( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +
|
|
- Angelika Dobrowolska
- 7 lat temu
- Przeglądów:
Transkrypt
1 REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj. Stadardow łd ozacowaa wpółczków protj rgrj. Stoujm kd zap ˆ ± ± + Włao: Wpółczk dtrmacj R okrla jak cz całkowtj zmoc cch wjaa modl rgrj lowj cov ˆ r R +
2 Wokowa dla wpółczków rgrj Nch β + dz prot rgrj a prot rgrj wzaczo a podtaw pró. β + Przdzał ufoc dla β ; dla pozomu ufoc α mam: β uα S + uα S ; gdz u α odcztujm z talc rozkładu Studta: P T > u α. S tadardow łd wpółczków protj rgrj. Wrfkacja hpotz dla β ; dla pozomu totoc α rozpatrujm tt dla pozczgólch paramtrów β. Wuwam dw hpotz: β β H jd z trzch pozch hpotz. H Rozpatrujm tattk zór krtcz wg tal: α H Stattka Zór krtcz Odczt k β β K ; k > < k; + P T > k α β > β β S K ; T > k α < k + P β < β K ; k > P T > k α Dczj: Jl u K to H odrzucam Jl u K to ma podtaw do odrzuca H. waga Jl adam toto paramtru β to przjmujm β W modlach rgrj poda jt odrzuc hpotz H β tz. rozpatrujm hpotz H β cza z tuacj gd zma ma wpłwu a zm. Bada loowoc rzt tt r Rztom przpujm mol a lu : lmtów rozpatrujm. Sr to podcg złoo z jdakowch mol. Rozpatrujm hpotz H rzt modlu maj charaktr loow H rzt modlu maj charaktru loowgo Stoujm tattk: Zór krtcz: a gd > gd < lcza r K ; k> gdz k odcztujm z talc rozkładu r dla pozomu totoc α lcz oraz gdz lcza mol a lcza mol w przcwm przpadku mlm do
3 Talca rozkładu r Talca dla α 5: talca jt mtrcza Dczj: Jl u K to H odrzucam Jl u K to ma podtaw do odrzuca H. Bada mtr kładka loowgo Nch lcza orwacj m lcza rzt dodatch. Wuwam dw hpotz: Stoujm tattk Rozpatrujm zór krtcz: H m H m m m m K ; k > < k; + gdz k odcztujm dla pozomu totoc α z talc rozkładu Studta: Dczj: Jl u K to H odrzucam Jl u K to ma podtaw do odrzuca H. k P T > α. 3
4 Bada ormaloc rozkładu rzt. Tt ormaloc tt Shapro-Wlka Wuwam dw hpotz: H rzt maj rozkład ormal H rzt maj rozkładu ormalgo. Rzt porzdkujm maljco:... Stoujm tattk [ / ] a gdz [/] jt czc całkowt lcz / dla modl lowch. a wpółczk Shapro-Wlka odczta z talc: Rozpatrujm zór krtcz: K < ; k > gdz k odcztujm dla pozomu totoc α dago z talc ttu Shapro-Wlka: talca ttu Shapro-Wlka dla α k Dczj: Jl u K to H odrzucam. Jl u K to ma podtaw do odrzuca H. Bada jdorodoc waracj kładka loowgo Jdorodo waracj kładka loowgo jt jdm z zało klaczj mtod ajmjzch kwadratów. Npł tgo załoa oa fktwo tmatorów paramtrów trukturalch wpłwa a zgodo ocoo. Zatoujm tt Goldflda-Quadta. W tc tm dzlm pró a dw rówolcz podpró o lczocach gd lcza orwacj jt parzta rodkowa lu rodkow orwacj or udzału w dalzch olczach. Na podtaw tch podpró zacujm paramtr truktural modlu olczam waracj rztow S S. Pró umrujm tak a S S. Wuwam dw hpotz: Stoujm tattk σ σ H σ > σ H 4
5 Rozpatrujm zór krtcz: K S S < k; + gdz k odcztujm dla pozomu totoc α z talc rozkładu F-Sdcora dla k + k + top wood. Dczj: Jl u K to H odrzucam Jl u K to ma podtaw do odrzuca H. Bada autokorlacj rzt tt Dura-Watoa Rozpatrujm hpotz: H rzt korlowa tz H ρ Olczam warto tattk waga u < ; 4 > Dla rzt korlowach u Z talc rozkładu D-W odcztuj dla utalogo α dw lcz k L k. Talca rozkładu D-W dla α 5: Jl u < to rozpatrujm hpotz altratw: k L k H rzt korlowa dodato tz H ρ >. Przjmuj atpujc rguł dczj: Jl u < kl to H odrzucam. Jl u > k to ma podtaw do odrzuca H. Jl k u k to podjmujm dczj. L Jl > to rozpatrujm hpotz altratw: H rzt korlowa ujm tz H ρ <. Przjmuj atpujc rguł dczj: Jl u > 4 - k L to H odrzucam. Jl u < 4 - k to ma podtaw do odrzuca H. 5
6 Jl 4 - k u 4 kl to podjmujm dczj. Progoza. Progoza puktowa. Nch przwdwaa warto cch w okr progoz. Progoza puktowa to przwdwaa warto cch odpowadajca wartoc cch. Stadardow łd progoz Zatm al traktowa warto progoz jako ± Jako progoz puktowj mom oc wzgldm łdm progoz puktowj δ pukt % Progoza przdzałowa. Progoza przdzałowa dla pozomu ufoc α. u S ; + u gdz u α odcztujm z talc rozkładu Studta: α α T > u α P α S Jako progoz przdzałowj mom oc wzgldm łdm progoz przdzałowj δ prz uα % 6 L.Kowalk..5
Prognozowanie- wiadomoci wstpne
Progozowa- wadomoc wtp Progozowa to racjoal woowa o zdarzach zach a podtaw zdarz zach. Clm progoz jt dotarcz otwch formacj potrzch do podjmowaa dczj. Progoz a mulacj. Progoza co dz w momc t Smulacja co
Wykład 6. Klasyczny model regresji liniowej
Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Ćwiczenia 11_12 KLASYCZNY MODEL REGRESJI LINIOWEJ
Ćwcza _ KLACZN MOL RGRJI LINIOWJ Zada. W tabl przdstawoo wysokość stawk clj X oraz udzał w ryku a pw towar mportoway spoza U. 5 5 0 0 8 0 y 5 6 3 7 0 Nalży w oparcu o poda formacj: a. Zapsać rówa fukcj
Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy
Wryfkacja modlu. Założa Gaussa-Markowa Zwązk pomędzy zmą objaśaą a zmym objaśającym ma charaktr lowy x, x,, K x k Wartośc zmych objaśających są ustalo ( są losow ε. Składk losow dla poszczgólych wartośc
16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H
Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało
$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI
KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor
Regresja wielokrotna. Przygotowano w oparciu o Applied Linear Regression Models Neter, Wasserman, Kutner
acj Kotrzwk Rgrja wlokrota Przygotowao w oarcu o Ald Lar Rgro odl Ntr Warma Kutr odl rgrj: - zmych zalżych... - β +β +...+β - - +ε Jśl założymy ż wówcza otać rówoważa jt otac: k β k k + ε Zakładając E(ε
PROGNOZOWANIE WIELKOŚCI WYDOBYCIA WĘGLA KAMIENNEGO W GÓRNOŚLĄSKIM ZAGŁĘBIU WĘGLOWYM Z UŻYCIEM LINIOWEJ FUNKCJI REGRESJI
PROGNOZOWANIE WIELKOŚCI WYDOBYCIA WĘGLA KAMIENNEGO W GÓRNOŚLĄSKIM ZAGŁĘBIU WĘGLOWYM Z UŻYCIEM LINIOWEJ FUNKCJI REGRESJI Staław Kowalk 1, Kryta Probrz 1 Katdra Zarządzaa Iżyr Bzpczńtwa, Poltchka Śląka Itytut
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.
MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko
(liniowy model popytu), a > 0; b < 0
MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech
KORELACJA I REGRESJA. KORELACJA X, Y - cech badae rówocześe. Dae statstcze zapsujem w szeregu statstczm dwóch cech...... lub w tablc korelacjej. X Y... l.... l.... l................... k k k... kl k..j......l
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgooa zz d Maę Wczo a oda:. P. Kuz, J. Podgó: Saa. Wzo ablc. SGH, Wazaa, 8. M. Wczo: Saa. Lubę o! Zbó zadań. SGH, Wazaa 6 .
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
Linie regresji II-go rodzaju
Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnna 1. Dan w prac hodowlanj praca z dużm zborm danch (Excl). Podtaw prac z rlacjną bazą danch w program MS Acc 3. Stm tattczn na przkładz paktu SAS
TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej
Poęc modlu Modl s o uproszczo przdsw rzczwsośc Lwrc R Kl: Modl s o schmcz uproszcz pomąc so sp w clu wś wwęrzgo dzł form lub osruc brdz somplowgo mchzmu Główą zlą modlu s możlwość go bzpczgo przprowdz
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Potr Szczepńk Ktedr Chem Fzczej Fzkochem Polmeró ANALIZA REGRESJI REGRESJA LINIOWA. REGRESJA LINIOWA - metod jmejzch kdrtó. REGRESJA WAŻONA 3. ANALIZA RESZT 4. WSPÓŁCZYNNIK KORELACJI,
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgooa zz d Maę Wczo a oda:. P. Kuz, J. Podgó: Saa. Wzo ablc. SGH, Wazaa, 8. M. Wczo: Saa. Lubę o! Zbó zadań. SGH, Wazaa 3 .
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMINIE NA STUDIACH LICENCJACKICH
STATYSTYKA PODSTAWOWE WZORY DOZWOLONE NA EGZAMNE NA STUDACH LCENCJACKCH Oacoa zgotoa zz d Maę Wczo a odta:. P. Kuz, J. Podgó: Statta. Wzo tablc. SGH, Wazaa, 8. M. Wczo: Statta. Lubę to! Zbó zadań. SGH,
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla
STATYSTYKI OPISOWE. nazywamy wielko x = x i
STATYSTYKI OPISOWE Populacj azwa kad kompl zbór pomarów, obków lub jdok podlgajcch badau. Kad populacj charakrzuj wlkoc zwa paramram. Próba aow cz, podzbór badaj populacj. a podaw obrwacj, kór zalazł w
( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości
Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,
Statystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (c.d.) MIARY ZMIENNOŚCI
D. zczyńa,.zczyń, atrały do wyładu 3 z Statyty, 009/0 [] CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (c.d.). mary połoŝa - wyład. mary zmośc (dyprj, rozproza) 3. mary aymtr (ośośc) 4. mary octracj IARY
MODEL EKONOMETRYCZNY KLASYFIKACJA MODELI EKONOMETRYCZNYCH
Ekoomri mrił ( foli ) do wkłdu D.Miszczńsk, M.Miszczński MODEL EKONOMERYCZNY Modl js o schmcz uproszczi, pomijjąc iiso spk w clu wjśii wwęrzgo dziłi, form lub kosrukcji brdzij skomplikowgo mchizmu. (Lwrc
Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą
Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć
Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą
Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć
Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę
Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę
Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć
ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć
PROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych
Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku
Hipotezy ortogonalne
Sttytyk Wykłd d Ćl -4 cl@gh.du.pl Hpotzy otogol ozwży odl lowy: Xϕ gdz X jt wkto obwcj ϕ Ω jt wkto śdch (wtośc oczkwych) o któy wdoo lży w pwj włścwj podpztz lowj Ω pztz tz. Ω d(ω)< jt loowy wkto błędów
Matematyka 1 (Wydziaª Architektury) Lista 1 - funkcje elmenetarne. 2. Rozwi za nast puj ce równania lub nierówno±ci:
Matematka (Wdziaª Architektur) Lista - funkcje elmenetarne UWAGA: Umiej tno±ci potrzebne do rozwi zwania zada«z tej list b d równie» niezb dne prz rozwi zwaniu wszstkich problemów matematcznch, z jakimi
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.
Wcześniej zajmowaliśmy się przypadkiem, w którym zależność między wielkościami mierzonymi dało się przedstawić przy pomocy funkcji: = 3
Jdomro zgd mmlzcj Jdomro zgd mmlzcj. Wczśj zjmolśm sę przpdkm, którm zlżość mędz lkoścm mrzom dło sę przdstć prz pomoc fukcj: + ) ( Dopso modlu do kó pomró okzło sę bć problmm lom, prodzącm do ukłdu trzch
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zaadninia. Matmatczn podtaw mtod odowlanc. Wartość cc ilościow i dfinic paramtrów ntcznc. Mtod zacowania paramtrów ntcznc 4. Wartość odowlana cc ilościow (ocna wartości
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego
5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell
Skręcenie wektora polaryzacji w ośrodku optycznie czynnym
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM
3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM Oczekiwana stopa zwrotu portfela dwóch akcji: E(r p ) = w 1 E(R 1 ) + w
dr hab. Renata Karkowska 1
dr hab. Renata Karkowska 1 Miary zmienności: obrazują zmiany cen, stóp zwrotu instrumentów finansowych, opierają się na rozproszeniu ich rozkładu, tym samym uśredniają ryzyko: wariancja stopy zwrotu, odchylenie
Natalia Nehrebecka. Dariusz Szymański
atala ehreecka Darusz Szmańsk Wkład . MK przpadek welu zmech. Własośc hperpłaszczz regresj 3. Doroć ć dopasowaa rówaa regresj. Współczk determacj R Dekompozcjawaracj zmeejzależejzależej Współczk determacj
1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.
1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Ł Ś Óń Ź ń Ń ż ż ć ż ć ć ż ż Ą ż ć Ó Ó ż ż ć ń ń ń Óń Ó ń ń Óć ć ć ń ń ń ń ń Ś ń ń ń ż ć ć Ś Ł ż ń ż ż Ś Ó Ó ń ń ń Ś Ś ć Ó ń Ś ż Ó Ó Ś Ó Ó ż ń Ś Ó Ę ń ń Ó Ó ń ń Ś ż ń Óń Ó Ś ń Ó Ś ń ż ń ż Ó ć ń ń ń ż Ó
Oświadczam, że warunki ww. umowy zawartej z Wojewódzką Komendą OHP są przestrzegane. Środki finansowe prosimy przekazać na rachunek bankowy Nr...
Dz tw r 77 4674 Pz. 518 ącz r 4 Mcwć t Pczęć rcwc (mcwć t) (częć rcwc) Wwóz Km OHP z rctwm trum uc Prc Mz w... DOKŁD MRY MÓW O RFDJĘ! Or, z tór wum rfucę. W rcwc Dzń zwrc umw rfucę rfucę wgrzń wcch mcm
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.
EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter
Scntfc ournal Martm Unvrt of Szczcn Zzt Naukow Akadma Morka w Szczcn 8, 13(85) pp. 5 9 8, 13(85). 5 9 ozcjonowan bazując na wlonorowm fltrz Kalmana otonng bad on th mult-nor Kalman fltr otr Borkowk, anuz
ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.
Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Ekstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Pojęcia podstawowe 1
Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników
Instrukcja dodawania reklamy
Istrukja dodawaa rklam b s tu P w r st la m uj m C S ku t r k www.p.om www.sawa.om www.orst.om fabook.om/p a h Krok 1 Rjstraja owgo użtkowka la m uj m 1. Whodm a jd trh portal, klkam a lk dodaj rklamę
Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem
Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać
W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą
W prktyczym doświdczlictwi, w zczgólości w doświdczlictwi polowym, potwirdzoo wytępowi zlżości pomiędzy wzrtjącą liczą oiktów doświdczlych w lokch, wzrotm orwowgo łędu ytmtyczgo. Podcz plowi doświdczń
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Dane modelu - parametry
Dae modelu - paramer ˆ Ozaczea zmech a0 ax ax - osz w s. zł Budowa modelu: x - welość producj w seach o x - welość zarudea w osobach Meoda MNK Dae: x x 34 9 0 60 34 9 0 60 35 3 7 35 3 7 X T 0 9 3 4 5 3
Pienińskich Portali Turystycznych
Ofrta Pńskch Portal Turstczch b s z tu P w z c r st la m uj m C S ku z c t r k www.p.com www.szczawca.com www.czorszt.com facbook.com/p c a h Krótko o Pńskch Portalach Turstczch Pńsk Portal Turstcz został
Paweł Strawiński Ćwiczenia
Zadanie 1 Na podstawie wników badań PGSS starano się zidentfikować zmienne, które wpłwają na poziom szczęścia. Na podstawie odpowiedzi stworzono zmienną hapunhap, która przjmuje wartość 1 dla osób, które
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej
Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz
będą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =