METHOD OF ANALYSIS OF MEASUREMENT RESULT COHESION WITH THE THEORY OF MATHEMATICAL RECORD USING AND CONCENTRATIONS ANALYSIS

Wielkość: px
Rozpocząć pokaz od strony:

Download "METHOD OF ANALYSIS OF MEASUREMENT RESULT COHESION WITH THE THEORY OF MATHEMATICAL RECORD USING AND CONCENTRATIONS ANALYSIS"

Transkrypt

1 Joural of ONES Powertrai ad Trasport, Vol.4, No. 007 METHOD OF ANALSIS OF MEASUREMENT RESULT COHESION WITH THE THEOR OF MATHEMATICAL RECORD USING AND CONCENTRATIONS ANALSIS *atarzya Topolsa, *Wojciech Walowia, **Mariusz Topolsi Politechia Wrocawsa *Wydzia Mechaiczy Istytut ostrucji i Esploatacji Maszy **Wydzia Eletroii atedra Systemów i Sieci omputerowych Wyb. Wyspiasiego 7, Wrocaw, Polad atarzya.topolsa@pwr.wroc.pl, wojciech.walowia@pwr.wroc.pl mariusz.topolsi@pwr.wroc.pl.pl Abstract This study presets method of selectio the most coheret, repeatable i time, results of researches. Firstly, a possible of applicatio of cocetratio aalysis for detectio of variable or depedet variable, which results are differet from other variables, is preseted. Because some results of the same variable i time periods could ifluece o icrease of results stadard error, for such poits detectio, measure usig mathematic filig system theory, Spearma s correlatio ordial ras ad weight of iformatio cotradictio, i sese of Dampster-Shafer theory, are proposed. The obtaied measure cause decrease of results stadard errors by selectio ad removal of measure poits which ifluece o validity scales decrease. Example-results of the measuremet, the aalysis of cocetratios for variable,, 3 ad 4, results of the ormalizatio for each result of measuremets, average values of measuremet for all received results BZ ad for selected MODELS, results of measuremet mared curves of average data for all BZ measuremets ad measuremet selected of MODEL least stadard-errors are preseted i the paper. eywords: modellig, durability, Dempster Shafer, statistica METODA ANALIZ SPÓJNOCI WNIÓW POMIARÓW Z WORZSTANIEM TEORII EWIDENCJI MATEMATCZNEJ I ANALIZ SUPIE Streszczeie W artyule zastaa przedstawioa metoda doboru ajbardziej spójych wyiów pomiarów powtarzaych w czasie. W pierwszej czci zaprezetowao moliwo zastosowaia aalizy supie do wyrycia zmieej bd zmieych zaleych, tórych wyii rói si od pozostaych zmieych. Poiewa ietóre wyii pomiarów tej samej zmieej w odstpach czasu mog wpywa a zwiszaie bdu stadardowego wyiów, wic w celu wyrycia taich putów zapropoowao miar wyorzystujc teori ewidecji matematyczej, orelacj rag porzdowych Spearmaa i wag sprzeczoci iformacji w sesie teorii Dempstera-Shafera. Uzysaa miara pozwolia a obieie bdów stadardowych pomiarów, przez wyselecjoowaie i usuicie putów pomiarowych, tóre wpywaj a zmiejszeie rzeteloci sal. W szczególoci w artyule przedstawioo przyadowe wyii pomiaru, aaliza supie dla zmieych,, 3 i 4, wyii ormalizacji dla poszczególych wyiów pomiarów, uredioe wartoci pomiarów dla wszystich otrzymaych wyiów BZ i dla wyselecjoowaych MODELI, wyii pomiarów wraz z aiesioymi rzywymi uredieia daych dla wszystich pomiarów BZ i pomiarów wyselecjoowaych o ajmiejszych bdach stadardowych MODELI. Sowa luczowe: modelowaie, trwao, Dempster- Shafer, statystya

2 . Topolsa, W. Walowia, M. Topolsi. Wprowadzeie Badajc róe obiety, p. elemety silia, aby uwiarygodi wyii pomiaru wyouje si badaia a wiszej liczbie tych samych elemetów w odstpie czasu. Oczywiste jest, e te zmiee ta mierzoe s od siebie zalee. Po wyoaiu taich esperymetów pojawia si istoty problem odwzorowaia wszystich pomiarów w jede spójy i wiarygody przebieg zmieoci. Bardzo czsto bdie uredia si wyii taich pomiarów, uzasadiajc to powtarzalymi waruami pomiaru. Niestety w rzeczywistoci róe czyii zewtrze, tórych ie bierzemy pod uwag, wpywaj a poprawo wyiów. Naley wic zastosowa metody pozwalajce a wyrycie pewych putów pomiarów, istotie statystyczie róicych si od supie poprawych wyiów. Bdy mog pojawia si w obrbie pojedyczych pomiarów albo caych mierzoych zmieych. W dalszej czci pracy zostaie zaprezetowaa metoda doboru wyiów bada do wyzaczaia charaterysty zmieoci. Teoria Dempstera - Shafera, zwaa jest iaczej teori ewidecji matematyczej, czy te teori fucji przeoaia. Wyzaczae s prawdopodobiestwa z jaimi dae hipotezy moa udowodi. Teoria umoliwia rozróieie wiedzy od iewiedzy i ma zastosowaie w przypadach iepeej iformacji, sadaia ewidecji i atualizacji przeoa. W teorii Dempstera Shafera zdaiom przypisuje si wieloci BelA, tóra azywaa jest stopiem przeoaia. Teoria wyorzystuje matematycze prawdopodobiestwa do subietywej ocey espertów i daje moliwo przypisywaia przeoa zarówo dla pojedyczych przeoa ja i grup odpowiedzi, a tae ie uzupeia si w teorii Dempstera Shafera iepeej specyfiacji. Przez fucj masy w sesie teorii DS rozumie si fucj m:^{ }[0,] speiajc warui: A m A, m 0, m A 0. 3 A Dowiedzioo [5], e dla adej fucji przeoaia Bel istieje doadie jeda fucja masy m taa, e BelA m B, atomiast dla zbiorów wiszej liczoci fucj ma moa BA tratowa jao wyrówaie "igoracji" podzbiorów daego zbioru. Przez fucj przeoaia w sesie teorii DS rozumie si ta fucj Bel:^{ }[0,], e BelA m B, 4 gdzie mb jest fucj masy w sesie teorii DS. Fucja przeoaia mierzy wiarygodo poszla a rzecz A. - dysrety iepusty soczoy zbiór, przy czym dla pewego aturalego BA Zmiea A - przyjmuje wartoci ze zbioru Rozpatrujc dwa rozady m i m, moa dooa ich poczeia, otrzymujc owy rozad bazowy m wedug reguy ABC m A m B mc. 6 m A m B AB 5

3 Method of Aalysis of Measuremet Result Cohesio with the Theory of Mathematical Record W pracy wyorzystao teori ewidecji matematyczej gdy wyii pomiaru s czsto ieprecyzyje i iepewe oraz bra jest czasami caowitej specyfiacji modelu. Szersze iformacje odoie teorii ewidecji matematyczej moa odale w pracach [,,3,4,5,6].. Metoda selecjoowaia zmieych i pojedyczych putów pomiarowych W celu zobrazowaia metody przytoczoy zostaie przyad, a podstawie tórego osewetie bd prezetowae poszczególe etapy wyzaczaia charaterystyi. Przyjmijmy dla uproszczeia, e a pewym elemecie mechaiczym wyoao dla pewej zadaej wartoci X={,,...,0} pomiar wartoci X. W celu uzysaia spójych wyiów pomiar powtórzoo a czterech róych tej samej lasy elemetach. Wyii esperymetu zestawioo w tabeli. Tab.. Przyadowe wyii pomiaru Tab.. Example-results of the measuremet lp X 3 4,4 0,84 0,6,57,36,73 3 3,3,56,06,6 4 4,88,6 3, ,35 3,77 3,5, ,38 3,8 3, ,6 5,04 5,39 3, ,5 6,9 6,33 5, ,5 7,97 8,63 4, ,4 0,74,0,97 W tabeli wytuszczoo pewe wyii, co zostaie wyjaioe w dalszej czci rozwaa. ro. Wyoaie aalizy supie W rou tym aley dooa esploracyjej aalizy daych, tórej celem jest uoeie zmieych w grupy w tai sposób, aby stopie ich powizaia by ja ajwiszy, a ze zmieymi pozostaych grup ja ajmiejszy. Aaliza taa wyrywa strutury z daych bez wyjaiaia dlaczego oe wystpuj. ro. Selecja pojedyczych pomiarów, tóre istotie wosz bdy do caoci bada. Poiewa zmiee ={,,3,4} s zalee od siebie, wic w pierwszej olejoci doouje si ormalizacji ich wartoci, ta aby olumy wyiów speiay warue ortogoaloci:, m, N i i 7 gdzie: - ozacza -t zmie ze wszystich zmieych. W aalizowaym wypadu ={,,3,4}, ={,,...,N} ozacza -ty pomiar sporód N pomiarów dla -tej zmieej. 53

4 . Topolsa, W. Walowia, M. Topolsi Diagram drzewa Pojedycze wizaie Odleg. eulidesowa *Odl/Odl.mas Rys.. Aaliza supie dla zmieych,, 3 i 4 Fig.. The aalysis of cocetratios for variable,, 3 ad 4 Z rysuu moa wywiosowa, e zmiee i 3 oraz s ze sob bardzo powizae, ale zmiea 4 osabia asze ryterium tego, a ile jest oa istota w badaiach. Poiewa zmiea 4 zdecydowaie tworzy wase supieie, wic moa przypuszcza, e aley wyii 4 odrzuci. Jedae odrzuceie wszystich wyiów moe powodowa strat ceych putów pomiarów. W astpym pucie zostaie przedstawioy to postpowaia, za pomoc tórego wyodrbioe zosta pomiary wprowadzajce istote bdy do charaterysty pomiarów. Po wyoaiu ormalizacji przedstawioej we wzorze 7, doouje si ormalizacji wierszy adego pomiaru wyiów dla wszystich zmieych: N m m m. 8 Wyoujc dziaaia zgodie ze wzorami 7 i 8 otrzymuje si macierz, tórej wiersze speiaj warue ortogoaloci i staowi elemety ogisowe dla fucji przeoaia w sesie teorii Dempstera-Shafera: a b N N m m 0. 9 Wyii taiej ormalizacji zestawioo w tabeli. 54

5 Method of Aalysis of Measuremet Result Cohesio with the Theory of Mathematical Record Tab.. Wyii ormalizacji dla poszczególych wyiów pomiarów Tab.. Results of the ormalizatio for each result of measuremets lp X 3 4 0,6 0,3 0, 0,0 0,7 0,3 0,9 0, 3 3 0,6 0,9 0,3 0, ,6 0,3 0,8 0, ,4 0,7 0,5 0, ,5 0,7 0,4 0, ,6 0,5 0,6 0, ,5 0,6 0,4 0, ,7 0,6 0,8 0, , 0,3 0,3 0,3 Niech 0 m m 0 oraz m m. Moa oreli miary sprzeczoci iformacji, tóre zaprezetowao we wzorach i 3:, m m m R dla m m m m R a. 0.5 m m m R dla m R m m m b 3 55

6 . Topolsa, W. Walowia, M. Topolsi W powyszych aalizach wyorzystao tylo fucje aloacji prawdopodobiestwa i ie obliczao fucji przeoaia, gdy dla zadaia pojedyczych zdarze mamy do czyieia z bayesows fucj przeoaia, tóra jest tosama z fucj aloacji prawdopodobiestwa: Bel ' m. 4 ' We wzorach i 3 R jest orelacj Spermaa midzy jed zmie zale, a pozostaymi zmieymi. Jeeli olejy pomiar wiersze daych speia warue, 0. wówczas pomiar tai moa uza za spójy, iesprzeczy z pozostaymi wyiami pomiarów dla oreloej wartoci X. W wypadu, gdy iespeioy jest powyszy warue pomiar jest usuway. Po wyorzystaiu zaleoci i 3 w tabeli i zazaczoo wytuszczoym druiem pomiary, tóre ie speiaj wyej zapropoowaego waruu iesprzeczoci. W zwizu z powyszym s oe usuite z dalszej aalizy. W te sposób uzysao uredioe wyii pomiarów zestawioe w tabeli 3 z obliczoymi bdami stadardowymi dla wypadu wzicia pod uwag wszystich pomiarów i wzitych tylo tych ajbardziej istotych wedug zapropoowaej metody selecji. Aaliza wyiów pomiarów z wyorzystaiem opracowaego modelu sprawia, e po uredieiu istotych wyiów dla poszczególych pomiarów zmieych uzysao uogólio warto zmieej, tórej bd stadardowy dla rediej jest dla adego pomiaru istotie miejszy i gdyby uredioo wszystie wyii BD. Tab. 3. Uredioe wartoci pomiarów dla wszystich otrzymaych wyiów BZ i dla wyselecjoowaych MODELI Tab. 3. Average values of measuremet for all received results BZ ad for selected MODELS Zmiea redia redia Odch.Std. Odch.Std. Stad. Bd Stad. Bd X BZ MODEL BZ MODEL BZ MODEL 0,93 0,90 0,65 0,3 0,33 0,080,45,553 0,35 0,86 0,58 0,07 3,3,45 0,400 0,0 0,00 0,085 4,655,873 0,489 0,70 0,45 0,56 5 3,343 3,543 0,437 0, 0,9 0, 6 3,80 4,067 0,564 0,86 0,8 0,65 7 4,83 5,97 0,76 0,78 0,38 0,03 8 6,08 6,587 0,798 0,30 0,399 0,75 9 7,40 8,50,703 0,34 0,85 0,97 0,030 0,77 0,675 0,306 0,337 0,76 W te sposób moa teraz wyreli fucje zaleoci zmieej od X, co przedstawioo a rysuu. Na tym rysuu przedstawioo aiesioe puty pomiarowe dla trzech bada, ade po 0 pomiarów. Poadto areloo uredioe wyii tych pomiarów dla dwóch przypadów wszystie wyii pomiarów BZ, wyselecjoowae pomiary z wyorzystaiem MODELU zapropoowaego w iiejszej pracy. Drugi wypade zosta areloy dla caowitego usuicia zmieej 4 i dwóch putów dla zmieej zawartych w tabelach,. 56

7 Method of Aalysis of Measuremet Result Cohesio with the Theory of Mathematical Record 3. Podsumowaie W pracy zaprezetowao metod selecjoowaia zmieych oraz pojedyczych putów pomiarowych ajlepiej zwizaych ze wszystimi pomiarami. Aaliza supie zostaa wyorzystaa do oszacowaia zmieych ajbardziej zwizaych ze sob i daa oa moliwo usuicia zmieej ajbardziej oddaloej w sesie podobiestwa odlego eulidesowa od pozostaych. Wyorzystao teori ewidecji matematyczej do oszacowaia stopia przyaleoci putu pomiarowego do grupy putów. W tym celu wyorzystao miar R orelacji rag porzdowych Spearmaa, midzy ad zmie a pozostaymi zmieymi, aby ustali moc powizaia tych zmieych. Nastp wieloci wyorzysta we wzorach i 3 jest miara sprzeczoci w sesie teorii Dempstera-Shafera. Dzii zastosowaiu uifiacji tych trzech iformacji uzysao miar {, }, tórej dziedzi jest przedzia liczb rzeczywistych [0,]. Im warto jest blisza zeru, tym poszczególy pomiar jest bardziej spójy z grup pomiarów. Jeeli warto tego wspóczyia dy do, ozacza to, e put pomiarowy jest coraz sabiej zwizay z grup pomiarów. W pracy przyjto dla 4 pomiarów istoto tego wspóczyia 0,. Jeeli wyii {, } s miejsze od 0., s oe uzae za istote dla caoci bada. Zalet taiego podejcia jest moliwo wychwyceia tych pomiarów, tóre w istoty sposób powiszaj bd stadardowy wartoci rediej. Daje oo moliwo uzysaia spójej sali wyiów i tym samych istotie poprawia ich wiarygodo.,00 0,00 8,00 6,00 4,00,00 0, ,800 X BZ MODEL 3 4 Rys.. Wyii pomiarów wraz z aiesioymi rzywymi uredieia daych dla wszystich pomiarów BZ i pomiarów wyselecjoowaych o ajmiejszych bdach stadardowych MODELI Fig.. Results of measuremet mared curves of average data for all BZ measuremets ad measuremet selected of MODEL least stadard-errors 57

8 . Topolsa, W. Walowia, M. Topolsi 4. Literatura [] Durham, S. D., Smola, J. S., Valtorta, M., Statistical cosistecy with Dempster s rule o diagostic trees havig ucertai performace parameters, Iteratioal joural of Approximate Reasoig, 6, 67-8, 99. [] Gordo, J., Shortliffe E. H., The Dempster-Shafer Theory of Evidece, [w:] Schafer G. Pearl J., [red.] Readigs i Ucertai Reasoig. Morga aufma Publ., Ic., Sa Mateo, Califoria, 99. [3] Straszeca, E., Straszeca. J., Iterpretatio of Medical Symptoms Usig Fuzzy Focal Elemets, 4 th Iteratioal Coferece o Computer Recogitio Systems - CORES005, Rydzya Polad -5 May, 005. [4] Straszeca, E., Straszeca, J., Medical Reasoig with Fuzzy ad Ucertai Symptoms - Proc. Europea Symposium o Itelliget Techiques, pp ESIT 000 Aache, Germay, 000. [5] Wierzcho, S., Metody reprezetacji i przetwarzaia iformacji iepewej w ramach teorii Dempstera-Shafera, Istytut Podstaw Iformatyi Polsiej Aademii Nau, Warszawa, 996. [6] Wag, A., A Defect i Dempster-Shafer Theory, Proc. Cof. Icertaity i Artificial Itelligece, UA96, URL=ftp://cogsci.idiaa.edu/pub/wag.dempster.ps. 58

H brak zgodności rozkładu z zakładanym

H brak zgodności rozkładu z zakładanym WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy

Bardziej szczegółowo

Metoda najszybszego spadku

Metoda najszybszego spadku Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego. Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

Pojcie estymacji. Metody probabilistyczne i statystyka Wykład 9: Estymacja punktowa. Własnoci estymatorów. Rozkłady statystyk z próby.

Pojcie estymacji. Metody probabilistyczne i statystyka Wykład 9: Estymacja punktowa. Własnoci estymatorów. Rozkłady statystyk z próby. Pojcie estymacji Metody probabilistycze i statystyka Wykład 9: Estymacja puktowa. Własoci estymatorów. Rozkłady statystyk z próby. Szacowaie wartoci parametrów lub rozkładu zmieej losowej w populacji geeralej

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.

Bardziej szczegółowo

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA?

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA? EKONOMETRIA Temat wykładu: Co to jest model ekoometryczy? Dobór zmieych objaśiających w modelu ekoometryczym Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapata Tarapata@isi.wat..wat.edu.pl http://

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce IV Uiwersyteca Sobota Matematycza 4 wietia 208 Fucje tworzące w ombiatoryce Dla ciągu a 0 a a 2... defiiujemy fucję tworzącą: G(x) = a x = a 0 + a x + a 2 x 2 + a 3 x 3 + =0. Zajdź fucje tworzące dla poiższych

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

INDUKCJA MATEMATYCZNA

INDUKCJA MATEMATYCZNA MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI 2 PEARSONA ROZKŁAD GAUSSA Ćwiczeia rachuowe TEST ZGODOŚCI PEARSOA ROZKŁAD GAUSSA UWAGA: a stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz alulacyjy do programu Calc paietu Ope Office, iezbędy podczas

Bardziej szczegółowo

obie z mocy ustawy. owego.

obie z mocy ustawy. owego. Kwartalik Prawo- o-ekoomia 3/015 Aa Turczak Separacja po faktycza lub prawa obie z mocy ustawy cza, ie ozacza defiitywego owego 1 75 1 61 3 Art 75 88 Kwartalik Prawo- o-ekoomia 3/015 zaspokajaia usp iedostatku

Bardziej szczegółowo

Metody Podejmowania Decyzji

Metody Podejmowania Decyzji Metody Podejmowaia Decyzji Wzrost liczby absolwetów w Politechice Wrocławsiej a ieruach o luczowym zaczeiu dla gospodari opartej a wiedzy r UDA-POKL.04.0.0-00-065/09-0 Recezet: Prof. dr hab. iż. Ja Iżyowsi

Bardziej szczegółowo

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 76 Electrical Egieerig 3 Jaub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Jausz KOWALSKI** PREZEACJA MODULACJI ASK W PROGRAMIE MACHCAD W artyule autorzy przedstawili

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Kombinacje, permutacje czyli kombinatoryka dla testera

Kombinacje, permutacje czyli kombinatoryka dla testera Magazie Kombiacje, permutacje czyli ombiatorya dla testera Autor: Jace Oroje O autorze: Absolwet Wydziału Fizyi Techiczej, Iformatyi i Matematyi Stosowaej Politechii Łódziej, specjalizacja Sieci i Systemy

Bardziej szczegółowo

kpt. dr inż. Marek BRZOZOWSKI kpt. mgr inż. Zbigniew LEWANDOWSKI Wojskowy Instytut Techniczny Uzbrojenia

kpt. dr inż. Marek BRZOZOWSKI kpt. mgr inż. Zbigniew LEWANDOWSKI Wojskowy Instytut Techniczny Uzbrojenia pt. dr iż. Mare BRZOZOWSKI pt. mgr iż. Zbigiew LEWANDOWSKI Wojsowy Istytut Techiczy Uzbrojeia METODA OKREŚLANIA ROZRÓŻNIALNOŚCI OBIEKTÓW POWIETRZNYCH PRZEZ URZĄDZENIA RADIOLOKACYJNE Z WYKORZYSTANIEM LOTÓW

Bardziej szczegółowo

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. 16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

i statystyka matematyczna Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, M. Przybycień Rachunek prawdopodobieństwa i statystyka

i statystyka matematyczna Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, M. Przybycień Rachunek prawdopodobieństwa i statystyka Rachue prawdopodobieństwa i statystya matematycza Dr hab. iż.. Mariusz Przybycień Literatura: Rachue prawdopodobieństwa i statystya matematycza w zadaiach, tom I i II, W. Krysici i i., PWN 200. Wstęp do

Bardziej szczegółowo

Logistyka a bezpieczeństwo asymetryczne

Logistyka a bezpieczeństwo asymetryczne KRZYSZKOWSKI Adrzej 1 Logistya a bezpieczeństwo asymetrycze WSTĘP Asymetria to pojęcie zae z geometrii, ozacza oo aruszeie lub bra symetrii -sytuację pewej odmieości. Badacze zajmujący się defiiowaiem

Bardziej szczegółowo

SYMULACJA MIKROSKOPOWA RUCHU W MODELU OBSZAROWYM SIECI DROGOWEJ

SYMULACJA MIKROSKOPOWA RUCHU W MODELU OBSZAROWYM SIECI DROGOWEJ PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 86 Trasport 202 Staisaw Krawiec, Ireeusz Celiski Wydzia Trasportu, Politechika lska SYMULACJA MIKROSKOPOWA RUCHU W MELU OBSZAROWYM SIECI DROGOWEJ Rkopis dostarczoo,

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

Zajęcia nr. 2 notatki

Zajęcia nr. 2 notatki Zajęcia r otati wietia 5 Wzory srócoego możeia W rozdziale tym podamy ila wzorów tóre ułatwiają obliczaie wielu zadań rachuowych Fat (wzory srócoego możeia) Dla dowolych liczb rzeczywistych a, b zachodzi:

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych.

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych. Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. A. V. Aho, J.E. Hopcroft, J. D. Ullma - Projektowaie i aaliza

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

ZASTOSOWANIE METODY CBR DO SZACOWANIA KOSZTÓW WYTWARZANIA W FAZIE PROJEKTOWANIA

ZASTOSOWANIE METODY CBR DO SZACOWANIA KOSZTÓW WYTWARZANIA W FAZIE PROJEKTOWANIA ZASTOSOWANIE METODY CBR DO SZACOWANIA KOSZTÓW WYTWARZANIA W FAZIE PROJEKTOWANIA prof. r hab. iż. Ryszar Kosala r.kosala@po.opole.pl mgr iż. Barbara Baruś b.barus@po.opole.pl Politechika Opolska Wyział

Bardziej szczegółowo

OPTYMALIZACJA ROZMYTEGO FILTRU KALMANA PRZY WYKORZYSTANIU ALGORYTMÓW GENETYCZNYCH

OPTYMALIZACJA ROZMYTEGO FILTRU KALMANA PRZY WYKORZYSTANIU ALGORYTMÓW GENETYCZNYCH Prace Nauowe Istytutu Maszy, Napędów i Pomiarów Eletryczych Nr 69 Politechii Wrocławsiej Nr 69 Studia i Materiały Nr 33 3 algorytm geetyczy, optymalizacja, filtr Kalmaa, uład dwumasowy Krzysztof DÓŻDŻ*

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

THE DEMPSTER-SHAFER MODEL OF MECHANICAL OBJECT DURABILITY IN LABORATORY CONDITIONS

THE DEMPSTER-SHAFER MODEL OF MECHANICAL OBJECT DURABILITY IN LABORATORY CONDITIONS Joural of KONES Iteral Cobustio Egies 2005, vol. 12, 3-4 THE DEMPSTE-SHAFE MODEL OF MECHANICAL OBJECT DUABILITY IN LABOATOY CONDITIONS Katarzya Topolsa* Mariusz Topolsi** *Politechia Wrocławsa, Wydział

Bardziej szczegółowo

Kombinatoryka - wyk lad z 28.XI (za notatkami prof.wojciecha Guzickiego)

Kombinatoryka - wyk lad z 28.XI (za notatkami prof.wojciecha Guzickiego) Kombiatorya - wy lad z 28XI (za otatami profwojciecha Guziciego) Kombiatorya zajmuje sie sposobami zliczaia elemetów zbiorów sończoych Liczbe elemetów sończoego zbioru A be dziemy ozaczać symbolem A 1

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

Planowanie organizacji robót budowlanych na podstawie analizy nakładów pracy zasobów czynnych

Planowanie organizacji robót budowlanych na podstawie analizy nakładów pracy zasobów czynnych Budowictwo i Architektura 12(1) (2013) 39-46 Plaowaie orgaizacji robót budowlaych a podstawie aalizy akładów pracy zasobów czyych Roma Marcikowski 1 1 Istytut Budowictwa, Wydział Budowictwa Mechaiki i

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

OpenPoland.net API Documentation

OpenPoland.net API Documentation OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

Techniczne Aspekty Zapewnienia Jakości

Techniczne Aspekty Zapewnienia Jakości Istytut Techologii Maszy i Automatyzacji Politechii Wrocławsiej Pracowia Metrologii i Badań Jaości Wrocław, dia Ro i ierue studiów. Grupa (dzień tygodia i godzia rozpoczęcia zajęć) Techicze Aspety Zapewieia

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji eoria i metody optymalizaci Programowaie liiowe całowitoliczbowe PCL Metodologia podziału i ograiczeń Brach ad Boud (B&B) ma c A Z echique Metodologia podziału i ograiczeń B&B { A b i Z } Podstawą metodologii

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematya dysreta dla iformatyów Cz ± I: Elemety ombiatoryi Jerzy Jaworsi Zbigiew Pala Jerzy Szyma«si Uiwersytet im Adama Miciewicza Poza«2007 3 Schematy wyboru i tożsamości ombiatorycze 31 Wariacje z

Bardziej szczegółowo

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik Opracował: Roma Szatai Rozład Poissoa I. Cel ćwiczeia Zapozaie ze statystyczym sposobem opisu zagadień związaych z promieiowaiem jądrowym oraz z rozładami statystyczymi stosowaymi w fizyce jądrowej. Pratycze

Bardziej szczegółowo

Wybór systemu klasy ERP metod AHP

Wybór systemu klasy ERP metod AHP BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 5 3-22 (200) Wybór systemu klasy ERP metod AHP A. CHOJNACI, O. SZWEDO e-mail: adrzej.chojacki@wat.edu.pl Wydzia Cyberetyki WAT ul. S. aliskiego 2, 00-908 Warszawa

Bardziej szczegółowo

Spacery losowe i sieci elektryczne

Spacery losowe i sieci elektryczne Uiwersytet Wrocªawsi Wydziaª Matematyi i Iformatyi Istytut Matematyczy specjalo± : zastosowaia rachuu prawdopodobie«stwa i statystyi Oliwier Bieraci Spacery losowe i sieci eletrycze Praca licecjaca apisaa

Bardziej szczegółowo

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F. 15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia

Bardziej szczegółowo

Elastyczno silników FIAT

Elastyczno silników FIAT ARCHIWU OTORYZACJI 4, pp. 319-35 (009) Elastyczo silików FIAT JANUSZ YSŁOWSKI, WAWRZYNIEC GOŁBIEWSKI Zachodiopomorski Uiwersytet Techologiczy W artykule przedstawioo elastyczo silików FIAT. Pierwszym aspektem

Bardziej szczegółowo

Budowa i weryfikacja modelu ekonometrycznego dla okreœlenia liniowej zale noœci pomiêdzy kosztami pozyskania wêgla a wielkoœci¹ wydobycia

Budowa i weryfikacja modelu ekonometrycznego dla okreœlenia liniowej zale noœci pomiêdzy kosztami pozyskania wêgla a wielkoœci¹ wydobycia GOSPODARKA SUROWCAMI MINERALNYMI Tom 4 008 Zeszyt 1/1 LIDIA GAWLIK* Budowa i weryfikacja modelu ekoometryczego dla okreœleia liiowej zale oœci pomiêdzy kosztami pozyskaia wêgla a wielkoœci¹ wydobycia Wprowadzeie

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli. KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce a aklejk z kodem szkoy dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdajcego Sprawd, czy arkusz egzamiacyjy zawiera 4 stro (zadaia ) Ewetualy

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

BOOTSTRAPOWA WERYFIKACJA HIPOTEZ O WARTO CI OCZEKIWANEJ POPULACJI O ROZK ADZIE ASYMETRYCZNYM

BOOTSTRAPOWA WERYFIKACJA HIPOTEZ O WARTO CI OCZEKIWANEJ POPULACJI O ROZK ADZIE ASYMETRYCZNYM A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 27, 22 OOTSTRAPOWA WERYFIKACJA HIPOTEZ O WARTOCI OCZEKIWANEJ POPULACJI O ROZKADZIE ASYMETRYCZNYM Streszczeie. W pracy przedstawioa

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D],

Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D], x FAQ ANALIZA R c ZADANIA Zbiory Zadaie 1. Opisa zbiory A B, A B, A \ B, B \ A je±li A = {x R : x 3x < 0, }; B = {x R : x 3x + 4 0} Zadaie. Niech A, B, C, D b d podzbiorami przestrzei X. Udowodi,»e A \

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

THE VALIDATION METHODS OF DURABILITY OF CERAMIC COATING UNDER LABORATORY CONDITIONS

THE VALIDATION METHODS OF DURABILITY OF CERAMIC COATING UNDER LABORATORY CONDITIONS Joural of KONES Powertrai ad Trasport, Vol. 13, No. 4 THE VALIDATION METHODS OF DURABILITY OF CERAMIC COATING UNDER LABORATORY CONDITIONS Katarzya Topolska, Wociech Walkowiak Politechika Wrocawska, Wydzia

Bardziej szczegółowo

UWAGI O GRANICZNYCH ROZKŁADACH EKSTREMALNYCH STATYSTYK POZYCYJNYCH

UWAGI O GRANICZNYCH ROZKŁADACH EKSTREMALNYCH STATYSTYK POZYCYJNYCH D I D A C T I C S O F M A T H E M A T I C S No. 5-6 (9-0) 009 Rafał Korzoe (Wrocław) UWAGI O GRANICZNYCH ROZKŁADACH EKSTREMALNYCH STATYSTYK POZYCYJNYCH Abstract. I may practical issues to deal with etreme

Bardziej szczegółowo

WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH

WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH Technica Agraria 1(1) 2, 75-81 WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH Stanisław Pietruszewsi Streszczenie. W pracy przedstawiono wpływ pola magnetycznego

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

ROZDZIAŁ VIII OPTYMALIZACJA W DIAGNOSTYCE MASZYN

ROZDZIAŁ VIII OPTYMALIZACJA W DIAGNOSTYCE MASZYN ... auka zaczya si wtedy, kiedy zaczya si mierzeie... ROZZIAŁ VIII OPTYMALIZACJA W IAGNOSTYCE MASZYN 8. Wprowadzeie 8.2 Jako maszy w aspekcie diagostyki 8.3 Model destrukcji maszy 8.4 Optymalizacja testów

Bardziej szczegółowo

Krótkie i dość swobodne wprowadzenie do liczb Stirlinga. Jakub Kamiński

Krótkie i dość swobodne wprowadzenie do liczb Stirlinga. Jakub Kamiński Krótie i dość swobode wprowadzeie do liczb Stirliga Jaub Kamińsi 9 styczia 27 LICZBY STIRLINGA PIERWSZEGO RODZAJU Liczby Stirliga pierwszego rodzaju Liczby Stirliga zawdzięczają swoją azwę szociemu matematyowi

Bardziej szczegółowo

Wyk lad 1 Podstawowe techniki zliczania

Wyk lad 1 Podstawowe techniki zliczania Wy lad 1 Podstawowe techii zliczaia Wariacje bez powtórzeń Defiicja 1. Niech i bed a liczbami aturalymi taimi, że. Niech A bedzie dowolym zbiorem elemetowym. Każdy ciag różowartościowy a 1,..., a d lugości

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystya Iżyiersa dr hab. iż. Jace Tarasiu GH, WFiIS 03 Wyład 4 RCHUNEK NIEPEWNOŚCI + KILK UŻYTECZNYCH NRZĘDZI STTYSTYCZNYCH Wyład w więszości oparty a opracowaiu prof.. Zięby http://www.fis.agh.edu.pl/~pracowia_fizycza/pomoce/opracowaiedaychpomiarowych.pdf

Bardziej szczegółowo