4.0, 48=4.5, 54=5.0 Zadanie. W każdym z zadań.-.5 podaj w postaci uproszczonej) kresy zbioru oraz napisz, czy kresy należą do zbioru
Bardziej szczegółowoFormy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
Bardziej szczegółowoZadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu
Bardziej szczegółowo1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Bardziej szczegółowoLogarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Bardziej szczegółowoMatematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Bardziej szczegółowoMatematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Bardziej szczegółowoRachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
Bardziej szczegółowoAnaliza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
Bardziej szczegółowoLIX Olimpiada Matematyczna
LIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (10 września 2007 r. 10 grudnia 2007 r.) Zadanie 1. Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 5 = 5y
Bardziej szczegółowoPochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy
Bardziej szczegółowoCałki krzywoliniowe skierowane
Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział
Bardziej szczegółowoZadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Bardziej szczegółowoFUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Bardziej szczegółowoFunkcja jest różnowartościowa w zbiorze A wtedy i tylko wtedy, gdy różnym argumentom funkcja ta przyporządkowuje różne wartości.
Gdy mamy daną funkcję, poza określeniem jej dziedziny i miejsca zerowego możemy badad szczególne własności, takie jak: monotonicznośd, różnowartościowośd, parzystośd, nieparzystośd. Na temat monotoniczności
Bardziej szczegółowoInternetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch
Bardziej szczegółowo4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Bardziej szczegółowo