Metoda Różnic Skończonych
|
|
- Julian Pietrzak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej. Przyjąć: C = kn/m, E = 9 kpa, J =. m, L = m. Belka jest obcążona jak na rysunku onżej: q=kpa m m 5m Rozązane zadana Krok Dyskretyzacja układu Dzelmy belkę na ęzły: rzyjmemy ęzłó o stałej, zajemnej odległośc h =.5m. Na rysunku onżej zaznaczono satkę ęzłó (numeracja ęzłó naasach). () () () () (5) (6) (7) (8) (9) () () () () () (5) (6) (7) (8) (9) ()() x [m] Krok Wyroadzene zązkó dla ęzłó oza belką Rónane różnczkoe ążące sły tnące z ugęcem belk d dx
2 Metody Oblczenoe, P.E.Srokosz zamenamy na rónane różncoe: zauażamy, że oblczene artośc,, ymaga znajomośc artośc rzemeszczeń ęzłach oza belką, tzn. -, oraz. - 9 Z arunkó brzegoych dotyczących momentó ęzłach ynkły zązk: = (rzegub o raej strone), = (uterdzene o leej strone). Pozostaje yznaczyć zązk dla - yelmnoać te ęzły rónanu na. Kolejny arunek brzegoy, jak ykorzystamy oblczenach, ma ostać (jest to nasze głóne rónane ugęca belk): d dx K gdze = (na obu końcach belk ne ma obcążena), a rzemeszczena znamy na odorach =. Rónane ugęca ostac różncoej ykorzystalśmy już cześnej do budoy układu rónań, a yglądało tak: C 6 h Zatem, na każdym brzegu mamy ( =, = ): C 6 h h.. to rónane zastosujemy do leego raego ęzła skrajnego belk. Na leym brzegu uterdzonym, ęźle odoroym = : =, zatem:
3 Metody Oblczenoe, P.E.Srokosz zatem rónane rzyjme ostać brzegoą: 8 8 Na leym brzegu ęźle rzyodoroym = : =, =, zatem: Na raym brzegu odartym rzeguboo, mejscu odory: =, =, zatem, dla = : zór różncoy na słą tnącą ęźle = rzyjmuje ostać: natomast ęźle rzyodoroym = : =, =, zatem: Krok Oeratory różncoe na Dla szystkch enętrznych ęzłó belk (z yjątkem rzyodoroych) ażne są rónana odstaoe:
4 Metody Oblczenoe, P.E.Srokosz, dla ęzłó rzyodoroych odoroych oboązują zmodyfkoane oeratory różncoe o ostacach: W Matlabe, rónana formułujemy funkcjam: nace, naceul nacepp: (lk nace.m) functon t = nace(, n, h, E, J) %zeroane zmennej ynkoej t = zeros(,n); h = h.^; %yznaczene sl tnacych dla szystkch ezlo enetrznych z %yjątkem rzyodoroych for =:(n-) t() = (E.* J)./ (.*h).* (-(-) +.*(-) + -.*(+) + (+)); end (lk naceul.m) functon [t, t] = naceul(, n, h, E, J) %oblcza sly enetrzne odorze rzy odorze, %uterdzene z leej strony h = h.^; t = (E.* J)./ (.*h).* (- 8.* () +.* ()); t = (E.* J)./ (.*h).* (- () -.* () + ());
5 Metody Oblczenoe, P.E.Srokosz (lk nacepp.m) functon [t, t] = nacepp(, n, h, E, J) %oblcza sly enetrzne odorze rzy odorze, %rzegub z raej strony h = h.^; t = (E.* J)./ (.*h).* (-(8) +.* (9) - ()); t = (E.* J)./ (.*h).* (-.* (9) +.* ()); Proszę sradzć z rónanam! Krok Rozązane układu statycznego Skoro mamy już funkcje oblczające sły tnące, uzuełnamy skryt zadane.m o olecena: (dosujemy na końcu lku zadane.m) %sly tnace enątrz belk t = nace(, n, h, E, J); %sla leym skraju (uterdzonym) ezle nr [t(), t()] = naceul(, n, h, E, J); %sla raym skraju (rzeguboym) ezle nr [t(), t()] = nacepp(, n, h, E, J); eraz możemy yznaczyć ykres rozkładu artośc sły tnącej olecenam ( lku zadane.m): %ykres x- lot(x,t); %os os x xlabel('x [m]'); %os os y ylabel(' [kn]'); Analogczne do orzednej lekcj, zadane rozązujemy olecenam:
6 Metody Oblczenoe, P.E.Srokosz >>oeratory >>zadane o ykresach ugęca momentó (nacskamy sację) onen ojać sę rysunek sł tnących: 5 5 [kn] X [m] Zadane do samodzelnego rozązana W katalogach znajdują sę lk umożlające rozązane zadana z nastęującym arunkam brzegoym: belka_ul_pp uterdzene z leej, rzegub z raej belka_pl_up rzegub z leej, uterdzene z raej belka_ul_up uterdzene z leej, uterdzene z raej belka_pl_pp rzegub z leej, rzegub z raej ylko erszym katalogu są rocedury umożlające yznaczene sł tnących. Wyroadzć rónana różncoe na dla ozostałych arunkó brzegoych, zasać je lkach Matlaba odoednch katalogach ykonać oblczena (lk oeratory.m zadane.m są już gotoe do oblczeń).
Metoda Rónic Skoczonych
Metoda Rónc Skoczonych Cz Belka na sprystym podłou Komendy Matlaba UWAGA! Aby przeproadz praktyczne czena z ykorzystanem polece Matlaba, naley nada artoc lczboe szystkm parametrom ystpujcym komendach,
Bardziej szczegółowoMECHANIKA BUDOWLI 13
1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym
Bardziej szczegółowo1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa
. Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa
Bardziej szczegółowoBelki na podłożu sprężystym
Belki na podłożu sprężystym podłoże inkleroskie, rónanie różniczkoe ugięcia belki, linie płyoe M-Q-, belki półnieskończone, sposób Bleicha, przykład obliczenioy odłoże inkleroskie Założenia Winklera spółpracy
Bardziej szczegółowoMRS I MES W ANALIZIE BELEK O ZMIENNYM PRZEKROJU
Zeszyty Naukoe WInf Vol 6, Nr, 007 Paulna Obara, Waldemar zanec Katedra Mecank Budol Poltecnka Śętokrzyska MR I ME W ANALIZIE BELEK O ZMIENNYM PRZEKROJU treszczene W pracy rozażanom został poddany pręt,
Bardziej szczegółowo2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ
. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ. Wroadzene Przemana jest adabatyczna, jeśl dla każdych dóch stanó l, leżących na tej rzemane Q - 0. Z tej defncj ynka, że aby zrealzoać yżej ymenony roces,
Bardziej szczegółowoA - przepływ laminarny, B - przepływ burzliwy.
PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m
Bardziej szczegółowoZasada Jourdina i zasada Gaussa
Zasada Jourdna zasada Gaussa Orócz zasady d Alemberta w mechance analtyczne stosue sę nne zasady waracyne. Są to: zasada Jourdana zasada Gaussa. Wyrowadzene tych zasad oarte est na oęcu rędkośc rzygotowane
Bardziej szczegółowoWPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO
Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono
Bardziej szczegółowoPrzykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu
Karta (sylabus) modułu/przedmotu Budoncto (Naza kerunku studó) Studa I Stopna Przedmot: Budoncto przemysłoe Industral buldng engneerng Rok: III Semestr: 6 MK_4 Rodzaje zajęć lczba godzn: Studa stacjonarne
Bardziej szczegółowoPrzykład 2.3 Układ belkowo-kratowy.
rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene
Bardziej szczegółowoWyrównanie spostrzeżeń pośrednich. Spostrzeżenia jednakowo dokładne
Wyrónane spostrzeżeń pośrednch Szukay : X, Y, Z, T (elkośc pradze) Merzyy L, L, L,L n (spostrzeżena erzone bezpośredno pośrednczą yznaczenu x, y, z, t ) Spostrzeżena jednakoo dokładne Wyrónane polega na:
Bardziej szczegółowoPrzykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
Bardziej szczegółowoMacierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
Bardziej szczegółowoWykład 9. Stateczność prętów. Wyboczenie sprężyste
Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem
Bardziej szczegółowou u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
Bardziej szczegółowoTemat: Operacje elementarne na wierszach macierzy
Temat: Operacje elementarne na erszach macerzy Anna Rajfura Anna Rajfura Operacje elementarne na erszach macerzy n j m n A Typy operacj elementarnych. Zamana mejscam erszy oraz j, ozn.: j. Mnożene ersza
Bardziej szczegółowoOptymalizacja belki wspornikowej
Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana
Bardziej szczegółowoZ1/1. ANALIZA BELEK ZADANIE 1
05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej
Bardziej szczegółowoProces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Bardziej szczegółowoCiepło topnienia lodu
Cepło topnena lodu CELE SPIS TREŚCI Obseracja procesu ymany energ toarzyszącego zmane stanu skupena - topnenu. Pomary zman temperatury ody trakce topnena proadzonej do nej znanej masy lodu. Uzyskane dane
Bardziej szczegółowo1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ
.. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam
Bardziej szczegółowoŻ ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Bardziej szczegółowoŚ Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Bardziej szczegółowoŁ Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Bardziej szczegółowoŁ Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Bardziej szczegółowoWykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń
Mechanika Budowli 2 sem. IV N1 Wykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń Mechanika Budowli 2 sem. IV N1 Treści Programowe: 1. Metoda przemieszczeń układy nieprzesuwne 2. Metoda przemieszczeń
Bardziej szczegółowoPattern Classification
Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton nd ed by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher
Bardziej szczegółowoĆWICZENIE NR 7 SKALOWANIE ZWĘśKI
ĆWICZENIE NR SKALOWANIE ZWĘśKI. Cel ćiczenia: Celem ćiczenia jest ykonanie cechoania kryzy pomiaroej /yznaczenie zaleŝności objętościoego natęŝenia przepłyu poietrza przez zęŝkę od róŝnicy ciśnienia na
Bardziej szczegółowoRozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Bardziej szczegółowoZ1/2 ANALIZA BELEK ZADANIE 2
05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu
Bardziej szczegółowoXLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Bardziej szczegółowoRUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Bardziej szczegółowoSTATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],
STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:
Bardziej szczegółowoPrzykład 3.2. Rama wolnopodparta
rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ
Bardziej szczegółowoTERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny
Bardziej szczegółowoRóżniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k
Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T
Bardziej szczegółowoWyznaczenie reakcji w Belkach Gerbera
Wyznaczenie reakcji w elkach erbera Sposób obliczania: by policzyć elkę erbera w najprostszy sposób dzielimy ją w przegubach uzyskując pojedyncze belki by móc policzyć konstrukcję, belki powstałe po podziale
Bardziej szczegółowoDOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia.
DOBÓR SERWOSILNIKA POSUWU Rysunek 1 rzedstawa schemat knematyczny naędu jednej os urządzena. Rys. 1. Schemat knematyczny serwonaędu: rzełożene rzekładn asowej, S skok śruby ocągowej, F sła orzeczna, F
Bardziej szczegółowoLABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 7
KAEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSRUKCJE DO ĆWICZEŃ LABORAORYJNYCH LABORAORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ Skaloanie zężki Osoba odpoiedzialna: Piotr Rybarczyk Gdańsk,
Bardziej szczegółowoBadania ruchu w Trójmieście w ramach projektu Kolei Metropolitalnej. mgr inż. Szymon Klemba Warszawa, 13.03.2012r.
Badania ruchu Trójmieście ramach projektu Kolei Metropolitalnej mgr inż. Szymon Klemba Warszaa, 13.03.2012r. SPIS TREŚCI 1 Tło i cel badań 2 Podstaoe pojęcia modeloania 3 Proces budoy modelu 3A Model układu
Bardziej szczegółowoPrzykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
Bardziej szczegółowo{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Bardziej szczegółowoMETODA RÓśNIC SKOŃCZONYCH WYśSZEGO RZĘDU I JEJ ZASTOSOWANIA W JEDNOWYMIAROWYCH PROBLEMACH BRZEGOWYCH MECHANIKI
Słaomr Mesk Krakó, dn. -- Mecanka Komputeroa V rok Wydzał InŜyner Lądoe Potecnka Krakoska PRACA DYPLOMOWA METODA RÓśNIC SKOŃCZONYCH WYśSZEGO RZĘDU I J ZASTOSOWANIA W JEDNOWYMIAROWYCH PROBLEMACH BRZEGOWYCH
Bardziej szczegółowoAnaliza i zarządzanie portfelem studia ZI Przykładowe zadania z minimum programowego 1
Zma 003/004 nalza zarządzane ortelem tuda ZI Przykładoe zadana z mnmum rogramoego 1 UTO: Paeł okta N INTEPETCJĘ POJĘĆ DOCHODU, YZYK I POTFEL EFEKTYWNEGO 1. Który ortel na eno ne jet eektyny: Naza ortela
Bardziej szczegółowo(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
Bardziej szczegółowoOBLICZANIE ŁAW SZEREGOWYCH NA PODŁOŻU SPRĘŻYSTYM ZA POMOCĄ METODY ANALITYCZNEJ (model Winklera, metoda Bleicha)
OICZNIE ŁW SZEREGOWYCH N ODŁOŻU SRĘŻYSTYM Z OMOCĄ METODY NITYCZNEJ (model Winklera, metoda leicha).. Oznaczenia sił wewnętrznych. Założenia i dane obciążenie q o (x) > 0 0 odpór podłoża r(x) > 0 y > 0
Bardziej szczegółowo5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy
5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja
Bardziej szczegółowoOGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
Bardziej szczegółowoUwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II
Bardziej szczegółowoWyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002
Wyniki ymiaroania elementu żelbetoego g PN-B-0364:00 RM_Zelb v. 6.3 Cechy przekroju: zadanie Żelbet, pręt nr, przekrój: x a=,5 m, x b=3,75 m Wymiary przekroju [cm]: h=78,8, b =35,0, b e=00,0, h =0,0, skosy:
Bardziej szczegółowoWYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:
Bardziej szczegółowoPRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)
PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie
Bardziej szczegółowoMechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Bardziej szczegółowoAUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID
ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena
Bardziej szczegółowoPrzykład 4.4. Belka ze skratowaniem
rzykład.. eka ze skratowane oecene: korzystając z etody sł sporządzć wykresy sł przekrojowych w ponŝszej konstrukcj staowej. yznaczyć ugęce w punkce (w połowe rozpętośc bek). orównać wyznaczone ugęce ze
Bardziej szczegółowoWspółczynnik przenikania ciepła U v. 4.00
Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury
Bardziej szczegółowoMaszyna wektorów nośnych (Support vector machine)
Maszyna ektoró nośnych (Suort vector machne) Przygotoał: Dr nż. Wocech Artchocz Katedra Hydrotechnk PG Zma 04/5 Zadane. Dane są da zbory unktó A B (dane tabelach onże). Znadź ektory seraące narysu herłaszczyzny
Bardziej szczegółowoĆwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011
Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym
Bardziej szczegółowoFunkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy
etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b
Bardziej szczegółowoPROJEKTOWANIE I BUDOWA
ObcąŜena kadłuba PROJEKTOWANIE I BUDOWA OBIEKTÓW LATAJĄCYCH I ObcąŜena kadłuba W. BłaŜewcz Budowa samolotów, obcąŝena W. Stafej Oblczena stosowane przy projektowanu szybowców St. Danleck Konstruowane samolotów,
Bardziej szczegółowoMonitorowanie i Diagnostyka w Systemach Sterowania
Montoroane Dagnostka Sstemach Steroana Katedra Inżner Sstemó Steroana Dr nż. Mchał Grochosk Montoroane Dagnostka Sstemach Steroana na studach II stopna specjalnośc: Sstem Steroana Podejmoana Deczj Maszn
Bardziej szczegółowoMetody programowania sieciowego w zarządzaniu przedsięwzięciami
Metody programoania siecioego zarządzaniu przedsięzięciami Programoanie siecioe stanoi specyficzną grupę zagadnień programoania matematycznego. Zagadnienia siecioe - zagadnienia, których ilustrację graficzną
Bardziej szczegółowoPodpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
Bardziej szczegółowo6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
Bardziej szczegółowoinstrukcja do ćwiczenia 3.4 Wyznaczanie metodą tensometrii oporowej modułu Younga i liczby Poissona
UT-H Radom Instytut Mechaniki Stosoanej i Energetyki Laboratorium Wytrzymałości Materiałó instrukcja do ćiczenia 3.4 Wyznaczanie metodą tensometrii oporoej modułu Younga i liczby Poissona I ) C E L Ć W
Bardziej szczegółowoDRGANIA WŁASNE UKŁADÓW RAMOWYCH I ICH MODELOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURAL ANALYSIS
Budoncto 18 Krzysztof Kubc DRGANIA WŁASNE UKŁADÓW RAMOWYCH I ICH MODEOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURA ANAYSIS Wproadzene Progray do oblczeń onstrucj ułatają życe projetanto, znaczne sracając
Bardziej szczegółowoWytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Bardziej szczegółowoBadanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
Bardziej szczegółowoI..ROZWIĄZANIE DANEGO RUSZTU BELKOWEGO OD DANEGO OBCIĄŻENIA
TO SIŁ układ przetrzenny przykład ruzt belkowy OZWIĄZNI USZTU LKOWO TOĄ SIŁ I OLIZNI PZISZZNI any jet ruzt belkowy jak na ryunku obok ozwązać go etodą ł porządzć wykrey ł przekrojowych dokonać kontrol
Bardziej szczegółowogruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
Bardziej szczegółowo1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH
Projekt z fundamentowana: MUR OPOROWY (tuda mgr) POSADOWIENIE NA PALACH WG PN-83/B-02482. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH grunt G π P d T/Nm P / P r grunt zayp. Tabl.II.. Zetawene parametrów geotechncznych.
Bardziej szczegółowoZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
Bardziej szczegółowoZasada superpozycji.
Zasada sperpozycj. e e e n rotnk skpony bezźródłoy m j m m j m n j n k ymszena atonomczne, fnkcje kładoe ( obodoe ) Zasada sperpozycj: W obodze SL doolna fnkcja kładoa (prąd lb napęce ) jest smą algebraczną
Bardziej szczegółowoBELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie.
Są to belki ciągłe przegubowe i należą do układów statycznie wyznaczalnych (zatem n s = 0). Przykładowy schemat: A ELKI GERERA V V Wyznaczenie stopnia statycznej niewyznaczalności układu: n s = R P 3 gdzie:
Bardziej szczegółowof 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x
f l Ry. 3. Rozpatrywany łuk parabolczny 4 f l x x 2 y x l 2 f m l 2 m y x 4 2 x x 2 2 2,86 x,43 x 2 tg y x dy 4 f l 2 x l 2 4 2 2 x 2 2,86,86 x Mechanka Budowl Projekty Zgodne ze poobem rozwązywana układów
Bardziej szczegółowoIDENTYFIKACJA WSPÓŁCZYNNIKA WNIKANIA CIEPŁA NA ZEWNĘTRZNEJ POWIERZCHNI TERMOMETRU DO WYZNACZANIA NIEUSTALONEJ TEMPERATURY PŁYNU
ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 91, Mechanika 87 RUTMech, t. XXXII, z. 87 (3/15), lipiec-rzesień 015, s. 51-60 Jan TALER 1 Magdalena JAREMKIEWICZ IDENTYFIKACJA WSPÓŁCZYNNIKA WNIKANIA CIEPŁA NA
Bardziej szczegółowoCzęść 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
Bardziej szczegółowoXXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z FIZYKI DLA KL.III
WYMAGANIA EDUKACYJNE Z FIZYKI DLA KL.III 1.Metody oceny osiągnięć ucznia Kontroloanie i ocenianie osiągnięć ucznia odgrya szczególną rolę rocesie dydaktycznym. Dokonując oceny osiągnięć ucznia nauczyciel
Bardziej szczegółowoFunkcja Tytuł, Imię i Nazwisko Specjalność Nr Uprawnień Podpis Data. kontr. bud bez ograniczeń
WYKONAWCA: Firma Inżynierska GF MOSTY 41-940 Piekary Śląskie ul. Dębowa 19 Zamierzenie budowlane: Przebudowa mostu drogowego nad rzeką Brynicą w ciągu drogi powiatowej nr 4700 S (ul. Akacjowa) w Bobrownikach
Bardziej szczegółowo1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1
.. CAŁA OHRA Całka OHRA yraża ziązek między przemieszczeniem (ydłużeniem, ugięciem, obrotem) a obciążeniem (siłą, momentem, obciążeniem ciągłym). Służy ona do yznaczania przemieszczeń statycznie yznaczanych
Bardziej szczegółowoModelowanie rozwoju pożaru w pomieszczeniach zamkniętych. Cz. II. Model spalania.
Modeloanie rozoju pożaru pomieszczeniach zamkniętych. Cz.. Model spalania. Dr hab. inż. Tadeusz Maciak prof. SGSP, mgr inż. Przemysła Czajkoski, Spis ażniejszych oznaczeń stosoanych modeloaniu pożaru:
Bardziej szczegółowoPraca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju
Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton
Bardziej szczegółowoEgzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
Bardziej szczegółowoWewnętrzny stan bryły
Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez
Bardziej szczegółowoMetodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.
ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Bardziej szczegółowoSzymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO
1 Obliczyć SGN (bez docisku) dla belki pokazanej na rysunku. Belka jest podparta w sposób ograniczający możliwość skręcania na podporze. Belki rozstawione są co 60cm. Obciążenia charakterystyczne belki
Bardziej szczegółowoC = 0,8 2. W obliczeniach załoŝono, Ŝe obciąŝenie to będzie przykładane do górnych pasów dźwigarów. ObciąŜenia w programie Robot.
ZAŁĄCZNIK 1. OBLICZENIA STATYCZNE ELEMENTÓW PRĘTOWYCH KONSTRUKCJI DACHU W NAWACH O ROZPIĘTOŚCI 30 m i 24 m Z1.1. Zestawienie obciąŝeń ObciąŜenia stałe Zestawienie obciąŝeń na 1m 2 dachu od warstw okrycia:
Bardziej szczegółowoAnaliza obudowy sztolni
Przewodnik Inżyniera Nr 23 Aktualizacja: 01/2017 Analiza obudowy sztolni Program: MES Plik powiązany: Demo_manual_23.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy sztolni drążonej z
Bardziej szczegółowoSzymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO
1 Obliczyć SGN (bez docisku) dla belki pokazanej na rysunku. Belka jest podparta w sposób ograniczający możliwość skręcania na podporze. Belki rozstawione są co 60cm. Obciążenia charakterystyczne belki
Bardziej szczegółowoEnergia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Bardziej szczegółowoĆ W I C Z E N I E N R E-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIRII PRODUKCJI I TCHNOLOGII MATRIAŁÓW POLITCHNIKA CZĘSTOCHOWSKA PRACOWNIA LKTRYCZNOŚCI I MAGNTYZMU Ć W I C Z N I N R -3 SPRAWDZANI II PRAWA KIRCHHOFFA DLA POJDYNCZGO OBWODU
Bardziej szczegółowoWęzeł nr 28 - Połączenie zakładkowe dwóch belek
Projekt nr 1 - Poz. 1.1 strona nr 1 z 12 Węzeł nr 28 - Połączenie zakładkowe dwóch belek Informacje o węźle Położenie: (x=-12.300m, y=1.300m) Dane projektowe elementów Dystans między belkami s: 20 mm Kategoria
Bardziej szczegółowo1. METODA PRZEMIESZCZEŃ
.. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:
Bardziej szczegółowo