2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ
|
|
- Helena Malinowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 . PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ. Wroadzene Przemana jest adabatyczna, jeśl dla każdych dóch stanó l, leżących na tej rzemane Q - 0. Z tej defncj ynka, że aby zrealzoać yżej ymenony roces, n. eksansję gazu cylndrze z ruchomym tłokem, to cylnder tłok muszą być ykonane z materału będącego doskonałym zolatorem celnym. Analogczne, jeśl oróżna sę zbornk naełnony cześnej gazem (oetrzem) rzez otarce zaoru, to aby stan gazu zbornku zmenał sę edług adabaty, ścany zbornka muszą być dealne zoloane termczne. Poneaż ne ma doskonałej zolacj, ęc raktyce możemy co najyżej zrealzoać adabatę rzyblżenu. Marą tego rzyblżena jest skaźnk: Y gdze: U Q z U Q z l- - całkota lość ceła (dodatna lub ujemna) dostarczona do gazu czase τ, U U - całkota zmana energ enętrznej gazu rzy rzejścu od stanu do stanu. Jeśl Y O, to oznacza, że zrealzoano adabatę. W rzecnym yadku zależnośc od konkretnej artośc tego skaźnka można móć o adabace zrealzoanej z dokładnoścą ynkającą z artośc Y. Dla konkretnego rocesu oszacoane stona rzyblżena adabaty ymaga ęc omaru elkośc ystęujących e zorze (l). Ne jest to zadane łate. Problem sosób stotny uraszcza sę, jeśl należy zrealzoać adabatę dla gazu sełnającego rónane Claeyrona oraz arunek c v const. Wtedy boem adabata jest oltroą tzn. jej rónane układze sółrzędnych ( - υ) ma ostać: υ k dem () Wykładnk k (ykładnk adabaty) jest zązany z elkoścam c v c rónanem: k c / c v (3) W układze logarytmcznym rónane to rzekształca sę rostą. (). Cel dośadczena Celem dośadczena jest: sradzć, czy adabata gazu doskonałego jest oltroą, sradzć, że dekomresja zbornka ze srężonym oetrzem jest rocesem ( rzyblżenu) adabatycznym, oszacoać dokładność realzacj adabaty.
2 .3 Os dośadczena. 7. Zbornk A B o stałej objętośc V należy naełnć oetrzem aż do uzyskana nadcśneń odoedno A oraz B (n. skazanych arkuszu omaroym) celu uzyskana relacj: A > B o (4) gdze o cśnene otoczena, A o + A oraz B o + B. Temeratura gazu zbornkach ma być, o zakończenu omoana (należy omoać ool, a o naomoanu odczekać aż cśnene zbornku sę ustablzuje), róna temeraturze otoczena t o tzn.: t A t B t o (5). Należy na okres (około) sekundy otorzyć zaór łączący zbornk A B. Nastęuje szybk rzeły oetrza, który kończy sę gdy yrónają sę cśnena tzn.: A B m > o (6) Temeratury osągają tedy artośc: t A < t o, t B > t o (7)
3 3 Uaga: Cśnena m ne merzy sę oneaż dla gazu doskonałego może być oblczone z zoru: A+ B m Wyroadzene zoru: W rzedzale czasu od otarca zaoru do jego zamknęca ne jest ykonyana raca zenętrzna, a dołyy ceła są znkome z oodu dużej szybkośc rocesu. Dlatego można rzyjąć że całkota energa enętrzna układu ne zmena sę ( faze yrónyana temeratur już tak ne jest! ) Dla gazu doskonałego energa enętrzna dana jest zorem: V U + U 0 k Wobec tego arunek stałośc energ dla układu yraża rónane: A V + k B V k AV k Podstaając A B m otrzymuje sę szukany zór. BV + k 3. Po zamknęcu zaoru należy odczekać aż temeratura oetrza zbornkach onone osągne artość t A3 t B3 t o (8) Wóczas można odczytać cśnena A3 ylczyć artość A3 : A3 > B3 > o (9) Osane yżej czynnośc należy otórzyć dla klku różnych cśneń B tej samej artośc oczątkoej cśnena A. Rys. Tak ygląda roces dekomresj zbornku A rzedstaony układze ( - υ) Oboązują nastęujące zależnośc: T < T o A m (,,...,5) T 3 T o A3 m
4 4 υ (R 0,87 kj/kg K) 0 0 RT0 m + A B A o + ( ) A B 0 + ( ) B ( ) A ( ) A - stałe n. 800 mm H 0 ( to jest ażne aby być stale na tej samej oltroe). ( - 0, 50, 300, 450, 600, mm H 0 ) B o + ( ) A+ o+ ( ) B m lub m o ( ) A + ( ) B + A3 o + ( ) A3 Stany gazu, leżą na oltroe, obec tego sełnają rónane υ dem: Aυ A Aυ A mυ A υ A stąd: A υ A Stany gazó 3 leżą na zoterme T T o obec tego sełnają rónane: Aυ A A A3 3υ Poneaż υ to A3 υ A Aυ A A A 3υ υ A υ A A A 3 ostateczne: A A A A3 lub A A3 Logarytmując otrzymuje sę: A3 A A3 A A ln ln co można zasać ostac: m η ξ
5 5.4 Oracoane ynkó.. Wynk omaró umeścć tabel Tabela ynkó omaró ( ) A 800 mm H 0 ustalć ( ustalć ) B ( merzyć ) A 3 ylczyć m ylczyć A A 3 ylczyć. Oblczyć : PA η ln P m P ξ ln P A A3 3. Oblczone artośc η ξ stać do tabel ( ) B η ξ rzedstać na ykrese η f(ξ). 4. Wyznaczyć tz. lnę trendu ostac η ξ + u (elomanu erszego stona). 5. Wyznaczyć ostać analtyczną ln trendu (rónane) oraz sółczynnk determnacj R. Tak yznaczona artość jest rzyblżenem ykładnka k adabaty gazu doskonałego. 6. Wyznaczyć skaźnk dokładnośc oszacoana Y oraz błąd zględny omaru b (yznaczonej artośc stosunku do oczekanej artośc k). Oszacoane dokładnośc odzoroana adabaty We stęe odano że można dokładność tego oszacoana określć skaźnkem: Y Qz U U qz u u Poneaż k dem ( bo zrealzoana rzemana jest oltroą ), to ceło tej rzemany Q - m c (T T ) oraz
6 6 c c σ R Poneaż U U m c v (T T ) Podstaając / zależnośc do Y otrzymuje sę: k Y Dla oetrza k,4 Wyznaczene błędu zględnego omaru: b k k 00,%
7 7 zór tabel Ć. Praktyczna realzacja rzemany adabatycznej data:... godz.:... Układ omaroy : Tabela ynkó omaró o, hpa/ o, mm H O / 800 mm H 0 ustalć ( ) A ( ustalć ) B ( merzyć ) A 3 ylczyć m ylczyć A A 3 ylczyć Dane do ykresu - oblczone artośc η ξ : ( ) B η ξ Układ omaroy : Tabela ynkó omaró o, hpa/ o, mm H O / 800 mm H 0 ustalć ( ) A ( ustalć ) B ( merzyć ) A 3 ylczyć m ylczyć A A 3 ylczyć Dane do ykresu - oblczone artośc η ξ : ( ) B η ξ
2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie
RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.
1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa
. Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. 1. Wprowadzenie
3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. Wprowadzene Sprężarka jet podtawowym przykładem otwartego układu termodynamcznego. Jej zadanem jet medzy nnym podwyżzene cśnena gazu w celu: uzykane czynnka napędowego
Wykład 9. Silnik Stirlinga (R. Stirling, 1816)
Wykład 9 Maszyny celne c.d. Entala Entala reakcj chemcznych Entala rzeman azowych Procesy odwracalne neodwracalne Entroa ykl arnot W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Slnk Strlnga (R. Strlng,
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
Metoda Różnic Skończonych
Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej.
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.
Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.
ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny
Zmiana entropii w przemianach odwracalnych
Wykład 4 Zmana entrop w przemanach odwracalnych: przemany obegu Carnota, spręŝane gazu półdoskonałego ze schładzanem, zobaryczne wytwarzane przegrzewane pary techncznej rzemany zentropowe gazu doskonałego
Parametry stanu w przemianie izobarycznej zmieniają się według zależności
Przyad szzegóne rzemany otroowej /6 5.4. Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty
Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
A - przepływ laminarny, B - przepływ burzliwy.
PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
J. Szantyr - Wykład 3: wirniki i uklady kierownic maszyn wirnikowych. Viktor Kaplan
J. Szantyr - Wykład 3: irniki i uklady kieronic maszyn irnikoych Viktor Kalan 1876-1934 Poma odśrodkoa Schemat rzełyu rzez omę odśrodkoą u rzut rędkości bezzględnej na kierunek rędkości unoszenia, rędkość
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
8. MOC W OBWODZIE PRĄDU SINUSOIDALNEGO
OBWODY I SYGNAŁY 8. MOC W OBWODZIE PRĄD SINSOIDALNEGO 8.. MOC CHWILOWA Jeśl na zacskach dójnka SLS ystępje napęcoe ymszene harmonczne, to prąd zmena sę róneż snsodalne z tą samą plsacją Nech () t m sn
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie
Perwsza zasada termodynamk 2.2.. Dośwadczene Joule a jego konsekwencje 2.2.2. eło, ojemność celna sens oblczane 2.2.3. Praca sens oblczane 2.2.4. Energa wewnętrzna oraz entala 2.2.5. Konsekwencje I zasady
Jacek Hunicz. Modelowanie silników spalinowych
Jacek Huncz Modelowane slnków salnowych Poltechnka Lubelska Lubln 04 . Wrowadzene Modelowane matematyczne jest narzędzem badawczym coraz częścej wykorzystywanym do analzy rocesów fzycznych chemcznych zachodzących
10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,
Szacowanie niepewności wskaźników PMV
zacoane nepenośc skaźnkó Welkośc płyające na nepeność skaźnkó : a) temperatra poetrza ; b) temperatra poczernonej kl ; c) lgotność poetrza RH; d) prędkość poetrza a ; e) skaźnk cepłochronnośc odzeży ;
Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech
emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne
Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :
I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE
Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa.
Fundacja Centrum Edukacj Obyatelskej, ul. Noakoskego 10, 00-666 Warszaa, e-mal: ceo@ceo.org.l; Akadema ucznoska, Tel. 22 825 04 96, e-mal: au@ceo.org.l; ęcej nformacj:.akademaucznoska.l 1 Konstrukcja ger
4.3. Obliczanie przewodów grzejnych metodą elementu wzorcowego (idealnego)
.3. Obliczanie rzeodó grzejnych metodą elementu zorcoego (idealnego) Wzorcoy element grzejny jest umieszczony iecu o doskonałej izolacji cielnej i stanoi ciągłą oierzchnię otaczającą ad (rys..3). Rys..3.
Ciepło topnienia lodu
Cepło topnena lodu CELE SPIS TREŚCI Obseracja procesu ymany energ toarzyszącego zmane stanu skupena - topnenu. Pomary zman temperatury ody trakce topnena proadzonej do nej znanej masy lodu. Uzyskane dane
16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA
Włodzimierz Wolczyński 16 GAZY CZ. PRZEMANY.RÓWNANE CLAPEYRONA Podstawowy wzór teorii kinetyczno-molekularnej gazów N ilość cząsteczek gazu 2 3 ś. Równanie stanu gazu doskonałego ż ciśnienie, objętość,
α i = n i /n β i = V i /V α i = β i γ i = m i /m
Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena
Entalpia swobodna (potencjał termodynamiczny)
Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:
DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia.
DOBÓR SERWOSILNIKA POSUWU Rysunek 1 rzedstawa schemat knematyczny naędu jednej os urządzena. Rys. 1. Schemat knematyczny serwonaędu: rzełożene rzekładn asowej, S skok śruby ocągowej, F sła orzeczna, F
AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID
ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena
TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III
Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO
Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH.
POLITECHIKA ŚLĄSKA W GLIWICACH WYDZIAŁ IŻYIERII ŚRODOWISKA EERGETYKI ISTYTUT MASZY URZĄDZEŃ EERGETYCZYCH Turbna arowa II Laboratoru oarów azyn celnych (PM 8) Oracował: dr nż. Grzegorz Wcak Srawdzł: dr
Własności koligatywne
Własności koligatyne Własnościami koligatynymi nazyamy łasności roztorach rozcieńczonych zależne yłącznie od liczby cząsteczek (a naet szerzej indyiduó chemicznych) substancji rozuszczonej a nie od ich
11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.
ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego
Pattern Classification
Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton nd ed by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher
PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH
ARAMETRY ELEKTRYZNE YFROWYH ELEMENTÓW ÓŁRZEWODNIKOWYH SZYBKOŚĆ DZIAŁANIA wyrażona maksymalną częsolwoścą racy max MO OBIERANA WSÓŁZYNNIK DOBROI D OBIĄŻALNOŚĆ ELEMENTÓW N MAKSYMALNA LIZBA WEJŚĆ M ODORNOŚĆ
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
Zasada Jourdina i zasada Gaussa
Zasada Jourdna zasada Gaussa Orócz zasady d Alemberta w mechance analtyczne stosue sę nne zasady waracyne. Są to: zasada Jourdana zasada Gaussa. Wyrowadzene tych zasad oarte est na oęcu rędkośc rzygotowane
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
Laboratorium Fizykochemiczne podstawy inżynierii procesowej. Pomiar wilgotności powietrza
Zakład Inżynierii Biorocesoej i Biomedycznej Politechniki Wrocłaskiej Laboratorium Fizykochemiczne odstay inżynierii rocesoej Pomiar ilgotności oietrza Wrocła 2016 Dr inż. Michał Araszkieicz 1 Wstę 1.
Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika
Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram
Kryteria samorzutności procesów fizyko-chemicznych
Kytea samozutnośc ocesów fzyko-chemcznych 2.5.1. Samozutność ównowaga 2.5.2. Sens ojęce ental swobodnej 2.5.3. Sens ojęce eneg swobodnej 2.5.4. Oblczane zman ental oaz eneg swobodnych KRYERIA SAMORZUNOŚCI
P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Ćw. 11 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej
Ćw. Wyznaczanie rędkości rzeływu rzy omocy rurki siętrzającej. Cel ćwiczenia Celem ćwiczenia jest zaoznanie się z metodą wyznaczania rędkości rzeływu za omocą rurek siętrzających oraz wykonanie charakterystyki
D. II ZASADA TERMODYNAMIKI
. Hofman, Wykłady z Chem fzycznej I, Wydzał Chemczny PW, kerunek: echnologa chemczna, sem. 2017/2018 WYKŁAD D,E D. II zasada termodynamk E. Konsekwencje zasad termodynamk D. II ZAADA ERMODYNAMIKI D.1.
Termodynamika Techniczna dla MWT, Rozdział 14. AJ Wojtowicz IF UMK. 5.2. Generacja entropii; transfer ciepła przy skończonej róŝnicy temperatur
ermodynamka echnczna dla MW, Rozdzał 4. AJ Wojtowcz IF UMK Rozdzał 4. Zmana entrop w przemanach odwracalnych.. rzemany obegu Carnota.. SpręŜane gazu półdoskonałego ze schładzanem.3. Izobaryczne wytwarzane
Ćw. 6 Pomiary oporu aerodynamicznego
. el ćwczena Ćw. 6 Pomary ooru aerodynamcznego ele ćwczena są nastęujące:. Pomar ooru roflu kołowego metodą adana rozkładu cśnena na jego owerzchn.. Wzorcowane metody straty ędu w śladze aerodynamcznym.
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych
Prąd elektryczny U R I =
Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.
ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,
Układ realizujący funkcję AND
Zadane 5. Zaprojekoać spradzć dzałane synchroncznych asynchroncznych rejesró akumulaora umożlających realzację operacj: odejmoana arymeycznego, AN, NOT, EX-OR. C x b C odoane: a a : odejmoane A-B, A AN
termodynamika fenomenologiczna
termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny
POMIAR MOCY BIERNEJ W OBWODACH TRÓJFAZOWYCH
ĆWICZEIE R 9 POMIAR MOCY BIEREJ W OBWODACH TRÓJFAZOWYCH 9.. Cel ćiczenia Celem ćiczenia jest poznanie metod pomiaru mocy biernej odbiornika niesymetrycznego obodach trójfazoych. 9.. Pomiar mocy biernej
Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2.
Zagadnena. Parametry stanu. Cśnene, słua ceczy (gazu) o wysokośc. Prawo rcmedesa.. emeratura. 4. Knetyczna teora w zastosowanu do gazu doskonałego.. Równane gazu doskonałego, zasady termodynamk (zerowa,
Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów
Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z
Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła
POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA
Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego
1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1
.. CAŁA OHRA Całka OHRA yraża ziązek między przemieszczeniem (ydłużeniem, ugięciem, obrotem) a obciążeniem (siłą, momentem, obciążeniem ciągłym). Służy ona do yznaczania przemieszczeń statycznie yznaczanych
INTERPRETACJA PIERWSZEJ ZASADY TERMODYNAMIKI DLA UKŁADÓW ZAMKNIĘTYCH I OTWARTYCH
Polka Problemy Nauk Stoowanych, 05, Tom 3, 33 44 Szczecn Prof WSTE dr hab nż Benedykt LITKE Wyżza Szkoła Technczno-Ekonomczna w Szczecne, Wydzał Tranortu Samochodowego Hgher School of Technology and Economc
Zadanie 1 Czterobitowy rejestr szeregowy. Zadaniem dotyczącym tego rejestru było sprawdzenie jego pracy oraz sporządzenie wykresów czasowych.
Zadane Czeroboy rejesr szeregoy. Zadanem doyczącym ego rejesru było spradzene jego pracy oraz sporządzene ykresó czasoych. Rejesr zrealzoano ykorzysując przerzunk, połączone jak na schemace c x W celu
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
Wykład 8. Silnik Stirlinga (R. Stirling, 1816)
Wykład 8 Maszyny ceplne c.d. Rozkład Maxwella -wstęp Entalpa Entalpa reakcj chemcznych Entalpa przeman azowych Procesy odwracalne neodwracalne Entropa W. Domnk Wydzał Fzyk UW Termodynamka 018/019 1/6 Slnk
POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
Termodynamiczne modelowanie procesów spalania, wybuchu i detonacji nieidealnych układów wysokoenergetycznych
BIULETYN WAT VOL. LIX, NR 3, 2010 Termodynamczne modelowane procesów spalana, wybuchu detonacj nedealnych układów wysokoenergetycznych SEBASTIAN GRYS, WALDEMAR A. TRZCIŃSKI Wojskowa Akadema Technczna,
Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2
T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej
POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI
POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI Materiały omocnicze do ćiczeń rachunkoych z rzedmiotu Termodynamika tooana CZĘŚĆ 1: GAZY WILGOTNE mr inż. Piotr
Analiza i zarządzanie portfelem studia ZI Przykładowe zadania z minimum programowego 1
Zma 003/004 nalza zarządzane ortelem tuda ZI Przykładoe zadana z mnmum rogramoego 1 UTO: Paeł okta N INTEPETCJĘ POJĘĆ DOCHODU, YZYK I POTFEL EFEKTYWNEGO 1. Który ortel na eno ne jet eektyny: Naza ortela
1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła
TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami
TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami
Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -
ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Wykład Mikroskopowa interpretacja ciepła i pracy Entropia
Wykład 7 5.13 Mkroskopowa nterpretacja cepła pracy. 5.14 Entropa 5.15 Funkcja rozdzału 6 II zasada termodynamk 6.1 Sformułowane Claususa oraz Kelvna-Plancka II zasady termodynamk 6.2 Procesy odwracalne
Moc wydzielana na rezystancji
Opracoał: mgr inż. Marcin Wieczorek.marie.net.pl Moc ydzielana na rezystancji moc oddaana na odcinku, przez który płynie prąd ipomiędzy końcami którego panuje napięcie, ynosi za pomocą praa Ohma =, = /
ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI
ĆWICZENIE NR SKALOWANIE ZWĘśKI. Cel ćiczenia: Celem ćiczenia jest ykonanie cechoania kryzy pomiaroej /yznaczenie zaleŝności objętościoego natęŝenia przepłyu poietrza przez zęŝkę od róŝnicy ciśnienia na