Stateczność układów ramowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Stateczność układów ramowych"

Transkrypt

1 tateczność układów ramowych

2 PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW

3 tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po usunęcu obcążena powraca do stanu równowag. tan równowag bez obcążena d Obcążene odkształcena, ae układ est w stane równowag Neznaczny wzrost obcążena w zwązku z tym odkształcena, ae układ est w stane nada równowag Powrót do poprzedne wartośc obcążena zmneszene odkształcena Usunęce obcążena w przypadku układu Capeyrona (zachowane sprężystośc) powrót fo perwotnego kształtu 3

4 tateczność ustrou Utrata statecznośc ustrou następue, gdy newek wzrost sły (obcążena) powodue znaczne odkształcena brak możwośc powrotu do stanu równowag tan równowag bez obcążena kr kr d Obcążene odkształcena, ae układ est w stane równowag Neznaczny wzrost obcążena powodue znaczny wzrost odkształcena utratę równowag. ła, przy które układ może być w stane równowag ub może przy ne nastąpć wyboczene, nazywamy słą krytyczną. 4

5 ła krytyczna Formy wyboczena µ ła krytyczna kr π w µ w µ µ/3 µ/ 5

6 RÓWNNIE LINII UGIĘCI PRĘT W RIE PODCZ WYBOCZENI, POWODOWNEGO IŁĄ ŚCIKJĄCĄ 6

7 Ops zagadnena Probem statecznośc początkowe sprowadza sę do obczena sły krytyczne da układu obcążonego wyłączne słam normanym, ścskaącym ub rozcągaącym, kedy ne ma sł przęsłowych an żadnych nnych obcążeń, wywołuących zgnane. Utrata statecznośc następue kedy sła osągne taką wartość, że przemeszczena ramy będą narastały w sposób neogranczony przy ne zmenaące sę wartośc obcążena. Rozwązuąc zadana poszukwać będzemy namnesze wartośc sły przy które nastąp utrata statecznośc. 7

8 Wyznaczene równana pręta ścskanego zgnanego d u ϕ y y ϕ T u d T Równana równowag pręta Y : T T 0 : T d u u ły wewnętrzne w przekrou T ( ) y ( )( ) 0 gdze d( u u ) 0 gdze dy 0 Zaeżnośc różnczkowe pomędzy słam wewnętrznym?????????? y y( ) 8

9 Zaeżnośc różnczkowe pomędzy słam wewnętrznym bez wyboczena y q () y q () Wycnek bek N T q () y q () d d d O N dn T dt Równana równowag da wycnka X 0 N q ( ) d ( N dn ) 0 Y 0 T q y ( ) d ( T dt ) 0 o 0 d T d qy ( ) d ( d ) 0 Z powyższych równań otrzymuemy d d d d T dt d q y ( ) 9

10 Zaeżnośc różnczkowe pomędzy słam wewnętrznym z wyboczenem W dowonym przekrou sła normana wynos N y d d Równana równowag momentu da wycnka o 0 T d N dy ( d ) 0 Wycnek bek T Po podzeenu przez d z ostatnego równana otrzymuemy: N dy d d O N dn T dt d d d d T T N dy d dy d 0

11 Wyznaczene równana pręta ścskanego zgnanego d u ϕ y y ϕ T u d T Równana równowag pręta Y : T T 0 oment zgnaący w przekrou ( ) T y ( u u ) 0 : T Zaeżnośc różnczkowe pomędzy słam wewnętrznym d dy T d d

12 Wyznaczene równana pręta ścskanego zgnanego d d T T y y u u ϕ ϕ Z równowag pomędzy słam zewnętrznym u u T ( ) 0 : u u T czy sły wewnętrzne w przekrou wynoszą ( ) ( ) u u y y u u ( ) y T oment zgnaący w przekrou

13 Wyznaczene równana pręta ścskanego zgnanego d u ϕ y y ϕ T u d Z proporc (tw. Taesa) otrzymuemy u u y y y y oment zgnaący w przekrou wynoszą ( ) y ( u u ) ( u u ) T ( ) y 3

14 Wyznaczene równana pręta ścskanego zgnanego d u ϕ y y ϕ T u d Zaeżność pomędzy równanem n ugęca momentem d y d oment zgnaący est opsany równanem Równane różnczkowe ugęca pręta ma postać: d y 0 y d Ważne: y to odegłość od cęcwy do punktu ugęca czy przesunęca węzłów ne maą wpływu na wartość y T ( ) ( ) y 4

15 Rozwązane równana całka ogóna d y Równane różnczkowe: 0 y d Całka ogóna est rozwązanem równana różnczkowego: d y y 0 y'' k y 0 gdze d Równane po wykonanu podstawena y(t)e r ma formę r k 0 czy 4k < 0 a rozwązane ma dwa perwastk zespoone b 4k 4 k r r k a b r 4k 4 k r k a Rozwązane ma postać y e r β r β 0 β k ( C ( β) C sn( β) ) cos k a po podstawenu β otrzymuemy całkę ogóną równana y o C ( k) C sn( k) cos 5

16 Rozwązane równana całka szczegóna ostateczny wynk Równane różnczkowe: d y y d Poneważ z prawe strony est weoman perwszego stopna, to całką szczegóną est także weoman : y B s ξ gdze ξ Całka ogóna est rozwązanem równana różnczkowego: ub y o C ( k) C sn( k) cos ( ξ ) sn( ξ ) y o C cos C gdze Ostateczne rozwązane ma postać y y o y s ( ξ ) C sn( ξ ) B y C cos ξ k 6

17 Równana sł wewnętrznych Równane ugęca y C cos( ξ ) C sn( ξ ) ξ B Równane kąta nachyena os dy C sn( ξ ) C cos( ξ ) d Równane momentu zgnaącego d y ( ) d d y ( ) ( ξ ) ( ξ ) C cos C sn d 3 d ( ) ( ) dy d y dy T 3 d d d d Wyprowadzene równana sły tnące 3 3 T ( ) ( ) ( ) C sn ξ C cos ξ C sn( ξ ) C cos( ξ ) T ( ) ( C sn( ξ ) C cos( ξ )) ( C sn( ξ ) C cos( ξ )) T ( ) ( C ( ) C ( )) sn cos T ( ) 7

18 IŁ KRYTYCZN DL BELKI WOBODNIE PODPRT CZYLI PRĘT POJEDYNCZEGO 8

19 Rozwązane da bek swobodne podparte Całka ogóna est równanem różnczkowym ugęca bek ścskane swobodne podparte, bo 0 0 d y y d y Całka ogóna C ( k) C sn( k) cos d y y 0 d y Wyznaczene stałych całkowana na podstawe warunków brzegowych: da 0 y0, da y0 ( k 0) C sn( 0) 0 C cos k 0 C C 0 ( k ) C ( k ) 0 C cos sn 9

20 Rozwązane da bek swobodne podparte Wyznaczene stałych poega na znaezenu rozwązana układu równań ( k ) C sn( k ) 0 C cos C C 0 0 cos( k) sn( k) C 0 C ub w zapse macerzowym 0 Równane est prawdzwe, gdy współczynnk C 0 C 0 (równane os proste, neodkształcone), ub gdy wyznacznk ze współczynnków przy newadomych est równy 0 cos ( k) sn( k) 0 0 ( k) 0 sn( k) 0 cos 0

21 Rozwązane da bek swobodne podparte Całka ogóna est równanem różnczkowym ugęca bek ścskane swobodne podparte, bo 0 0 ( k) 0 sn( k) 0 cos y y C ( k) C sn( k) cos czy rozwązanem est na ugęca, utworzona, gdy est spełnony warunek sn ( k) 0 czy, gdy sła przyme wartość nazywaną krytyczną sn() [ o ] a na ugęca mała kształt snusody będze opsana funkcą y sn k πn da n ( k) kr k πn n π π

22 WYZNCZNIE IŁY KRYTYCZN DL RY

23 Rozwązane zagadnena metodą przemeszczeń 3 Równana metody przemeszczeń powstaą w wynku dodawana reakc ze stanów ednostkowych, gdze obcążenam są ednostkowe przemeszczena (przesunęca ub obroty) na kerunkach przemeszczeń różnych od zera. 3 B Układ podstawowy metody przemeszczeń UPP 3

24 Rozwązane zagadnena metodą przemeszczeń stan ϕ Obcążene reakce da stanu ϕ R () R () ϕ 3 R 3 () B Reakce będą sę różnły od reakc od obcążena statycznego w zakrese nowym, bo uwzgędnamy odkształcene spowodowane słą krytyczną na początku e dzałana czy, gdy ne nastąp eszcze znszczene konstrukc. 4

25 Rozwązane zagadnena metodą przemeszczeń stan ϕ Odkształcene wykres momentów wywołane obrotem ednostkowym 3 ϕ 3 B B Wykresy momentów zgnaących wywołane obcążenam geometrycznym na prętach poddanych dzałanu sły są krzywonowe, a na pozostałych prętach prostonowe. 5

26 Rozwązane zagadnena metodą przemeszczeń stan ϕ Obcążene reakce da stanu ϕ R () R () 3 R 3 () ϕ B 6

27 Rozwązane zagadnena metodą przemeszczeń stan ϕ Odkształcene wykres momentów wywołane obrotem ednostkowym 3 3 ϕ B B Wykresy momentów zgnaących wywołane obcążenam geometrycznym na prętach poddanych dzałanu sły są krzywonowe, a na pozostałych prętach prostonowe. 7

28 Rozwązane zagadnena metodą przemeszczeń stan 3 Obcążene reakce da stanu 3 R 3 () R 3 () 3 R 33 () 3 B 8

29 Rozwązane zagadnena metodą przemeszczeń stan 3 Odkształcene wykres momentów wywołane obrotem ednostkowym B B Wykresy momentów zgnaących wywołane obcążenam geometrycznym na prętach poddanych dzałanu sły są krzywonowe, a na pozostałych prętach prostonowe. 9

30 Rozwązane zagadnena metodą przemeszczeń Po wyznaczenu sł wewnętrznych, a następne reakc, wyznaczamy równana równowag da poszczegónych kerunków przemeszczeń. R R 3 R 3 ϕ ϕ R R 3 R 3 B koro reakca R () est wywołana obrotem ednostkowym, to rzeczywsta reakca wynos R () ϕ uma reakc, wywołanych rzeczywstym przesunęcam, mus być równa zero bo ne ma obcążeń, które by wywołały reakce węzłowe R ( ) ϕ R ( ) ϕ R ( ) B R R R 33 B 3 30

31 Rozwązane zagadnena metodą przemeszczeń Po wyznaczenu sł wewnętrznych, a następne reakc, wyznaczamy równana równowag da poszczegónych kerunków przemeszczeń. r r 3 R 3 ϕ ϕ R R 3 R 3 B B uma reakc na kerunku ϕ R ϕ R ϕ R ( ) ( ) ( ) uma reakc na kerunku ϕ R ϕ R ϕ R ( ) ( ) ( ) R R R 33 3 uma reakc na kerunku 3 R ϕ R ϕ R ( ) ( ) ( ) B 3

32 Układ równań metodą przemeszczeń Neoznaczony układ równań czy z neskończoną czbą rozwązań abo ze współczynnkam przy newadomych, z których wyznacznk est równy zero. Układ równań R ( ) ϕ R ( ) ϕ R3 ( ) 3 0 R ( ) ϕ R ( ) ϕ R3 ( ) 3 0 R ( ) ϕ R ( ) ϕ R ( ) 0 Układ równań w zapse macerzowym Z rozwązanem R R R 3 ( ) R ( ) R3 ( ) ( ) R ( ) R3( ) ( ) R ( ) R ( ) R R R 3 ( ) R ( ) R3 ( ) ( ) R ( ) R3( ) ( ) R ( ) R ( ) 3 33 ϕ ϕ 3 kr 0 3

33 WYZNCZNIE RÓWNŃ LINII UGIĘCI DL PRZYKŁDOWEGO ELEENTU ROWEGO 33

34 Wyznaczane stałych równana pręt obustronne zamocowany d u ϕ y y ϕ T T u d T Warunk brzegowe: ( ξ ) C sn( ξ ) B y C cos ξ dy d C sn( ξ ) C cos( ξ ) Da 0 Da y 0 y 0 dy ϕ d dy ϕ d k k dξ d ξ ( ) d ξ d 34

35 Wyznaczane stałych równana pręt obustronne zamocowany d u ϕ y y ϕ T u d T Da 0 y 0 0 C cos0 C sn( 0) 0 B dy ϕ ϕ C sn 0 d Da ξ ( 0) C cos( ) 0 C B ϕ C y 0 dy d ϕ 0 ( ) C sn( ) B ( ) C cos( ) C cos ϕ C sn 35

36 Wyznaczane stałych równana pręt obustronne zamocowany d u ϕ y y ϕ T u d T Równana, opsuące stałe otrzymane na podstawe warunków brzegowych. d cos sn 0 C B C ϕ ( ) C sn( ) B 0 C cos ϕ C sn ( ) C cos( ) C C ϕ ϕ B C ϕ C ( ) ( ) ( cos( ) sn( )) ϕ ( sn( ) ) d( ) ( sn s( ) cos( ) ) ϕ ( cos( ) ) d( ) 36

37 Równana ugęca momentu zgnaącego Równane ugęca y C ( ) C sn( ) B cos ξ ξ ξ Równane kąta nachyena os dy d Równane momentu zgnaącego C sn ( ξ ) C cos ( ξ ) d y ( ) d y d cos ( ) C ( ξ ) C sn( ξ ) ( ) T 3 d ξ 37

38 REKCJE WĘZŁOWE I WYKREY IŁ WEWNĘTRZNYCH PRZY RÓśNYCH WRUNKCH BRZEGOWYCH 38

39 Wyznaczene reakc węzłowych d u u ϕ d y y ϕ T omenty w węzłach na podstawe równana momentu zgnaącego d y C cos ξ C sn ξ d ( ) ( ) ( ) ( ξ 0) C ( ξ ) ( ) ( ) C cos sn C Reakce T T na podstawe równań równowag T T ( u u ) 0 : T C sn Y : T T 0 ( cos( )) C ( ) u u T 39

40 Pręt obustronne zamocowany u ϕ u ϕ T T gdze: b ( ) d c s ϕ c ϕ u ( ) ϕ s( ) r( ) ϕ ( ) ( ) r( ) u u u c ( ) ( ) ( sn cos ) s( ) d 3 sn r( ) s( ) c( ) ( ) d d T r T r ϕ ( ) ( sn ) ( ) ( cos ) ( ) ϕ r( ) ϕ b( ) d u ( ) r( ) ϕ b( ) ( ) ( cos) sn u u u 40

41 Pręt obustronne zamocowany - wykresy od przesunęca u T T 0 c 0 r s Kształt pręta wywołany przesunęcem ( ) 0 s ( ) 0 r ( ) u 0 ( ) 0 c( ) 0 r( ) 0 T r 0 T r( ) 0 r( ) 0 b( ) ( ) 0 r( ) 0 b( ) r( ) b( ) - 3 r( ) T b( ) 3 Wykres sł tnących est stały mmo, że wykres momentu zgnaącego est krzywonowy, bo T ( ) d d ( ) dy d 4

42 Pręt obustronne zamocowany -wykresy od obrotu ϕ T T Kształt pręta wywołany obrotem 0 0 c 0 0 s c 0 r ( ) s( ) 0 r( ) ( ) ( ) ( ) 0 0 T r 0 0 T r r 0 b ( ) r( ) 0 b( ) ( ) ( ) ( ) c( ) r( ) ϕ - s( ) 4 T r( )

43 Pręt obustronne zamocowany z przesuwem po prawe Wartośc reakc węzłowych gdze: cos sn u ϕ ϕ II II ( c ( ) ϕ s ( ) ϕ ) II II ( s ( ) ϕ c ( ) ϕ ) II II c ( ) s ( ) sn T T 0 0 T 0 chemat podpory bokuące tyko obrót 43

44 Pręt obustronne zamocowany, ae z przesuwem -wykresy od przesunęca u obrotu ϕ Przesunęce z ewe strony ne zmena kształtu pręta II II ( c ( ) 0 s ( ) 0) II II s ( ) 0 c ( ) 0 ( ) T 0 Kształt pręta wywołany obrotem u 0 0 T 0 T II II ( c ( ) s ( ) 0) II II ( s ( ) c ( ) 0) cos sn II c ( ) II s ( ) sn ϕ c II ( ) ( ) T 0 s II 44

45 Pręt zamocowany z edne strony przegubowo z druge u ϕ u T T 0 Wartośc reakc węzłowych gdze: 0 c I u u I ( ) ϕ c ( ) sn sn cos I I c ( ) r ( ) T c I T c ϕ r 3 cos sn cos I u u I ( ) ϕ r ( ) u u I ( ) ( ) 45

46 Pręt zamocowany z edne strony przegubowo z druge -wykresy od przesunęca u T T Kształt pręta wywołany przesunęcem 0 c T c T c I 0 I ( ) 0 c ( ) 0 0 I ( ) 0 r ( ) I I ( ) 0 r ( ) I u c I ( ) r I ( ) - 3 T r I ( ) 3 46

47 Pręt zamocowany z edne strony przegubowo z druge -wykresy od obrotu ϕ T T Kształt pręta wywołany obrotem 0 c I T c I T c r I 0 0 I ( ) c ( ) 0 0 I ( ) r ( ) 0 0 I ( ) ( ) ( ) c I ϕ c I ( ) - 47 T c I ( )

48 Pręt wspornkowy u ϕ T 0 0 T Wartośc reakc węzłowych III ( c ( ) ϕ ) gdze: III c ( ) sn cos T T 48

49 Pręt wspornkowy Przesunęce z ewe strony ne zmena kształtu pręta czy 0 0 T T 0 0 T 0 Kształt pręta wywołany obrotem u ϕ 0 0 T III ( c ( ) ϕ ) 0 Kształt wykresu momentów zgnaących odpowada kształtow ugęca pręta ( ) c III T 0 49

50 Pręt obustronne przegubowo zamocowany u u Wartośc reakc węzłowych 0 T 0 T Równane momentu w przekrou T u u ( ) T y y u u T u u u u u u u u T ϕ 0 ϕ 0 50

51 Pręt obustronne zamocowany przegubowo -wykresy od przesunęca u Kształt pręta wywołany przesunęcem 0 0 u T T Kształt wykresu momentów zgnaących odpowada kształtow ugęca pręta po odęcu częśc nowe przesunęca, bo ( ) y T T T 3 5

52 Pręt obustronne zamocowany przegubowo -wykresy od obrotu ϕ T T Kształt pręta wywołany przesunęcem 0 0 Kształt wykresu momentów zgnaących odpowada kształtow ugęca pręta po odęcu częśc nowe przesunęca, bo ( ) y T T T Obrót ne wywołue sł tnących, bo na przykład d T ( ) d d ( ) dy d( y) d dy d 0 5

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

Przykład 2.3 Układ belkowo-kratowy.

Przykład 2.3 Układ belkowo-kratowy. rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra

Bardziej szczegółowo

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ Część. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. Wstęp Podstawowym narzędzem służącym do rozwązywana zadań metodą przemeszczeń są wzory transformacyjne.

Bardziej szczegółowo

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b

Bardziej szczegółowo

Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł

Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Wstępne przyjęcie wymiarów i głębokości posadowienia

Wstępne przyjęcie wymiarów i głębokości posadowienia MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował

Bardziej szczegółowo

Przykład 4.4. Belka ze skratowaniem

Przykład 4.4. Belka ze skratowaniem rzykład.. eka ze skratowane oecene: korzystając z etody sł sporządzć wykresy sł przekrojowych w ponŝszej konstrukcj staowej. yznaczyć ugęce w punkce (w połowe rozpętośc bek). orównać wyznaczone ugęce ze

Bardziej szczegółowo

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const

Bardziej szczegółowo

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego. Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym

Bardziej szczegółowo

Małe drgania wokół położenia równowagi.

Małe drgania wokół położenia równowagi. ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

KORZYŚCI PŁYNĄCE ZE STOSOWANIA ZASADY PRAC WIRTUALNYCH NA PRZYKŁADZIE MECHANIKI OGÓLNEJ. 1. Wprowadzenie. 2. Więzy układu materialnego.

KORZYŚCI PŁYNĄCE ZE STOSOWANIA ZASADY PRAC WIRTUALNYCH NA PRZYKŁADZIE MECHANIKI OGÓLNEJ. 1. Wprowadzenie. 2. Więzy układu materialnego. Górnctwo Geonżynera Rok 33 Zeszyt 3/ 2009 Maran Paluch* KORZYŚCI PŁYNĄCE ZE STOSOWNI ZSDY PRC WIRTULNYCH N PRZYKŁDZIE MECHNIKI OGÓLNEJ. Wprowadzene W pracy kerując sę dewzą Johna Zmana: Celem nauk jest

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej Zastosowane technk sztucznej ntelgencj w analze odwrotnej Ł. Sztangret, D. Szelga, J. Kusak, M. Petrzyk Katedra Informatyk Stosowanej Modelowana Akadema Górnczo-Hutncza, Kraków Motywacja Dokładność symulacj

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII INII NOŚNEJ Prawo Bota-Savarta Pole prędkośc ndukowanej przez lnę (nć) wrową o cyrkulacj może być wyznaczone przy użycu formuły Bota-Savarta

Bardziej szczegółowo

Ćwiczenie 410. Wyznaczanie modułu Younga metodą zginania pręta. Długość* Szerokość Grubość C l, [m] a. , [mm] [m -1 ] Strzałka ugięcia,

Ćwiczenie 410. Wyznaczanie modułu Younga metodą zginania pręta. Długość* Szerokość Grubość C l, [m] a. , [mm] [m -1 ] Strzałka ugięcia, Katedra Fzyk SGGW Nazwsko... Data... Nr na śce... Imę... Wydzał... Dzeń tyg.... Godzna... Ćwczene 410 Wyznaczane modułu ounga metodą zgnana pręta Pomary rozmarów pręta Rodzaj pręta Długość* Szerokość Grubość

Bardziej szczegółowo

J. Wyrwał, Wykłady z mechaniki materiałów METODA SIŁ Wprowadzenie

J. Wyrwał, Wykłady z mechaniki materiałów METODA SIŁ Wprowadzenie J. Wyrwał Wykłady z mechak materałów.. ETODA SIŁ... Wprowadzee etoda sł est prostą metodą rozwązywaa (obczaa reakc podporowych oraz wyzaczaa sł przekroowych) statycze ewyzaczaych (zewętrze wewętrze) układów

Bardziej szczegółowo

Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił

Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Polecenie: Narysuj wykres sił wewnętrznych w ramie. Zadanie rozwiąż metodą sił. PkN MkNm EJ q kn/m EJ EJ Określenie stopnia statycznej niewyznaczalności

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

Wykład 2: Stan naprężeń i odkształceń

Wykład 2: Stan naprężeń i odkształceń Wykład : Stan naprężeń odkształceń Leszek CHODOR, dr nż. bud, nż.arch. leszek@chodor.pl ; leszek.chodor@polske-nwestycje.pl Lteratura: [] Tmoschenko S. Gooder A.J.N., Theory of Elastcty Mc Graw Hll, nd,

Bardziej szczegółowo

Optymalizacja belki wspornikowej

Optymalizacja belki wspornikowej Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

Skręcanie prętów naprężenia styczne, kąty obrotu 4

Skręcanie prętów naprężenia styczne, kąty obrotu 4 Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat ćwiczenia:

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt

Bardziej szczegółowo

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

Mechanika Techniczna studia zaoczne inżynierskie I stopnia kierunek studiów Inżynieria Środowiska, sem. III materiały pomocnicze do ćwiczeń

Mechanika Techniczna studia zaoczne inżynierskie I stopnia kierunek studiów Inżynieria Środowiska, sem. III materiały pomocnicze do ćwiczeń echanka Technczna studa zaoczne nżynerske I stopna kerunek studów Inżynera Środowska, sem. III materały pomocncze do ćwczeń opracowane: dr nż. Wesław Kalńsk, mgr nż. Jolanta Bondarczuk-Swcka Łódź 2008

Bardziej szczegółowo

4. RÓWNANIE PRACY WIRTUALNEJ

4. RÓWNANIE PRACY WIRTUALNEJ Część 1 4. RÓWNANIE PRACY WIRTUALNEJ 1 4. 4. RÓWNANIE PRACY WIRTUALNEJ Rozdzał ten pośwęcony et wyprowadzenu twerdzena o pracy wrtuane, edna wywód naeży poprzedzć wyaśnenem dwóch zagadneń: przemezczena

Bardziej szczegółowo

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x Wykład z Podsaw maemayk dla sudenów Inżyner Środowska Wykład 8. CŁKI NIEOZNCZONE Defnca (funkca perwona) Nech F es funkcą perwoną funkc f na przedzale I, eżel F '( ) f ( ) dla każdego I. Udowodnć, że funkce

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

JANOWSCY. Reakcje, siły przekrojowe i ugięcia belek jednoprzęsłowych. ZESPÓŁ REDAKCYJNY: Dorota Szafran Jakub Janowski Wincenty Janowski

JANOWSCY. Reakcje, siły przekrojowe i ugięcia belek jednoprzęsłowych. ZESPÓŁ REDAKCYJNY: Dorota Szafran Jakub Janowski Wincenty Janowski u. Krzywa /5, 8-500 Sanok NIP:687-1--79 www.janowscy.com JNOWSCY projektowanie w budownictwie Reakcje, siły przekrojowe i ugięcia beek jednoprzęsłowych ZESPÓŁ REDKCYJNY: Dorota Szaran Jakub Janowski Wincenty

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

Narysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql

Narysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql Narysować wykresy momentów i sił tnących w belce jak na rysunku. q l Określamy stopień statycznej niewyznaczalności: n s = r - 3 - p = 5-3 - 0 = 2 Przyjmujemy schemat podstawowy: X 2 X Zakładamy do obliczeń,

Bardziej szczegółowo

P. Litewka Efektywny element skończony o dużej krzywiźnie

P. Litewka Efektywny element skończony o dużej krzywiźnie 4.5. Macierz mas Macierz mas elementu wyprowadzić można według (.4) wykorzystując wielomianowe funkcje kształtu (4. 4.). W tym przypadku wzór ten przyjmie postać: [ m~ ] 6 6 ~ ~ ~ ~ ~ ~ gdzie: m = [ N

Bardziej szczegółowo

MECHANIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE

MECHANIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE Oga Koacz, Adam Łodygows, Wocech Pawłows, chał Płoowa, Krzyszof Tymer Konsuace nauowe: rof. dr hab. JERZY RAKOWSKI Poznań 00/003 ECHAIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE Wyznaczane rzemeszczeń z zasosowanem

Bardziej szczegółowo

WYKŁAD XIII METODY NUMERYCZNE W MODELOWANIU PROCESÓW

WYKŁAD XIII METODY NUMERYCZNE W MODELOWANIU PROCESÓW 1 WYKŁAD XIII METODY NUMERYCZNE W MODELOWANIU PROCESÓW Część II 13.3 METODA ELEMENTÓW SKOŃCZONYCH. 13.3.1 Wstęp. Metoda elementów skończonych (MES) została zapoczątkowana przez Turnera w 1956 r., jakkolwek

Bardziej szczegółowo

Linie wpływu w belce statycznie niewyznaczalnej

Linie wpływu w belce statycznie niewyznaczalnej Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też

Bardziej szczegółowo

ZADANIE ST S A T T A E T C E Z C N Z OŚĆ Ś Ć UK U Ł K AD A U D 53

ZADANIE ST S A T T A E T C E Z C N Z OŚĆ Ś Ć UK U Ł K AD A U D 53 ZDNE TTECZNOŚĆ UKŁDU 5 Treść zadania Wyznazyć najniejszą wartość siły, przy której nastąpi utrata stateznośi. kn 54 Układ podstawowy etody przeieszzeń aa jest trzykrotnie geoetryznie niewyznazalna 55 Dobór

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2

Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2 Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach

Bardziej szczegółowo

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1) Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz

Bardziej szczegółowo

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach

n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach Problem decyzyny cel różne sposoby dzałana (decyze) warunk ogranczaące (determnuą zbór decyz dopuszczalnych) kryterum wyboru: umożlwa porównane efektywnośc różnych decyz dopuszczalnych z punktu wdzena

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

SPRĘŻYSTOŚĆ PŁYT PILŚNIOWYCH WYTWORZONYCH Z DREWNA ORAZ SŁOMY ŻYTNIEJ

SPRĘŻYSTOŚĆ PŁYT PILŚNIOWYCH WYTWORZONYCH Z DREWNA ORAZ SŁOMY ŻYTNIEJ Inżynera Rolncza 1(119)/2010 SPRĘŻYSTOŚĆ PŁYT PILŚNIOWYCH WYTWORZONYCH Z DREWNA ORAZ SŁOMY ŻYTNIEJ Gabrel Czachor, Jerzy Bohdzewcz Instytut Inżyner Rolnczej, Unwersytet Przyrodnczy we Wrocławu Streszczene.

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE 5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Oprócz transmtancj operatorowej, do opsu członów układów automatyk stosuje sę tzw. transmtancję wdmową. Transmtancję wdmową G(j wyznaczyć moŝna dzęk podstawenu do wzoru

Bardziej szczegółowo

Wykład Turbina parowa kondensacyjna

Wykład Turbina parowa kondensacyjna Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW

Bardziej szczegółowo

Współczynniki aktywności w roztworach elektrolitów

Współczynniki aktywności w roztworach elektrolitów Współczynnk aktywnośc w roztworach elektroltów Ag(s) + ½ 2 (s) = Ag + (aq) + (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H r Przypomnene! = H tw, Ag + + ( aq) Jest ona merzalna ma sens

Bardziej szczegółowo