Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Wyznaczanie macierzy sztywnoci dla elementu czterowzłowego Q4

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Wyznaczanie macierzy sztywnoci dla elementu czterowzłowego Q4"

Transkrypt

1 Metod kompteroe oblczenoe Metoda lementó Skoczonch Wznaczane macerz sztnoc dla element czterozłoego Q lement czterozło Q sł do realzac oblcze szczególnch przpadkach trómaroego stan naprena odkształcena (płask stan naprena, płask stan odkształcena). a przkładze tego element poznam ogóln de zastosoana de MS mechance.. Kad kład rozpatran pod ktem rónoag statczne ms spełna rónana: σ, F które kładze płaskm mona zapsa postac: σ τ F τ σ F Posz kład róna rónczkoch defne zaleno pomdz oddzałanam zentrznm reakcam entrznm rozpatranm kładze.. Z praktcznego pnkt dzena nteres nas eszcze odkształcena przemeszczena, które zaemne s zalenone rónanam (zzk geometrczne): / (,, ) tzn. kładze płaskm: γ UWAGA! γ nale do odkształce konenc nnerske, a nale do konenc tensoroe.

2 . Pozostae eszcze zdefnoa relac pomdz stanem naprena odkształcena (zzk konstttne), któr przmem sobe postac lnoego praa Hooke'a: σ D z macerz sprstoc D płaskm stane odkształcena (PSO) postac: ) )( ( D z macerz sprstoc D płaskm stane naprena (PS) postac: D Mam zatem trz kład zalenoc : F(σ), () σ(), z którch proadzm rónana Metod lementó Skoczonch postac F(). Jel rozpszem: rónana z pkt.. posta macerzo (przenoszc F na pra stron): τ σ σ F F skróce:. [A] {σ} -{f} rónana z pkt. posta macerzo: γ skróce:. {} [A]{} rónana z pkt. posta macerzo :

3 dla PSO: γ τ σ σ ) )( ( dla PS: γ τ σ σ skróce:. {σ} [D]{} to podstaac rónan za {σ} rónane otrzmam: [A] [D]{} -{f} a podstaac dale za{} rónane : [A] [D][A]{} -{f} otrzmem szkan zaleno F(). Ponea elmnoalm z róna zaróno macerz stan naprena, ak stan odkształcena pozostaac ako neadome edne przemeszczena, tak zdefnoane zagadnene naza s sformłoanem przemeszczenom metod. Pełna posta naszego kład róna glda nastpco (PS):. F F zatem est to kład dóch róna rónczkoch czstkoch o neadomch postac składoch stan przemeszczena, które msm rozza ak metod nmerczn, np. metod elementó skoczonch (MS). Rozzane róna rónczkoch polega na ch całkoan, zatem msm podzel obszar, któr opsan est kładem poszch róna na czc element. Jel potraktem poedncz element ako bardzo mał cnek całoc, to bdzem mogl bez ksze szkod dla dokładnoc rozzana zastp (aproksmoa przbl) rzeczst przebeg przemeszcze danm elemence przt (znan) fnkc, któr naza s fnkc kształt, oznaczan przez. Ponea kad element defnoan est przez pnkt

4 (naroa-zł), to zakłada s, e nteresce nas przemeszczena dotcz tlko tch pnktó, a zatem, fnkce kształt danego element defnem tlko złach (póne okae s, e ne tlko ). p., dla element czterozłoego (czorobok) mam czter fnkce kształt: a b a b a b a b b a Zadane : a) Prosz prz ake artoc a b, a nastpne lcz po czter artoc dla kadego z czterech złó. b) Prosz narsoa przebeg fnkc po kradzach element. Jak bd glda przebeg pozostałch fnkc? Zatem przlm, e znam kształt przebeg artoc składoch przemeszczena elemence, bo załolm posta fnkc kształt, zatem neadom {} mona znacz doolnm mesc element z relac (znac przemeszczene samch złó { }): czl: [ ] []{ } [ ] []{ }

5 } []{ Skoro znam przebeg artoc składoch przemeszczena elemence starcz podsta do naszego kład dóch róna rónczkoch zamast {} (reprezentc cgł stan przemeszcze obszarze) - []{ } (reprezentc dskretne przemeszczena znaczane obszarze na podstae znanch fnkc kształt oraz znanch artoc przemeszcze złach) oraz scałkoa po obszarze element: a,,,, b } {f } dd{ gdze {f } to sł złach. Posz kład róna mona zapsa postac: [k m ]{}{f} zatem [k m ]: [k m ] a,,,, b dd gdze [k m ] est macerz sztnoc element. Prosz zaa, e proste form fnkc kształt łato s rónczk zgldem, zatem znaczane macerz sztnoc element czterozłoego est rzecz prost, lecz pracochłonn. Dalsze postpoane przebega g schemató z poprzednch za. W praktce ednak rzadko korzsta s z take form macerz sztnoc. Inna droga proadzena macerz sztnoc opera s na tz. podec energetcznm. Zakłada s, e całkota energa potencalna P analzoanego kład est padko energ skmloane odkształcenach U prac konane przez obcena L:

6 P U - L Regła mnmalzca energ potencaln kład maga, ab araca (zmana) δp bła ak namnesza, nalepe róna zero, t.: δp δu - δl nerga odkształce U zdefnoana est postac: U { σ} { }dd { } { σ} dd lb aracne: δu δ{ } { σ}dd { σ} δ{ } dd Jel podstam do zor na U za {σ} rónane to otrzmam: U { } [D]{ } dd eraz korzstam nasze fnkce kształt. Jel rónane zapszem zgldnac zamast {} dskretne artoc []{ }: {} [A][]{ } zaam, e składnkam macerz [A][] oznaczane przez [B] s pochodne fnkc kształt po zmennch : [B] [A][] (prosz spradz!) t..: {} [B]{ } a nastpne podstam do zor na U za {} posz zaleno to otrzmam: U { } [B] [D][B]{ } dd lb aracne: δu δ{ } [B] [D][B] δ{ } dd atomast praca obce zentrznch L est zdefnoana nastpco:

7 L {} {F} dd lb aracne δl δ{} {F} dd (prosz poróna z defnc energ (prac) oddzała zentrznch z kład z SP dot. hpersprstoc!). Wektor cgłego stan przemeszczena {} e zorze na δl te trzeba zamen na form dskretn []{ }, zatem: δl δ{ } [] {F} dd eraz racam do rónana energ potencalne podstaam zalenoc na δu δl: δp δu - δl δ{ } [B] [D][B] δ{ } dd - δ{ } [] {F} dd łczac δ{ } otrzmem: δp δ{ } ( [B] [D][B]dd δ { }- [] {F} dd ) Borc pod ag fakt, e rozpatrem eden element, całkota zmana energ potencalne bdze sm zman e szstkch elementach: zatem: lb: n δp ( δ{ } ( [B] [D][B]dd δ { }- [] {F} dd ) ) n n n ( [B] [D][B]dd δ { }- [] {F} dd ) ( [B] [D][B]dd δ { }) ( [] {F} dd Posz kład róna mona zapsa postac proszczone: n n [ k ] { } [ f ] m n czl nasz znaom kład: [k m ]{}{f} zsmoan ze szstkch elementó. Oczce znó macerz sztnoc element: [k m ] [B] [D][B] dd )

8 ne est łato znacz, ze zgld na całkoane pochodnch fnkc kształt (tak ak poprzedno). I t poaa s koncepca lokalnego globalnego kład spółrzdnch. Do te por szstko analzoalm ednm globalnm kładze spółrzdnch X-Y, tmczasem mona b rozpatra kad element nezalene kładze lokalnm, takm, ab podóna całka po poerzchn element mała grance poedzm od do, albo od do, tlko trzeba b zadba eszcze o przenesene nkó z lokalnego kład do globalnego. Okaze s, e fnkce transformce kład lokaln globaln mog me tak sam posta, co fnkce kształt, a to znakomce praszcza zagadnene (element, któr ma take same fnkce kształt transformacne naza s elementem zoparametrcznm). Przeledm to na przkładze naszego element czterozłoego. kład lokaln kład globaln a poszm rsnk przedstaono de kład lokalnego globalnego. Kad element MS mona z rzeczstego kształt przetransformoa na kształt reglarn, np. z doolnego czorokta na prostokt, z doolnego trókta na trókt prostoktn td. Jeszcze lepsza błab transformaca z doolnego czorokta na kadrat, tak transformac przedstaa rsnek pone. Czorokt kładze os ξ η stae s kadratem o rodk (przecce przektnch) pnkce P. Pnkt P kładze os ξ η ma spółrzdne (,), natomast erzchołk-zł odpoedno: (-,-), (-,), (,) (,-). Fnkce kształt ma nastpc posta: ¼ ( - ξ) ( - η) ¼ ( - ξ) ( η) ¼ ( ξ) ( η) ¼ ( ξ) ( - η)

9 kład os transformc dooln czorokt do kadrat Przpomn, e fnkce te sł do lczena przemeszcze doolnm pnkce obszar element, el znane s artoc erzchołkach (nterpolaca artoc). Zadane a) Prosz lcz po czter artoc dla kadego z czterech złó. b) Prosz narsoa przebeg fnkc po kradzach element. Jak bd glda przebeg pozostałch fnkc? Dla elementó zoparametrcznch fnkce te s ednoczene fnkcam transformcm artoc spółrzdnch z kład lokalnego do globalnego: []{} []{} gdze, spółrzdne złó kładze globalnm UWAGA! Za ξ η defncach podstaam spółrzdne danego mesca kładze lokalnm, a lczam tego samego mesca tle, e kładze globalnm. Zadane a) Dla danego ne czorokta znacz spółrzdne pnkt A, B C kładze globalnm, znac ch spółrzdne kładze lokalnm (odczta z kres).

10 b) Zaznacz połoene pnktó A, B C kładze globalnm. Układ globaln Układ lokaln.5 A B C Przece z kład globalnego z porotem do lokalnego ne est potrzebne. Wszstke potrzebne całk polczm kładze lokalnm przenesem nk do kład globalnego. Wraca ne ma po co. Przpomnm, e chcem scałkoa pochodne fnkc kształt po zmennch globalnch

11 , ak zatem posł s kładem lokalnm? Otó stosem dobrze znan regł rónczkoana (regła łacchoa): ξ ξ lb ξ ξ Ponea fnkce kształt zale od zmennch lokalnch ξ η, to łato e zrónczkoa zgldem tch zmennch. Zadane Polcz pochodne fnkc kształt po zmennch lokalnch: ξ ξ ξ ξ η η η η Regł łaccho moem zapsa macerzoo: ξ η ξ η ξ [J] η [ J] ξ η ξ η macerz pochodnch spółrzdnch kład globalnego po spółrzdnch kład lokalnego nos naz macerz Jacobego. Prosz zaa, e posza relaca dotcz przeca z kład globalnego do lokalnego (nk dzała po lee strone to pochodne kładze lokalnm). as ednak bardze nterese ce z kład lokalnego (czl nk kładze globalnm), tote odracam relac otrzmem:

12 [J] zatem edn rzecz, ak msm polcz, to element odrócone macerz Jacobego. Co est łate polcz: pochodne spółrzdnch kład lokalnego po globalnch, cz globalnego po lokalnch? Jel przrzm s rónanom transformac: które po podstaen defnc : glda nastpco: ξ η []{} []{} ¼ ( - ξ) ( - η) ¼ ( - ξ) ( η) ¼ ( ξ) ( η) ¼ ( ξ) ( - η) ¼ ( - ξ) ( - η) ¼ ( - ξ) ( η) ¼ ( ξ) ( η) ¼ ( ξ) ( - η) ¼ ( - ξ) ( - η) ¼ ( - ξ) ( η) ¼ ( ξ) ( η) ¼ ( ξ) ( - η) (oczce to stałe znane artoc spółrzdnch złó element kładze globalnm) to zaam, e łate est znacz pochodne spółrzdnch globalnch po lokalnch, czl element macerz Jacobego. Zatem: ¼ ( - ξ) ( - η) ¼ ( - ξ) ( η) ¼ ( ξ) ( η) ¼ ( ξ) ( - η) ¼ ( - η - ξ ξη) ¼ ( η - ξ ξη) ¼ ( η ξ ξη) ¼ ( - η ξ ξη) ξ ¼ ( η) ¼ ( - η) ¼ ( η) ¼ ( - - η) ¼ (- η) ¼ (- - η) ¼ ( η) ¼ ( - η) Zadane 5 Polcz pozostałe trz element macerz Jacobego (mona korzsta czenesze pochodne fnkc kształt).

13 Odrócene macerz Jacobego est prost cznnoc, ze zgld na fakt, est to zasze macerz dla zada PSO PS: [J] det[j] η η ξ ξ det[j] to oczce znacznk z macerz Jacobego, któr naza s akobanem: det[j] ξ η ξ η Zatem moem teraz polcz pochodne fnkc kształt po zmennch globalnch: [J] ξ η Ponea pochodne fnkc kształt po zmennch lokalnch mam znaczone (Zadane ), starcz przemno e macerzoo (dla kade fnkc nezalene) przez odrócon macerz Jacobego mam element, z którch moem ło macerz [B]. Wracam do naszego całkoana, ab znacz reszce macerz sztnoc. [k m ] [B] [D][B] dd Wem, e kładze lokalnm łate s prace (element est kadratem, zł ma spółrzdne ± ±) łate ponno s te całkoa, bo grance to do. Mmo to, całkoane c eszcze est pracochłonne. I t poaa s koncepca kadratr Gassa- Legendre a, która przeaa s MS tz. pnktam całkoana Gassa specalnm pnktam obszarze element, którch spółrzdne mola szbke całkoane g bardzo proste regł: [B] [D][B] dd g det[j] ([B] [D][B ) ] tzn. starcz dla danego element zsmoa loczn : aga * akoban * B * D * B dla kadego pnkt Gassa mam całk polczon (sekret prostot tk łane tch specalnch spółrzdnch adze tch szczególnch pnktó). W przpadk naszego czorokta mam do dspozc, lb 9 pnktó Gassa berzem sobe naczce stosoan kład z czterema pnktam.

14 pnkt Gassa Układ lokaln a poszm rsnk zaznaczono połoene pnktó Gassa. Ma spółrzdne ± ; ± ag róne (szstke). Wem szstko, co est potrzebne do znaczena macerz sztnoc element. Zatem zberzm to cało:. Msm zna parametr materałoe:, (lnoa sprsto Hooke a), eb znacz macerz [D]; dla PSO: [ D] ( )( ). Msm zna spółrzdne czterech złó naszego element kładze globalnm ( ; );. Oblczam pochodne,,,,,,, podstaac za za ξ η ξ η ξ η ξ η ξ η spółrzdne pnktó Gassa kładze lokalnm, czl ± ; ± ; szstke pochodne msm znacz dla kadego pnkt Gassa nezalene (oczce mam polczone zor na te pochodne, starcz podsta do nch lczb);. Oblczam artoc pochodnch,,, g zoró z zadana 5, podstaac za ξ η ξ η spółrzdne złó kładze globalnm, a za ξ η spółrzdne pnktó Gassa kładze lokalnm (po pochodne dla kadego pnkt Gassa);

15 5. Oblczam akoban; 6. Oblczam element odrócone macerz Jacobego dla kadego pnkt Gassa (znó po element dla kadego pnkt Gassa); 7. mnom macerzoo η ξ [J] otrzmem dla kade fnkc nezalene dla kadego pnkt Gassa te nezalene; 8. Z elementó otrzmanch pnkce 7, t.,,,,,,, bdem macerz [B] dla kadego pnkt Gassa osobno: [B] 9. Dla kadego pnkt Gassa całkem sztno g formł mnoena macerzoego: * det[j] * [B] * [D] * [B] (ednka na pocztk to aga pnkt Gassa). Składam macerz sztnoc smc składnk macerz otrzmanch pkt.9 dla kadego pnkt Gassa (smoane macerzoe);. Uff... konec. A teraz chla tchnena: Zadane 6 Wznacz macerz sztnoc element z zadana dla MPa..

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

Metoda Rónic Skoczonych

Metoda Rónic Skoczonych Metoda Rónc Skoczonych Cz Belka na sprystym podłou Komendy Matlaba UWAGA! Aby przeproadz praktyczne czena z ykorzystanem polece Matlaba, naley nada artoc lczboe szystkm parametrom ystpujcym komendach,

Bardziej szczegółowo

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM Budownctwo 7 Mkhal Hrtsuk, Rszard Hulbo WYZNACZNI ODKSZTAŁCŃ, PRZMISZCZŃ I NAPRĘŻŃ W ŁAWACH FNDAMNTOWYCH NA PODŁOŻ GRNTOWYM O KSZTAŁCI WYPKŁYM Wprowadzene Prz rozwązanu zagadnena przmuem, że brła fundamentowa

Bardziej szczegółowo

Informatyka stosowana

Informatyka stosowana r: Informatka stosowana wkład nr 7 metoda elementów skoczonch stota metod przkład oblczenow r: Istota metod elementów skoczonch metoda słuca do przblonego rozwzana zagadne z welu rónch dzedzn np. problemów

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

Elementy algebry i analizy matematycznej II

Elementy algebry i analizy matematycznej II Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

Matematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych

Matematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych Matematka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowch. Znale¹ ekstrema lokalne funkcji f(, ) = ( 2 + 2 2 )e (2 + 2 ) Odp. Jedno minimum (w p. (, )),

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

Interpolacja. Układ. x exp. = y 1. = y 2. = y n

Interpolacja. Układ. x exp. = y 1. = y 2. = y n MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

Wyrównanie spostrzeżeń pośrednich. Spostrzeżenia jednakowo dokładne

Wyrównanie spostrzeżeń pośrednich. Spostrzeżenia jednakowo dokładne Wyrónane spostrzeżeń pośrednch Szukay : X, Y, Z, T (elkośc pradze) Merzyy L, L, L,L n (spostrzeżena erzone bezpośredno pośrednczą yznaczenu x, y, z, t ) Spostrzeżena jednakoo dokładne Wyrónane polega na:

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

Metoda Różnic Skończonych

Metoda Różnic Skończonych Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej.

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania

Monitorowanie i Diagnostyka w Systemach Sterowania Montoroane Dagnostka Sstemach Steroana Katedra Inżner Sstemó Steroana Dr nż. Mchał Grochosk Montoroane Dagnostka Sstemach Steroana na studach II stopna specjalnośc: Sstem Steroana Podejmoana Deczj Maszn

Bardziej szczegółowo

Modele rozmyte 1. Model Mamdaniego

Modele rozmyte 1. Model Mamdaniego Modele rozmte Cel torzena noch model: dążene do uzskana coraz ększej dokładnośc, maroośc lub uproszczena struktur. Model Mamdanego Np.: -^ + R: JEŻELI jest to jest B R: JEŻELI jest to jest B R: JEŻELI

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Funkcja. Poj cie funkcji i podstawowe wªasno±ci. Dziedzina

Funkcja. Poj cie funkcji i podstawowe wªasno±ci. Dziedzina Poj cie unkcji i podstawowe wªasno±ci Alina Semrau-Giªka Uniwerstet Technoloiczno-Przrodnicz 30 stcznia 209 Funkcj ze zbioru X w zbiór Y nazwam odwzorowanie, które ka»demu elementowi ze zbioru X przporz

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow

Bardziej szczegółowo

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Imperfekcje globalne i lokalne

Imperfekcje globalne i lokalne Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

Zginanie ze ściskaniem

Zginanie ze ściskaniem Zginanie ze ściskaniem sformułoanie probemu przkład roziązań przkład obiczenioe Sformułoanie probemu W probemach tego tpu nie można stosoać zasad zesztnienia - konstrukcję naeż rozpatrać konfiguracji odkształconej

Bardziej szczegółowo

Przestrzenie liniowe w zadaniach

Przestrzenie liniowe w zadaniach Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0,

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

9. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

9. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 9. RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 9. RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Wsęp. Rónana zaeraące pochodną neznane fnkc dóch b ęce zmennch naza sę cząskom rónanem różnczkom. Na przkład: 5 9. Ze zgęd na szeroke zasosoane

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

Obliczanie geometrycznych momentów figur płaskich 4

Obliczanie geometrycznych momentów figur płaskich 4 Obzane geometrznh momentów fgur płaskh Postawowe zaeżnoś Geometrzne moment bezwłanoś fgur płaskh wzgęem os ukłau współrzęnh obzm w oparu o ponższe zaeżnoś: (.a) (.b) Geometrzn moment bezwłanoś wzgęem punktu

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE UKŁADY JEDNOWYMIAROWE Część III UKŁADY NIELINIOWE 1 15. Wprowadzenie do części III Układ nieliniowe wkazją czter właściwości znacznie różniące je od kładów liniowch: 1) nie spełniają zasad sperpozcji,

Bardziej szczegółowo

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t ) pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)

Bardziej szczegółowo

TEMAT ĆWICZENIA. Wyznaczanie entalpii parowania (skraplaniu) wody

TEMAT ĆWICZENIA. Wyznaczanie entalpii parowania (skraplaniu) wody TEMAT ĆIZEIA znaczanie entalpii parowania (kraplani wod PODSTAY TEORETYZE DO SAMODZIELEGO OPRAOAIA Para nacona cha i para okra, para przegrzana, topień chości, taone ciepło parowania (taona entalpia parowania,

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera

Bardziej szczegółowo

W. Guzicki Zadanie 30 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 30 z Informatora Maturalnego poziom rozszerzony 1 W. uzicki Zadanie 0 z Informatora Maturalnego poziom rozszerzon Zadanie 0. an jest sześcian (zobacz rsunek), którego krawędź ma długość 5. unkt i dzielą krawędzie i w stosunku :, to znacz, że 0. łaszczzna

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Czerwone maki na Monte Cassino

Czerwone maki na Monte Cassino sł. Felks Korsk SOPAN ALT TENO BAS c c c 1. Czer ne 2. Czer ne 1. Czer ne 2. Czer ne c Czerne k Monte sno 1. Czer ne 2. Czer ne 1. Czer ne 2. Czer ne k k k k k k k k Monte Monte Monte Monte Monte Monte

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton nd ed by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej

Rachunek różniczkowy funkcji jednej zmiennej Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow

Bardziej szczegółowo

Zasada superpozycji.

Zasada superpozycji. Zasada sperpozycj. e e e n rotnk skpony bezźródłoy m j m m j m n j n k ymszena atonomczne, fnkcje kładoe ( obodoe ) Zasada sperpozycj: W obodze SL doolna fnkcja kładoa (prąd lb napęce ) jest smą algebraczną

Bardziej szczegółowo

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni

Bardziej szczegółowo

Prawo propagacji niepewności. 1

Prawo propagacji niepewności. 1 Prwo propgc nepewnośc. Prwo propgc nepewnośc. W przpdk pomrów metodą pośredną wrtość welkośc stl sę n podstwe wrtośc nnch welkośc zmerzonch bezpośredno. przkłd obętość V 0 prostopdłoścn o krwędzch D 0

Bardziej szczegółowo

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K) STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO

Bardziej szczegółowo

3 ag E.Bielecka-Cimaszkiewicz Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S

3 ag E.Bielecka-Cimaszkiewicz Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S 3 ag E.Bielecka-Cimaszkiewicz 1 8:00-8:45 RT religia 20 EB j.polski 24 EB z.art 19 WE e_dla_bezp 34 2 8:55-9:40 IK biologia 36 CZ chemia 41 KG matematyka 32 MU Ba-Ch B3 CZ chemia 41 KI Ba-Dz B2 3 9:50-10:35

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

A4 Klub Polska Audi A4 B6 - sprężyny przód (FWD/Quattro) Numer Kolory Weight Range 1BA / 1BR 1BE / 1BV

A4 Klub Polska Audi A4 B6 - sprężyny przód (FWD/Quattro) Numer Kolory Weight Range 1BA / 1BR 1BE / 1BV Audi A4 B6 - sprężyny przód E0 411 105 BA żółty niebieski różowy 3 E0 411 105 BB żółty niebieski różowy różowy 4 E0 411 105 BC żółty zielony różowy 5 E0 411 105 BD żółty zielony różowy różowy 6 E0 411

Bardziej szczegółowo

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = + REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Wykład 5. Skręcanie nieskrępowane prętów o przekroju prostokątnym.

Wykład 5. Skręcanie nieskrępowane prętów o przekroju prostokątnym. Adresy internetowe, pod którymi można znaleźć wykłady z Wytrzymałości Materiałów: Politechnika Krakowska http://limba.wil.pk.edu.pl/kwm-edu.html Politechnika Łódzka http://kmm.p.lodz.pl/dydaktyka Wykład

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

Kwantowy efekt Halla

Kwantowy efekt Halla Kwantow efekt Halla Odkrt w 198; Klaus von Klitzing (z G.Dorda, M.Pepper) Phs. Rev. Lett.45 (198) 494 Nagroda Nobla 1985 W pewnch specficznch warunkach i w układach prawie idealnie -wmiarowch opór Halla

Bardziej szczegółowo

WYKŁAD 2 KINEMATYKA PŁYNÓW CZĘŚĆ 1 1/14

WYKŁAD 2 KINEMATYKA PŁYNÓW CZĘŚĆ 1 1/14 WYKŁAD 2 KINEMATYKA PŁYNÓW CZĘŚĆ 1 1/14 OPISY LAGRANGE A I EULERA. PRĘDKOŚĆ I PRZYSPIESZENIE PŁYNU. Elementem płynu nazywamy indywidualną i x 3, nieskończenie małą porcę płynu. Każdy element płynu ma przypisane

Bardziej szczegółowo

TENSOR W ZAPISIE LAGRANGE A I EULERA

TENSOR W ZAPISIE LAGRANGE A I EULERA TENSOR W ZAPISIE LAGRANGE A I EULERA N postwe skłowych wektor przemeszczeń obczmy skłowe tensor oksztłcen. Tensor oksztłcen może być w zpse Lgrnge b Eer. We współrzęnych Lgrnge rch cząsteczk est opsny

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Obwody elektryczne. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy.

Obwody elektryczne. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy. Stan ustalony i stan przejściowy. San salony san prjścoy Obody lkrycn San salony W obod prąd sałgo Warośc prądó napęć n lgają an W obod prąd nngo Warośc śrdn skcn prądó napęć n lgają an Prądy napęca są fnkcja okrsoy o akj saj cęsolośc,

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x +

FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x + FINAŁ 0 marca 007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut ZADANIE Największ wspóln dzielnik dwóch liczb naturalnch wnosi 6, a ich najmniejsza wspólna wielokrotność tch liczb równa jest

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

Róniczka. f x. V Vx. Zadanie 4. Znale maksymalny błd bezwzgldny i wzgldny powstały przy obliczaniu objtoci stoka, jeli promie podstawy wynosi

Róniczka. f x. V Vx. Zadanie 4. Znale maksymalny błd bezwzgldny i wzgldny powstały przy obliczaniu objtoci stoka, jeli promie podstawy wynosi Róniczka Wraenie d nazwa si róniczk pierwszego rzdu czci liniow przrostu wartoci unkcji Zastosowanie róniczki do oblicze przblionch: Zadanie Za pomoc róniczki oblicz przblion warto liczb Wkorzstam wzór

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 5. SZTUCZNE SIECI NEURONOWE REGRESJA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wdzał Elektrczn Poltechnka Częstochowska PROBLEM APROKSYMACJI FUNKCJI Aproksmaca funkc przblżane

Bardziej szczegółowo

2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ

2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ . PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ. Wroadzene Przemana jest adabatyczna, jeśl dla każdych dóch stanó l, leżących na tej rzemane Q - 0. Z tej defncj ynka, że aby zrealzoać yżej ymenony roces,

Bardziej szczegółowo