Metoda Różnic Skończonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda Różnic Skończonych"

Transkrypt

1 Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej. Przyjąć: C = kn/m, E = 9 kpa, J =. m, L = m. Belka jest obcążona jak na rysunku onżej: q=kpa m m 5m Rozązane zadana Krok Dyskretyzacja układu Dzelmy belkę na ęzły: rzyjmemy ęzłó o stałej, zajemnej odległośc h =.5m. Na rysunku onżej zaznaczono satkę ęzłó (numeracja ęzłó naasach). () () () () (5) (6) (7) (8) (9) () () () () () (5) (6) (7) (8) (9) ()() x [m] Krok Wyroadzene zązkó dla ęzłó oza belką Rónane różnczkoe ążące sły tnące z ugęcem belk d dx

2 Metody Oblczenoe, P.E.Srokosz zamenamy na rónane różncoe: zauażamy, że oblczene artośc,, ymaga znajomośc artośc rzemeszczeń ęzłach oza belką, tzn. -, oraz. - 9 Z arunkó brzegoych dotyczących momentó ęzłach ynkły zązk: = (rzegub o raej strone), = (uterdzene o leej strone). Pozostaje yznaczyć zązk dla - yelmnoać te ęzły rónanu na. Kolejny arunek brzegoy, jak ykorzystamy oblczenach, ma ostać (jest to nasze głóne rónane ugęca belk): d dx K gdze = (na obu końcach belk ne ma obcążena), a rzemeszczena znamy na odorach =. Rónane ugęca ostac różncoej ykorzystalśmy już cześnej do budoy układu rónań, a yglądało tak: C 6 h Zatem, na każdym brzegu mamy ( =, = ): C 6 h h.. to rónane zastosujemy do leego raego ęzła skrajnego belk. Na leym brzegu uterdzonym, ęźle odoroym = : =, zatem:

3 Metody Oblczenoe, P.E.Srokosz zatem rónane rzyjme ostać brzegoą: 8 8 Na leym brzegu ęźle rzyodoroym = : =, =, zatem: Na raym brzegu odartym rzeguboo, mejscu odory: =, =, zatem, dla = : zór różncoy na słą tnącą ęźle = rzyjmuje ostać: natomast ęźle rzyodoroym = : =, =, zatem: Krok Oeratory różncoe na Dla szystkch enętrznych ęzłó belk (z yjątkem rzyodoroych) ażne są rónana odstaoe:

4 Metody Oblczenoe, P.E.Srokosz, dla ęzłó rzyodoroych odoroych oboązują zmodyfkoane oeratory różncoe o ostacach: W Matlabe, rónana formułujemy funkcjam: nace, naceul nacepp: (lk nace.m) functon t = nace(, n, h, E, J) %zeroane zmennej ynkoej t = zeros(,n); h = h.^; %yznaczene sl tnacych dla szystkch ezlo enetrznych z %yjątkem rzyodoroych for =:(n-) t() = (E.* J)./ (.*h).* (-(-) +.*(-) + -.*(+) + (+)); end (lk naceul.m) functon [t, t] = naceul(, n, h, E, J) %oblcza sly enetrzne odorze rzy odorze, %uterdzene z leej strony h = h.^; t = (E.* J)./ (.*h).* (- 8.* () +.* ()); t = (E.* J)./ (.*h).* (- () -.* () + ());

5 Metody Oblczenoe, P.E.Srokosz (lk nacepp.m) functon [t, t] = nacepp(, n, h, E, J) %oblcza sly enetrzne odorze rzy odorze, %rzegub z raej strony h = h.^; t = (E.* J)./ (.*h).* (-(8) +.* (9) - ()); t = (E.* J)./ (.*h).* (-.* (9) +.* ()); Proszę sradzć z rónanam! Krok Rozązane układu statycznego Skoro mamy już funkcje oblczające sły tnące, uzuełnamy skryt zadane.m o olecena: (dosujemy na końcu lku zadane.m) %sly tnace enątrz belk t = nace(, n, h, E, J); %sla leym skraju (uterdzonym) ezle nr [t(), t()] = naceul(, n, h, E, J); %sla raym skraju (rzeguboym) ezle nr [t(), t()] = nacepp(, n, h, E, J); eraz możemy yznaczyć ykres rozkładu artośc sły tnącej olecenam ( lku zadane.m): %ykres x- lot(x,t); %os os x xlabel('x [m]'); %os os y ylabel(' [kn]'); Analogczne do orzednej lekcj, zadane rozązujemy olecenam:

6 Metody Oblczenoe, P.E.Srokosz >>oeratory >>zadane o ykresach ugęca momentó (nacskamy sację) onen ojać sę rysunek sł tnących: 5 5 [kn] X [m] Zadane do samodzelnego rozązana W katalogach znajdują sę lk umożlające rozązane zadana z nastęującym arunkam brzegoym: belka_ul_pp uterdzene z leej, rzegub z raej belka_pl_up rzegub z leej, uterdzene z raej belka_ul_up uterdzene z leej, uterdzene z raej belka_pl_pp rzegub z leej, rzegub z raej ylko erszym katalogu są rocedury umożlające yznaczene sł tnących. Wyroadzć rónana różncoe na dla ozostałych arunkó brzegoych, zasać je lkach Matlaba odoednch katalogach ykonać oblczena (lk oeratory.m zadane.m są już gotoe do oblczeń).

Metoda Rónic Skoczonych

Metoda Rónic Skoczonych Metoda Rónc Skoczonych Cz Belka na sprystym podłou Komendy Matlaba UWAGA! Aby przeproadz praktyczne czena z ykorzystanem polece Matlaba, naley nada artoc lczboe szystkm parametrom ystpujcym komendach,

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa

1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa . Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa

Bardziej szczegółowo

Belki na podłożu sprężystym

Belki na podłożu sprężystym Belki na podłożu sprężystym podłoże inkleroskie, rónanie różniczkoe ugięcia belki, linie płyoe M-Q-, belki półnieskończone, sposób Bleicha, przykład obliczenioy odłoże inkleroskie Założenia Winklera spółpracy

Bardziej szczegółowo

MRS I MES W ANALIZIE BELEK O ZMIENNYM PRZEKROJU

MRS I MES W ANALIZIE BELEK O ZMIENNYM PRZEKROJU Zeszyty Naukoe WInf Vol 6, Nr, 007 Paulna Obara, Waldemar zanec Katedra Mecank Budol Poltecnka Śętokrzyska MR I ME W ANALIZIE BELEK O ZMIENNYM PRZEKROJU treszczene W pracy rozażanom został poddany pręt,

Bardziej szczegółowo

2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ

2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ . PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ. Wroadzene Przemana jest adabatyczna, jeśl dla każdych dóch stanó l, leżących na tej rzemane Q - 0. Z tej defncj ynka, że aby zrealzoać yżej ymenony roces,

Bardziej szczegółowo

A - przepływ laminarny, B - przepływ burzliwy.

A - przepływ laminarny, B - przepływ burzliwy. PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m

Bardziej szczegółowo

Zasada Jourdina i zasada Gaussa

Zasada Jourdina i zasada Gaussa Zasada Jourdna zasada Gaussa Orócz zasady d Alemberta w mechance analtyczne stosue sę nne zasady waracyne. Są to: zasada Jourdana zasada Gaussa. Wyrowadzene tych zasad oarte est na oęcu rędkośc rzygotowane

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu

Karta (sylabus) modułu/przedmiotu Karta (sylabus) modułu/przedmotu Budoncto (Naza kerunku studó) Studa I Stopna Przedmot: Budoncto przemysłoe Industral buldng engneerng Rok: III Semestr: 6 MK_4 Rodzaje zajęć lczba godzn: Studa stacjonarne

Bardziej szczegółowo

Przykład 2.3 Układ belkowo-kratowy.

Przykład 2.3 Układ belkowo-kratowy. rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene

Bardziej szczegółowo

Wyrównanie spostrzeżeń pośrednich. Spostrzeżenia jednakowo dokładne

Wyrównanie spostrzeżeń pośrednich. Spostrzeżenia jednakowo dokładne Wyrónane spostrzeżeń pośrednch Szukay : X, Y, Z, T (elkośc pradze) Merzyy L, L, L,L n (spostrzeżena erzone bezpośredno pośrednczą yznaczenu x, y, z, t ) Spostrzeżena jednakoo dokładne Wyrónane polega na:

Bardziej szczegółowo

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const

Bardziej szczegółowo

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy

Bardziej szczegółowo

Wykład 9. Stateczność prętów. Wyboczenie sprężyste

Wykład 9. Stateczność prętów. Wyboczenie sprężyste Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Temat: Operacje elementarne na wierszach macierzy

Temat: Operacje elementarne na wierszach macierzy Temat: Operacje elementarne na erszach macerzy Anna Rajfura Anna Rajfura Operacje elementarne na erszach macerzy n j m n A Typy operacj elementarnych. Zamana mejscam erszy oraz j, ozn.: j. Mnożene ersza

Bardziej szczegółowo

Optymalizacja belki wspornikowej

Optymalizacja belki wspornikowej Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Ciepło topnienia lodu

Ciepło topnienia lodu Cepło topnena lodu CELE SPIS TREŚCI Obseracja procesu ymany energ toarzyszącego zmane stanu skupena - topnenu. Pomary zman temperatury ody trakce topnena proadzonej do nej znanej masy lodu. Uzyskane dane

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Wykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń

Wykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń Mechanika Budowli 2 sem. IV N1 Wykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń Mechanika Budowli 2 sem. IV N1 Treści Programowe: 1. Metoda przemieszczeń układy nieprzesuwne 2. Metoda przemieszczeń

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton nd ed by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

Bardziej szczegółowo

ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI

ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI ĆWICZENIE NR SKALOWANIE ZWĘśKI. Cel ćiczenia: Celem ćiczenia jest ykonanie cechoania kryzy pomiaroej /yznaczenie zaleŝności objętościoego natęŝenia przepłyu poietrza przez zęŝkę od róŝnicy ciśnienia na

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

Wyznaczenie reakcji w Belkach Gerbera

Wyznaczenie reakcji w Belkach Gerbera Wyznaczenie reakcji w elkach erbera Sposób obliczania: by policzyć elkę erbera w najprostszy sposób dzielimy ją w przegubach uzyskując pojedyncze belki by móc policzyć konstrukcję, belki powstałe po podziale

Bardziej szczegółowo

DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia.

DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia. DOBÓR SERWOSILNIKA POSUWU Rysunek 1 rzedstawa schemat knematyczny naędu jednej os urządzena. Rys. 1. Schemat knematyczny serwonaędu: rzełożene rzekładn asowej, S skok śruby ocągowej, F sła orzeczna, F

Bardziej szczegółowo

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 7

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 7 KAEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSRUKCJE DO ĆWICZEŃ LABORAORYJNYCH LABORAORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ Skaloanie zężki Osoba odpoiedzialna: Piotr Rybarczyk Gdańsk,

Bardziej szczegółowo

Badania ruchu w Trójmieście w ramach projektu Kolei Metropolitalnej. mgr inż. Szymon Klemba Warszawa, 13.03.2012r.

Badania ruchu w Trójmieście w ramach projektu Kolei Metropolitalnej. mgr inż. Szymon Klemba Warszawa, 13.03.2012r. Badania ruchu Trójmieście ramach projektu Kolei Metropolitalnej mgr inż. Szymon Klemba Warszaa, 13.03.2012r. SPIS TREŚCI 1 Tło i cel badań 2 Podstaoe pojęcia modeloania 3 Proces budoy modelu 3A Model układu

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM. Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe

Bardziej szczegółowo

METODA RÓśNIC SKOŃCZONYCH WYśSZEGO RZĘDU I JEJ ZASTOSOWANIA W JEDNOWYMIAROWYCH PROBLEMACH BRZEGOWYCH MECHANIKI

METODA RÓśNIC SKOŃCZONYCH WYśSZEGO RZĘDU I JEJ ZASTOSOWANIA W JEDNOWYMIAROWYCH PROBLEMACH BRZEGOWYCH MECHANIKI Słaomr Mesk Krakó, dn. -- Mecanka Komputeroa V rok Wydzał InŜyner Lądoe Potecnka Krakoska PRACA DYPLOMOWA METODA RÓśNIC SKOŃCZONYCH WYśSZEGO RZĘDU I J ZASTOSOWANIA W JEDNOWYMIAROWYCH PROBLEMACH BRZEGOWYCH

Bardziej szczegółowo

Analiza i zarządzanie portfelem studia ZI Przykładowe zadania z minimum programowego 1

Analiza i zarządzanie portfelem studia ZI Przykładowe zadania z minimum programowego 1 Zma 003/004 nalza zarządzane ortelem tuda ZI Przykładoe zadana z mnmum rogramoego 1 UTO: Paeł okta N INTEPETCJĘ POJĘĆ DOCHODU, YZYK I POTFEL EFEKTYWNEGO 1. Który ortel na eno ne jet eektyny: Naza ortela

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

OBLICZANIE ŁAW SZEREGOWYCH NA PODŁOŻU SPRĘŻYSTYM ZA POMOCĄ METODY ANALITYCZNEJ (model Winklera, metoda Bleicha)

OBLICZANIE ŁAW SZEREGOWYCH NA PODŁOŻU SPRĘŻYSTYM ZA POMOCĄ METODY ANALITYCZNEJ (model Winklera, metoda Bleicha) OICZNIE ŁW SZEREGOWYCH N ODŁOŻU SRĘŻYSTYM Z OMOCĄ METODY NITYCZNEJ (model Winklera, metoda leicha).. Oznaczenia sił wewnętrznych. Założenia i dane obciążenie q o (x) > 0 0 odpór podłoża r(x) > 0 y > 0

Bardziej szczegółowo

5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy

5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy 5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

Uwaga: Linie wpływu w trzech prętach.

Uwaga: Linie wpływu w trzech prętach. Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II

Bardziej szczegółowo

Wyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002

Wyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002 Wyniki ymiaroania elementu żelbetoego g PN-B-0364:00 RM_Zelb v. 6.3 Cechy przekroju: zadanie Żelbet, pręt nr, przekrój: x a=,5 m, x b=3,75 m Wymiary przekroju [cm]: h=78,8, b =35,0, b e=00,0, h =0,0, skosy:

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna) PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

Przykład 4.4. Belka ze skratowaniem

Przykład 4.4. Belka ze skratowaniem rzykład.. eka ze skratowane oecene: korzystając z etody sł sporządzć wykresy sł przekrojowych w ponŝszej konstrukcj staowej. yznaczyć ugęce w punkce (w połowe rozpętośc bek). orównać wyznaczone ugęce ze

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Maszyna wektorów nośnych (Support vector machine)

Maszyna wektorów nośnych (Support vector machine) Maszyna ektoró nośnych (Suort vector machne) Przygotoał: Dr nż. Wocech Artchocz Katedra Hydrotechnk PG Zma 04/5 Zadane. Dane są da zbory unktó A B (dane tabelach onże). Znadź ektory seraące narysu herłaszczyzny

Bardziej szczegółowo

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011 Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym

Bardziej szczegółowo

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b

Bardziej szczegółowo

PROJEKTOWANIE I BUDOWA

PROJEKTOWANIE I BUDOWA ObcąŜena kadłuba PROJEKTOWANIE I BUDOWA OBIEKTÓW LATAJĄCYCH I ObcąŜena kadłuba W. BłaŜewcz Budowa samolotów, obcąŝena W. Stafej Oblczena stosowane przy projektowanu szybowców St. Danleck Konstruowane samolotów,

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania

Monitorowanie i Diagnostyka w Systemach Sterowania Montoroane Dagnostka Sstemach Steroana Katedra Inżner Sstemó Steroana Dr nż. Mchał Grochosk Montoroane Dagnostka Sstemach Steroana na studach II stopna specjalnośc: Sstem Steroana Podejmoana Deczj Maszn

Bardziej szczegółowo

Metody programowania sieciowego w zarządzaniu przedsięwzięciami

Metody programowania sieciowego w zarządzaniu przedsięwzięciami Metody programoania siecioego zarządzaniu przedsięzięciami Programoanie siecioe stanoi specyficzną grupę zagadnień programoania matematycznego. Zagadnienia siecioe - zagadnienia, których ilustrację graficzną

Bardziej szczegółowo

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

instrukcja do ćwiczenia 3.4 Wyznaczanie metodą tensometrii oporowej modułu Younga i liczby Poissona

instrukcja do ćwiczenia 3.4 Wyznaczanie metodą tensometrii oporowej modułu Younga i liczby Poissona UT-H Radom Instytut Mechaniki Stosoanej i Energetyki Laboratorium Wytrzymałości Materiałó instrukcja do ćiczenia 3.4 Wyznaczanie metodą tensometrii oporoej modułu Younga i liczby Poissona I ) C E L Ć W

Bardziej szczegółowo

DRGANIA WŁASNE UKŁADÓW RAMOWYCH I ICH MODELOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURAL ANALYSIS

DRGANIA WŁASNE UKŁADÓW RAMOWYCH I ICH MODELOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURAL ANALYSIS Budoncto 18 Krzysztof Kubc DRGANIA WŁASNE UKŁADÓW RAMOWYCH I ICH MODEOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURA ANAYSIS Wproadzene Progray do oblczeń onstrucj ułatają życe projetanto, znaczne sracając

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

I..ROZWIĄZANIE DANEGO RUSZTU BELKOWEGO OD DANEGO OBCIĄŻENIA

I..ROZWIĄZANIE DANEGO RUSZTU BELKOWEGO OD DANEGO OBCIĄŻENIA TO SIŁ układ przetrzenny przykład ruzt belkowy OZWIĄZNI USZTU LKOWO TOĄ SIŁ I OLIZNI PZISZZNI any jet ruzt belkowy jak na ryunku obok ozwązać go etodą ł porządzć wykrey ł przekrojowych dokonać kontrol

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH

1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH Projekt z fundamentowana: MUR OPOROWY (tuda mgr) POSADOWIENIE NA PALACH WG PN-83/B-02482. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH grunt G π P d T/Nm P / P r grunt zayp. Tabl.II.. Zetawene parametrów geotechncznych.

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

Zasada superpozycji.

Zasada superpozycji. Zasada sperpozycj. e e e n rotnk skpony bezźródłoy m j m m j m n j n k ymszena atonomczne, fnkcje kładoe ( obodoe ) Zasada sperpozycj: W obodze SL doolna fnkcja kładoa (prąd lb napęce ) jest smą algebraczną

Bardziej szczegółowo

BELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie.

BELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie. Są to belki ciągłe przegubowe i należą do układów statycznie wyznaczalnych (zatem n s = 0). Przykładowy schemat: A ELKI GERERA V V Wyznaczenie stopnia statycznej niewyznaczalności układu: n s = R P 3 gdzie:

Bardziej szczegółowo

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x f l Ry. 3. Rozpatrywany łuk parabolczny 4 f l x x 2 y x l 2 f m l 2 m y x 4 2 x x 2 2 2,86 x,43 x 2 tg y x dy 4 f l 2 x l 2 4 2 2 x 2 2,86,86 x Mechanka Budowl Projekty Zgodne ze poobem rozwązywana układów

Bardziej szczegółowo

IDENTYFIKACJA WSPÓŁCZYNNIKA WNIKANIA CIEPŁA NA ZEWNĘTRZNEJ POWIERZCHNI TERMOMETRU DO WYZNACZANIA NIEUSTALONEJ TEMPERATURY PŁYNU

IDENTYFIKACJA WSPÓŁCZYNNIKA WNIKANIA CIEPŁA NA ZEWNĘTRZNEJ POWIERZCHNI TERMOMETRU DO WYZNACZANIA NIEUSTALONEJ TEMPERATURY PŁYNU ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 91, Mechanika 87 RUTMech, t. XXXII, z. 87 (3/15), lipiec-rzesień 015, s. 51-60 Jan TALER 1 Magdalena JAREMKIEWICZ IDENTYFIKACJA WSPÓŁCZYNNIKA WNIKANIA CIEPŁA NA

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI DLA KL.III

WYMAGANIA EDUKACYJNE Z FIZYKI DLA KL.III WYMAGANIA EDUKACYJNE Z FIZYKI DLA KL.III 1.Metody oceny osiągnięć ucznia Kontroloanie i ocenianie osiągnięć ucznia odgrya szczególną rolę rocesie dydaktycznym. Dokonując oceny osiągnięć ucznia nauczyciel

Bardziej szczegółowo

Funkcja Tytuł, Imię i Nazwisko Specjalność Nr Uprawnień Podpis Data. kontr. bud bez ograniczeń

Funkcja Tytuł, Imię i Nazwisko Specjalność Nr Uprawnień Podpis Data. kontr. bud bez ograniczeń WYKONAWCA: Firma Inżynierska GF MOSTY 41-940 Piekary Śląskie ul. Dębowa 19 Zamierzenie budowlane: Przebudowa mostu drogowego nad rzeką Brynicą w ciągu drogi powiatowej nr 4700 S (ul. Akacjowa) w Bobrownikach

Bardziej szczegółowo

1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1

1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1 .. CAŁA OHRA Całka OHRA yraża ziązek między przemieszczeniem (ydłużeniem, ugięciem, obrotem) a obciążeniem (siłą, momentem, obciążeniem ciągłym). Służy ona do yznaczania przemieszczeń statycznie yznaczanych

Bardziej szczegółowo

Modelowanie rozwoju pożaru w pomieszczeniach zamkniętych. Cz. II. Model spalania.

Modelowanie rozwoju pożaru w pomieszczeniach zamkniętych. Cz. II. Model spalania. Modeloanie rozoju pożaru pomieszczeniach zamkniętych. Cz.. Model spalania. Dr hab. inż. Tadeusz Maciak prof. SGSP, mgr inż. Przemysła Czajkoski, Spis ażniejszych oznaczeń stosoanych modeloaniu pożaru:

Bardziej szczegółowo

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego. ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

Szymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO

Szymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO 1 Obliczyć SGN (bez docisku) dla belki pokazanej na rysunku. Belka jest podparta w sposób ograniczający możliwość skręcania na podporze. Belki rozstawione są co 60cm. Obciążenia charakterystyczne belki

Bardziej szczegółowo

C = 0,8 2. W obliczeniach załoŝono, Ŝe obciąŝenie to będzie przykładane do górnych pasów dźwigarów. ObciąŜenia w programie Robot.

C = 0,8 2. W obliczeniach załoŝono, Ŝe obciąŝenie to będzie przykładane do górnych pasów dźwigarów. ObciąŜenia w programie Robot. ZAŁĄCZNIK 1. OBLICZENIA STATYCZNE ELEMENTÓW PRĘTOWYCH KONSTRUKCJI DACHU W NAWACH O ROZPIĘTOŚCI 30 m i 24 m Z1.1. Zestawienie obciąŝeń ObciąŜenia stałe Zestawienie obciąŝeń na 1m 2 dachu od warstw okrycia:

Bardziej szczegółowo

Analiza obudowy sztolni

Analiza obudowy sztolni Przewodnik Inżyniera Nr 23 Aktualizacja: 01/2017 Analiza obudowy sztolni Program: MES Plik powiązany: Demo_manual_23.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy sztolni drążonej z

Bardziej szczegółowo

Szymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO

Szymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO 1 Obliczyć SGN (bez docisku) dla belki pokazanej na rysunku. Belka jest podparta w sposób ograniczający możliwość skręcania na podporze. Belki rozstawione są co 60cm. Obciążenia charakterystyczne belki

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Ć W I C Z E N I E N R E-3

Ć W I C Z E N I E N R E-3 INSTYTUT FIZYKI WYDZIAŁ INŻYNIRII PRODUKCJI I TCHNOLOGII MATRIAŁÓW POLITCHNIKA CZĘSTOCHOWSKA PRACOWNIA LKTRYCZNOŚCI I MAGNTYZMU Ć W I C Z N I N R -3 SPRAWDZANI II PRAWA KIRCHHOFFA DLA POJDYNCZGO OBWODU

Bardziej szczegółowo

Węzeł nr 28 - Połączenie zakładkowe dwóch belek

Węzeł nr 28 - Połączenie zakładkowe dwóch belek Projekt nr 1 - Poz. 1.1 strona nr 1 z 12 Węzeł nr 28 - Połączenie zakładkowe dwóch belek Informacje o węźle Położenie: (x=-12.300m, y=1.300m) Dane projektowe elementów Dystans między belkami s: 20 mm Kategoria

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo