Informatyka stosowana

Wielkość: px
Rozpocząć pokaz od strony:

Download "Informatyka stosowana"

Transkrypt

1 r: Informatka stosowana wkład nr 7 metoda elementów skoczonch stota metod przkład oblczenow

2 r: Istota metod elementów skoczonch metoda słuca do przblonego rozwzana zagadne z welu rónch dzedzn np. problemów opsanch za pomoc równa rónczkowch z okrelonm warunkam brzegowm obekt rzeczwst : obszar w przestrzen obejmujc orodek cgł, obekt technczn stnejc w rzeczwstoc, projekt technczn obektu model matematczn : stworzon do bada teoretcznch zachowana s obektu rzeczwstego na skutek oddzałwa zewntrznch, lub przeman wewntrznch

3 r: Istota metod elementów skoczonch Model matematczn zadane mechank orodków cgłch: ops powerzchn S ogranczajcej obszar V, wewntrz którego poszukujem rozwzana, równana rónczkowe opsujce stan równowag cała w obszarze V, warunk brzegowe na powerzchn S obcene cała pewne zewntrzne przczn wwołujce skutk okrelone równanem równowag

4 r: 4 Istota metod elementów skoczonch Rozwzane zadana mechank metod elementów skoczonch wmaga opracowana modelu numercznego dskretnego równowanego do modelu matematcznego orodka cgłego Metoda elementów skoczonch: metoda przblonego rozwzwana równa rónczkowch zamana problemu cgłego opsanego np. równanam rónczkowm na równowan problem dskretn opsan równanam algebracznm prost algortm, ogóln charakter algortmu

5 r: 5 Istota metod elementów skoczonch Szkc algortmu MES podzał rozpatrwanego obszaru na element skoczone podobszar o prostej geometr okrelene punktów wzłowch tak, ab mona bło przeprowadz aproksmacj poszukwanch rezultatów wewntrz obszaru elementu za pomoc funkcj aproksmujcch parametrów wzłowch

6 r: 6 Istota metod elementów skoczonch Szkc algortmu MES cd okrelene dla kadego elementu struktur macerz opsujcch jego własnoc, sformowane tzw. macerz struktur macerz sztwnoc dla kadego z elementów skoczonch utworzene tzw. globalnej macerz struktur macerz sztwnoc dla całego układu na podstawe macerz elementów - agregacja okrelene warunków brzegowch obce rozwzane podstawowego układu równa MES lnowch wznaczene wartoc parametrów wartoc pewnej funkcj w wzłach oblczene prz ucu metod aproksmacjnch na podstawe wznaczonch parametrów w wzłach, wartoc parametrów wartoc pewnej funkcj w punktach ne bdcch wzłam

7 r: 7 Dskretzacja podzał obszaru na element skoczone sposób dskretzacj rodzaje utch elementów, lczba elementów zale od geometr obszaru własnoc fzcznch pewnch przesłanek co do wnków rozwzana w podobszarach gdze poszukwana funkcja zmena s gwałtowne, zagszczam satk elementów oczekwanej efektwnoc dokładnoc oblcze element wnn b na tle małe b aproksmowane wewntrz nch funkcje mogł b przblone za pomoc welomanów zmnejszane elementów powoduje wdłuene czasu oblcze, oraz zwkszene masznowego błdu oblcze

8 r: 8 Dskretzacja podzał obszaru na element skoczone element skoczon prost kształt geometrczn trójkt, czworokt, szecan wzł szczególne wrónone punkt elementu prost dobór tzw. funkcj kształtu nterpolacjne weloman algebraczne funkcj aproksmujcej wartoc parametru wewntrz elementu w oparcu o wartoc okrelone w wzłach elementu gst podzał na element skoczone zapewna prawdłow ops rzeczwstego problemu, wksz dokładno aproksmacj w punktach wewntrz elementu

9 r: 9 Dskretzacja rodzaje elementów skoczonch

10 r: Dskretzacja punkt wzłowe dobór wzłów zwzan jest z wborem tpów elementów poszukwane wartoc parametru funkcj w tch wzłach, bdce skutkem oddzałwa zewntrznch na rozpatrwan układ, stanow podstawow zbór newadomch ch wartoc zostaj otrzmane w wnku rozwzana podstawowego układu równa MES element s połczone ze sob w wzłach, znajdujcch s na granc podzału nektóre z wzłów mog znajdowa s równe wewntrz poszczególnch elementów

11 r: Dskretzacja ops elementu prz ucu funkcj kształtu w lokalnm układze współrzdnch Funkcja kształtu doberana jest tak, b bła przedstawona w postac welomanu, molwe nskego stopna kademu wzłow elementu przpsujem -t funkcj kształtu, tak, ab n el lczba wzłów w elemence: n el k, k, aproksmacj nterpolacj parametru w punktach elementu dokonuje s T -warto parametru oblczona w -tm wle: t, n el k, T

12 r: element trójktn ,.,.4,,,,, T t T T T element czworoktn, + + Dskretzacja przkład - ops elementu prz ucu funkcj kształtu

13 r: Dskretzacja przkład - ops elementu prz ucu funkcj kształtu Element prostoktn o wmarach a b wprowadzam współrzdne znormalzowane lokalne ξ, η + ξξ + ηη

14 r: 4 Dskretzacja przkład - ops elementu prz ucu funkcj kształtu + ξξ + ηη ξ, η ξξ + ηη,...,4 + ηη ξ, η ξ 5,6 + ξξ ξ, η η 7,8 ξ, η + ξξ + ηη [ + 9 ξξ,...,4 ξ, η ξ, η 9 ξ + ηη [ + 9ξ ξ 9 + ξξ η + 9ηη + 9 ηη 5,6,7,8 9,..., ]

15 r: 5 Okrelene warunków brzegowch przpsane wzłom stopn swobod stope swobod lo prostch ruchów jake punkt jest w stane zrealzowa w przestrzen opsanej układem kartezjaskm okrelene rodzajów punktów podparca Przkład: nr wzła stope swobod

16 r: 6 Dskretzacja przkład kratownca dachu

17 r: 7 Dskretzacja przkład

18 r: 8 Dskretzacja przkład tarcza kwadratowa poddana jednokerunkowemu rozcganu

19 r: 9 Okrelene warunków brzegowch przpsane sł do poszczególnch wzłów w mejscach podpar neprzesuwnch przemeszczena s zerowe, w punktach tch wstp nezerowe sł reakcj równomerne rozłoone obcene zewntrzne rozkładam na poszczególne wzł

20 r: Macerz sztwnoc elementu w przpadku płaskego stanu naprena Oznaczena: D - macerz stałch materałowch macerz sprstoc okrelene włacwoc materałowch. dla materału zotropowego, o włacwocach sprstch w przpadku płaskego stanu naprena E moduł Younga ν - współcznnk Possone a - macerz funkcj kształtu zawera zapsane w postac macerzowej odpowedne funkcje kształtu dla trójwzłowego elementu trójktnego o werzchołkach,,,,, : ν ν ν ν E D + + +

21 r: Macerz sztwnoc elementu w przpadku płaskego stanu naprena Oznaczena: B macerz pochodnch funkcj kształtu K e macerz sztwnoc elementu S B V T e DBdV B K

22 r: Globalna macerz sztwnoc dla kadego elementu układu zostaje oblczona macerz sztwnoc elementu K e wmar macerz lczba wzłów elementu wmar zadana, kada z macerz K e wnna b wraona w odnesenu do jednego tzw. globalnego układu współrzdnch, agregacja scalene wszstkch macerz elementów w jedn macerz sztwnoc dla całego układu K globalna macerz sztwnoc we wektor przemeszcze wszstkch wzłów układu z wektorem obce wzłowch układu [ K ] d globalna macerz sztwnoc jest smetrczna osoblwa zadane MES moe zosta rozwzane dopero gd zostan wprowadzone do nego warunk brzegowe F

23 r: Przkład oblczenow analza statczna tarcz - wznaczene przemeszcze tarcza zdskretzowana trójwzłowm elementam trójktnm, pomnto car własn tarcz Wzł: numer 4,5,5,5

24 r: 4 Przkład oblczenow analza statczna tarcz - wznaczene przemeszcze Element I: wzł,, pole trójkta S,5 funkcje kształtu, +, 6,,, macerz pochodnch funkcj kształtu macerz sprstoc 5,657 4,5 E ν 6 D ν 4,5 5,657 k / m ν ν,776 macerz sztwnoc elementu / 6 B / / / 6 / / / / / / T T K B DBdV B DBh dd SB e V S T DBh

25 r: 5 Przkład oblczenow analza statczna tarcz - wznaczene przemeszcze Element II: wzł,, 4 pole trójkta S funkcje kształtu macerz pochodnch funkcj kształtu macerz sprstoc macerz sztwnoc elementu + +,,,,, / / / / B S T T V T e DBh SB DBh dd B DBdV B K /,776 5,657 4,5 4,5 5,657 6 m k E D ν ν ν ν

26 r: 6 Przkład oblczenow analza statczna tarcz agregacja macerz sztwnoc Element I Element II

27 r: 7 Przkład oblczenow analza statczna tarcz wprowadzene warunków brzegowch wektor sł obcene cgłe zostaje zastpone wektorem sł wzłowch zadane przemeszczena F [ 5 5] prz załoonch obcenach przemeszczena punktów podpór bd równe zeru d [ d d d d d d d d ] T d [ d d d d ] T sł reakcj uzskane równowag układu uzskujem poprzez wprowadzene w punktach podpór tzw. sł reakcj T [ R R R R ] T R 4

28 r: 8 Przkład oblczenow analza statczna tarcz rozwzane równana MES równane [ K ] d F sprowadzam do równana [ A ] F macerz A zostaje utworzona z macerz sztwnoc K, w przpadku gd dan punkt przemeszczene punktu odpowada j-tej newadomej został uneruchomon j-ta kolumna odpowada j-tej nezerowej reakcj, do macerz K wpsujem kolumn zer z jednk na przektnej głównej wektor wektor utworzon z wektora przemeszcze, w którm gd dan punkt przemeszczene punktu odpowada j-tej newadomej został uneruchomon, j-ta współrzdna oznacza sł reakcj podpor

29 r: 9 Przkład oblczenow analza statczna tarcz rozwzane równana MES [ A ] F Równane MES A F wznaczene przemeszcze w wzłach reakcj podpór nr wzła 4 przemeszczene pozome m -8,8E-6 5,9E-6 przemeszczene ponowe m -5,E-6-6,56E-6 reakcja pozoma k -4,7 66,7 reakcja ponowa k 4,6,4

30 r: Przkład oblczenow analza statczna tarcz - wznaczene przemeszcze w punktach ne bdcch wzłam przemeszczena punktu o współrzdnch, funkcje kształtu: oblczene przemeszcze:,5,5,5 4 numer,,,, 6, ,, ,, + + E E d E E d

31 r: Przkład oblczenow analza statczna tarcz porównane rozwza nr wzła lczba elementów skoczonch 4 przemeszczene pozome m przemeszczene ponowe m -8,8E-6-5,E-6 5,9E-6-6,56E-6 przemeszczene pozome m przemeszczene ponowe m -,9E-6-54,84E-6 77,99E-6-94,45E-6 Zadane: zapsz kod programu realzujc metod el. skoczonch dla przkładu element. Dane wejcowe E, v, współrzdne punktów, welkoc sł

32 r: Przkład oblczenow analza osadana podłoa gruntowego model podłoa gruntowego D warstwa gruboc,5 m - materał sprst materał plastczn obcene stemplem równomerne rozłoon sła na odcnku,5 m przedmotem smulacj welkoosadana pod wpłwem przkładanch rónch wartoc sł

33 r: przemeszczena ponowe Przkład oblczenow analza osadana podłoa gruntowego

34 r: 4 przemeszczena pozome Przkład oblczenow analza osadana podłoa gruntowego

35 r: 5 Przkład oblczenow analza osadana podłoa gruntowego Prze me s zcze na po no we m o d s te mpla Prze me s zc ze na po no we w ro dku układu nacs k kpa 8 6 nacs k kpa c m c m

36 r: 6 Oprogramowane MES ABAQUS

37 r: 7 Oprogramowane MES OpenFEM

38 r: 8 Metoda elementów skoczonch lteratura uzupełnajca Łodgowsk T., Kkol W. Metoda elementów skoczonch w wbranch zagadnenach mechank konstrukcj nnerskch Całkowsk M., Magnuck K. Zars metod elementów skoczonch Rakowsk G., Kacprzk Z. Metoda Elementów Skoczonch w mechance konstrukcj

39 r: 9 Podsumowane Metoda Elementów Skoczonch obekt rzeczwst model matematczn cech modelu matematcznego zadana mechank orodków cgłch podstawowe cech metod elementów skoczonch szkc algortmu MES pojce dskretzacj rodzaje elementów skoczonch wzł, funkcje kształtu okrelene warunków brzegowch stopne swobod wzłów przłoene sł sł reakcj w wzłach płask stan napre sformowane macerz sztwnoc elementu agregacja globalnej macerz sztwnoc rozwzane równana MES przkład analza statczna tarcz wznaczene przemeszcze analza podłoa gruntowego - wznaczene przemeszcze w zadanu D przkład oprogramowana MES wbrana lteratura uzupełnajca

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM Budownctwo 7 Mkhal Hrtsuk, Rszard Hulbo WYZNACZNI ODKSZTAŁCŃ, PRZMISZCZŃ I NAPRĘŻŃ W ŁAWACH FNDAMNTOWYCH NA PODŁOŻ GRNTOWYM O KSZTAŁCI WYPKŁYM Wprowadzene Prz rozwązanu zagadnena przmuem, że brła fundamentowa

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW ZASTOSOWANIE PROGRAOWANIA DYNAICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EISJI GAZÓW ANDRZEJ KAŁUSZKO Instytut Bada Systemowych Streszczene W pracy opsano zadane efektywnego przydzału ogranczonych rodków

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował

Bardziej szczegółowo

SPIS TREŚCI 1. WSTĘP... 4

SPIS TREŚCI 1. WSTĘP... 4 SPIS TREŚCI. WSTĘP... 4.. WAśNOŚĆ PROBLEMATYKI BĘDĄCEJ PRZEDMIOTEM PRACY....4.. CELE PRACY....4.3. ZAKRES PRACY...4.4. WYKORZYSTANE ŹRÓDŁA....5. OBLICZENIA DYNAMICZNE KONSTRUKCJI BUDOWLANYCH... 6.. MACIERZOWE

Bardziej szczegółowo

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1)

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1) LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-) wwwmuepolslpl/~wwwzmape Opracował: Dr n Jan Około-Kułak Sprawdzł: Dr hab n Janusz Kotowcz Zatwerdzł: Dr hab n Janusz Kotowcz Cel wczena Celem wczena jest

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

WYKŁAD XIII METODY NUMERYCZNE W MODELOWANIU PROCESÓW

WYKŁAD XIII METODY NUMERYCZNE W MODELOWANIU PROCESÓW 1 WYKŁAD XIII METODY NUMERYCZNE W MODELOWANIU PROCESÓW Część II 13.3 METODA ELEMENTÓW SKOŃCZONYCH. 13.3.1 Wstęp. Metoda elementów skończonych (MES) została zapoczątkowana przez Turnera w 1956 r., jakkolwek

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

Przykład 2.3 Układ belkowo-kratowy.

Przykład 2.3 Układ belkowo-kratowy. rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene

Bardziej szczegółowo

Interpolacja. Układ. x exp. = y 1. = y 2. = y n

Interpolacja. Układ. x exp. = y 1. = y 2. = y n MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?

Bardziej szczegółowo

Optymalizacja belki wspornikowej

Optymalizacja belki wspornikowej Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana

Bardziej szczegółowo

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %) Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon

Bardziej szczegółowo

Wstępne przyjęcie wymiarów i głębokości posadowienia

Wstępne przyjęcie wymiarów i głębokości posadowienia MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Róniczka. f x. V Vx. Zadanie 4. Znale maksymalny błd bezwzgldny i wzgldny powstały przy obliczaniu objtoci stoka, jeli promie podstawy wynosi

Róniczka. f x. V Vx. Zadanie 4. Znale maksymalny błd bezwzgldny i wzgldny powstały przy obliczaniu objtoci stoka, jeli promie podstawy wynosi Róniczka Wraenie d nazwa si róniczk pierwszego rzdu czci liniow przrostu wartoci unkcji Zastosowanie róniczki do oblicze przblionch: Zadanie Za pomoc róniczki oblicz przblion warto liczb Wkorzstam wzór

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

KORZYŚCI PŁYNĄCE ZE STOSOWANIA ZASADY PRAC WIRTUALNYCH NA PRZYKŁADZIE MECHANIKI OGÓLNEJ. 1. Wprowadzenie. 2. Więzy układu materialnego.

KORZYŚCI PŁYNĄCE ZE STOSOWANIA ZASADY PRAC WIRTUALNYCH NA PRZYKŁADZIE MECHANIKI OGÓLNEJ. 1. Wprowadzenie. 2. Więzy układu materialnego. Górnctwo Geonżynera Rok 33 Zeszyt 3/ 2009 Maran Paluch* KORZYŚCI PŁYNĄCE ZE STOSOWNI ZSDY PRC WIRTULNYCH N PRZYKŁDZIE MECHNIKI OGÓLNEJ. Wprowadzene W pracy kerując sę dewzą Johna Zmana: Celem nauk jest

Bardziej szczegółowo

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM Zeszyty Problemowe Maszyny Elektryczne Nr 88/2010 13 Potr Bogusz Marusz Korkosz Jan Prokop POLITECHNIKA RZESZOWSKA Wydzał Elektrotechnk Informatyk BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

METODA POMIARU WYBRANYCH PARAMETRÓW METROLOGICZNYCH PI TARCZOWYCH Z W GLIKAMI SPIEKANYMI PRZY ZASTOSOWANIU TECHNIK WIZYJNYCH

METODA POMIARU WYBRANYCH PARAMETRÓW METROLOGICZNYCH PI TARCZOWYCH Z W GLIKAMI SPIEKANYMI PRZY ZASTOSOWANIU TECHNIK WIZYJNYCH DIAGOSTYKA 3 (39)/6 5 BASZU, KRÓL, PISZCZEK, Metoda pomaru wbranch parametrów metrologcznch p tarczowch METODA POMIARU WYBRAYCH PARAMETRÓW METROLOGICZYCH PI TARCZOWYCH Z WGLIKAMI SPIEKAYMI PRZY ZASTOSOWAIU

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

ZASTOSOWANIE METODY POLOWO OBWODOWEJ DO OBLICZANIA PARAMETRÓW SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI PRZY PRACY SYNCHRONICZNEJ

ZASTOSOWANIE METODY POLOWO OBWODOWEJ DO OBLICZANIA PARAMETRÓW SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI PRZY PRACY SYNCHRONICZNEJ Robert Rossa BOBRME Komel, Katowce ZASTOSOWANIE METODY POLOWO OBWODOWEJ DO OBLICZANIA PARAMETRÓW SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI PRZY PRACY SYNCHRONICZNEJ THE USE OF FIELD CIRCUIT METHOD

Bardziej szczegółowo

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych WYKŁAD 4 dla zanteresowanych -Macerz gęstośc: stany czyste meszane (przykłady) -równane ruchu dla macerzy gęstośc -granca klasyczna rozkładów kwantowych Macerz gęstośc (przypomnene z poprzednch wykładów)

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

Stateczność układów ramowych

Stateczność układów ramowych tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid

Bardziej szczegółowo

Materiały do laboratorium Projektowanie w systemach CAD-CAM-CAE. 1. Wprowadzenie do metody elementów skończonych

Materiały do laboratorium Projektowanie w systemach CAD-CAM-CAE. 1. Wprowadzenie do metody elementów skończonych Materały do laboratorum Projektowane w systemach CAD-CAM-CAE Opracowane: dr nŝ. Jolanta Zmmerman 1. Wprowadzene do metody elementów skończonych Przebeg zjawsk fzycznych, dzałane rzeczywstych obektów, procesów

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc

Bardziej szczegółowo

WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Grupa: Elektrotechnka, sem 3., wersja z dn. 14.1.015 Podstawy Technk Śwetlnej Laboratorum Ćwczene nr 5 Temat: WYZNACZANE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Opracowane wykonano na podstawe następującej

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH

METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH RAFAŁ PALEJ, RENATA FILIPOWSKA METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH APPLICATION OF THE SHOOTING METHOD TO A BOUNDARY VALUE PROBLEM WITH AN EXCESSIVE

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element dwuwymiarowy liniowy : belka

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element dwuwymiarowy liniowy : belka etody komputerowe i obliczeniowe etoda Elementów Skoczonych Element dwuwymiarowy liniowy : belka Jest to element bardzo podobny do prta: współrzdne lokalne i globalne jego wzłów s takie same nie potrzeba

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Ile wynosi suma miar kątów wewnętrznych w pięciokącie?

Ile wynosi suma miar kątów wewnętrznych w pięciokącie? 1 Ile wynos suma mar kątów wewnętrznych w pęcokące? 1 Narysuj pęcokąt foremny 2 Połącz środek okręgu opsanego na tym pęcokące ze wszystkm werzchołkam pęcokąta 3 Oblcz kąty każdego z otrzymanych trójkątów

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy liniowy : prt

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy liniowy : prt Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych Element jednowymiarowy liniowy : prt Jest to element bardzo podobny do spryny : współrzdne lokalne i globalne jego wzłów s takie same nie potrzeba

Bardziej szczegółowo

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K) STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

POROZUMIENIE. z dnia roku

POROZUMIENIE. z dnia roku Załcznk do UCHWAŁY NR LXI/710/02 RADY MIASTA ZIELONA GÓRA z dna 1 padzernka 2002 r. POROZUMIENIE z dna... 2002 roku Na podstawe: 1. Uchwały Nr... Rady Masta...z dna... 2002 r w sprawe porozumena 2. Uchwały

Bardziej szczegółowo

Metody analizy obwodów

Metody analizy obwodów Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Ryszard Kutyłowski. Optymalizacja topologii kontinuum materialnego

Ryszard Kutyłowski. Optymalizacja topologii kontinuum materialnego Ryszard Kutyłowsk Optymalzacja topolog kontnuum materalnego Ofcyna Wydawncza Poltechnk Wrocławskej Wrocław 2004 Recenzje Leszek MIKULSKI Paweł ŚNIADY Opracowane redakcyjne korekta Mara IZBICKA Copyrght

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Wyznaczanie macierzy sztywnoci dla elementu czterowzłowego Q4

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Wyznaczanie macierzy sztywnoci dla elementu czterowzłowego Q4 Metod kompteroe oblczenoe Metoda lementó Skoczonch Wznaczane macerz sztnoc dla element czterozłoego Q lement czterozło Q sł do realzac oblcze szczególnch przpadkach trómaroego stan naprena odkształcena

Bardziej szczegółowo

Ćw. 2. Wyznaczanie wartości średniego współczynnika tarcia i sprawności śrub złącznych oraz uzyskanego przez nie zacisku dla określonego momentu.

Ćw. 2. Wyznaczanie wartości średniego współczynnika tarcia i sprawności śrub złącznych oraz uzyskanego przez nie zacisku dla określonego momentu. Laboratorum z Podstaw Konstrukcj aszyn - - Ćw.. Wyznaczane wartośc średnego współczynnka tarca sprawnośc śrub złącznych oraz uzyskanego przez ne zacsku da okreśonego momentu.. Podstawowe wadomośc pojęca.

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Funkcje wpływu rozdziału poprzecznego obciążeń

Funkcje wpływu rozdziału poprzecznego obciążeń Insttut Inżner Lądowej Funkcje wpłwu rozdzału poprzecznego obcążeń Wkład z Teor Konstrukcj Mostowch dla specjalnośc Inżnera Mostowa Dr nż. Meszko KUŻAWA 18.11.2014 r. Defncja Funkcja wpłwu RPO funkcja

Bardziej szczegółowo

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Kodowanie transformacjne Plan. Zasada. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danch wkonujem transformacje która: Likwiduje korelacje Skupia energi w kilku komponentach Kad

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 5. SZTUCZNE SIECI NEURONOWE REGRESJA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wdzał Elektrczn Poltechnka Częstochowska PROBLEM APROKSYMACJI FUNKCJI Aproksmaca funkc przblżane

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

e mail: i metodami analitycznymi.

e mail: i metodami analitycznymi. Budownctwo Archtektura () (04) 4-5 w Eurokodu przy kon owych e mal: w.baran@po.opole.pl Streszczene: W pracy opsano rodzaje analz oblczenowych przy projektowanu ch dla dowolneo sposobu znych na metodam

Bardziej szczegółowo

Stateczność skarp. Parametry gruntu: Φ c γ

Stateczność skarp. Parametry gruntu: Φ c γ Stateczność skarp N α Parametry gruntu: Φ c γ Analza statecznośc skarpy w grunce nespostym I. Brak przepływu wody (brak fltracj) Równane równowag: Współczynnk statecznośc: S = T T tgφ n = = S tgα G N S

Bardziej szczegółowo

APROKSYMACJA QUASIJEDNOSTAJNA

APROKSYMACJA QUASIJEDNOSTAJNA POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy

Bardziej szczegółowo

PRACE INSTYTUTU GEODEZJI I KARTOGRAFII 2001, tom XLVIII, zeszyt 102

PRACE INSTYTUTU GEODEZJI I KARTOGRAFII 2001, tom XLVIII, zeszyt 102 PRACE INSTYTUTU GEODEZJI I KARTOGRAFII 2001, tom XLVIII, zeszyt 102 STEFAN CACOŃ Akadema Rolncza, Wrocław PROBLEM WIARYGODNOŚCI GEODEZYJNYCH POMIARÓW DEFORMACJI OBIEKTÓW INŻYNIERSKICH W RELACJI OBIEKT-GÓROTWÓR

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1

Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Wyznaczy wektor sił i przemieszcze wzłowych dla układu elementów przedstawionego na rysunku poniej (rysunek nie jest w skali!).

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów. Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób

Bardziej szczegółowo

KONTROLA JAKOCI PRODUKTÓW GŁBOKIEGO TŁOCZENIA BLACH ZA POMOC SYMULACJI KOMPUTEROWYCH

KONTROLA JAKOCI PRODUKTÓW GŁBOKIEGO TŁOCZENIA BLACH ZA POMOC SYMULACJI KOMPUTEROWYCH Obróbka Plastyczna Metal Nr 3, 2005 Wspomagane komputerowe mgr n. Andrzej mudzk 1), mgr n. Agneszka ledzska 1), prof. dr hab. n. Macej Petrzyk 1), dr n. Henryk Wonak 2), dr n. Andrzej Plewsk 3), mgr n.

Bardziej szczegółowo

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ Część. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. Wstęp Podstawowym narzędzem służącym do rozwązywana zadań metodą przemeszczeń są wzory transformacyjne.

Bardziej szczegółowo

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej Zastosowane technk sztucznej ntelgencj w analze odwrotnej Ł. Sztangret, D. Szelga, J. Kusak, M. Petrzyk Katedra Informatyk Stosowanej Modelowana Akadema Górnczo-Hutncza, Kraków Motywacja Dokładność symulacj

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

PROCEDURA OCENY EFEKTÓW KSZTAŁCENIA, OSI GANYCH PRZEZ STUDENTÓW SPECJALNO CI INFORMATYCZNYCH

PROCEDURA OCENY EFEKTÓW KSZTAŁCENIA, OSI GANYCH PRZEZ STUDENTÓW SPECJALNO CI INFORMATYCZNYCH PROCEDURA OCENY EFEKTÓW KSZTAŁCENIA, OSIGANYCH PRZEZ STUDENTÓW SPECJALNOCI INFORMATYCZNYCH WALERY SUSŁOW, ADAM SŁOWIK, TOMASZ KRÓLIKOWSKI Streszczene W nnejszym artykule przedstawono procedury organzacyjne

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo