Wielkość: px
Rozpocząć pokaz od strony:

Download ""

Transkrypt

1 Praca omowa nr. Meoologia Fizyki Grupa. Szacowanie warości wielkości fizycznych i posawy analizy wymiarowej W wielu zaganieniach ineresuje nas przybliżona warość wielkości fizycznej X. Może o być spowoowane ym, że wyznaczenie okłanej warości rwałoby ługo, wymagałoby oakowych informacji lub anych, kórymi nie ysponujemy albo są nam nieporzebne. W innych przypakach chcemy jeynie mieć grube oszacowanie warości wielkości fizycznej z okłanością, jak mówimy, co o rzęu wielkości. Szacowanie prowazimy w nasępujący sposób: Liczbę x określającą miarę (liczbę jenosek) wielkości X w ukłazie SI zaokrąglamy o jenej cyfry znaczącej i zapisujemy ją w sysemie ziesięnym w posaci wykłaniczej (scienific noaion): M 0 n ; gzie M liczba rzeczywisa, n wykłanik. Np. jeśli znamy oległość 443 m, o l m, a jeśli znamy liczbę sekun 364 s, o s. Nasępnie na ak orzymanych liczbach okonujemy operacji algebraicznych i orzymany wynik zapisujemy w posaci liczby wykłaniczej o posawie ziesięć z jeną cyfrą znaczącą. Przykłaowo, jeśli szacujemy rzą warości prękości v = l/, gzie l = 60 8 m i = 3 64 s, o w szacowaniu przyjmujemy kolejno l 0 6 m, s i orzymujemy v ( 0 6 m)/(4 0 3 s) = 5 0 m/s. Posawy analizy wymiarowej (parz hp:// Znak równości w fizyce oznacza równość warości (liczby jenosek) i wymiarów (jenosek) wielkości fizycznych znajujących się po obu sronach znaku. Każa pochona wielkość fizyczna ma wymiar, kóry wyraża się za pomocą (wymiarów) wielkości posawowych ukłau SI. Wymiarami posawowych wielkości fizycznych w SI są na posawie efinicji: ługość symbol L, czas symbol T, masa symbol M, emperaura symbol K, naężenie prąu symbol I, świałość symbol C. Wymiar wielkości pochonej X symbol im X = [X], jes określany za pomocą efinicji ychże wielkości i jes wyrażany jes w posaci iloczynu lub ilorazu wielkości/wymiarów posawowych w opowienich poęgach (poniesionych o opowienich poęg), wykłaniki poęgowe nazywa się wykłanikami wymiarowymi. Jeśli pochoną wielkością fizyczna jes praca, o im P = [P]= (im F) L=MLT - L= L MT -. Symbole pochonych wielkości fizycznych piszemy kursywą, a wymiar X oznaczamy zamiennie symbolami: im X lub [X]. Analiza wymiarowa rakuje wymiary jako wielkości algebraiczne, na kórych można wykonywać posawowe ziałania algebraiczne (oawanie, oejmowanie, mnożenie, zielenie, poęgowanie, pierwiaskowanie). Dwie posawowe reguły analizy wymiarowej: R. Wielkości fizyczne mogą być oawane lub oejmowane po warunkiem, że mają en sam wymiar. R. Wymiary srony lewej i prawej poprawnie sformułowanej równości wielkości fizycznych powinny być akie same. Przykła. Czy poprawnym jes wzór s = cons a, określający zależność rogi o czasu w prosoliniowym ruchu jenosajnie przyspieszonym? Rozwiązanie: [s] = L, a wymiar prawej srony [a ] = [a][ ] = (LT - )T = L. Opowiez: Wzór jes poprawny z okłanością o bezwymiarowego czynnika cons. Zasosujemy analizę wymiarową o wyznaczenia posaci zależności funkcyjnej ypu iloczynowego mięzy kilkoma wielkościami fizycznymi. Przykła. Załóżmy, ze hipoeyczna zależność mięzy przyspieszeniem a ciała wykonującego ruch po okręgu o promieniu R ze sała prękością v jes posaci a = v a R b. Jakie są warości wykłaników wymiarowych a i b? Rozwiązanie: Skorzysamy z ego, że im a =[a]= LT - i że en sam wymiar powinna mieć prawa srona wzoru, j. im (v a R b )=[ v a R b ] = (LT - ) a L b = L a+b T -a. Aby więc wymiary obu sron wzoru były zgone winny zachozić równości a+b = i a =. Zaem mamy opowieź: a = i b =, jak powinno być. Uwaga: Powyższą analizę można przeprowazić posługując się w miejsce wymiarów jenoskami wielkości fizycznych. Przypomnijmy warości i wymiary uniwersalnych sałych przyroy: sała grawiacji: G = 6, L 3 /(MT ), im G = [G] = L 3 M - T -, sała Diraca: ħ = h/π =, kg m /s, więc im ħ = im h = M L T -, prękość świała: c = m/s, im c = M T

2 Za... a) Oszacuj grubość karki papieru wybranej przez siebie książki, mierząc najpierw jej grubość i oczyując liczbę sron. b) Korzysając z reguł analizy wymiarowej należy oworzyć zależność i obliczyć warości wykłaników a, b, c, jeśli założona zależność ma posać P = (ħ ) a (c) b (G) c czas (sekunę) Plancka; więcej na sronach hp://pl.wikipeia.org/wiki/jenoski_plancka i hp:// Za.. a) Oszacuj liczbę proonów we własnym ciele, zakłaając, że ciało skłaa się w 85% z woy. b) Liczba Reynolsa L RE służy o określania charakeru przepływu rzeczywisego płynu o lepkości ynamicznej µ (jenoską jes Pa s), gęsości ρ poruszającego się z prękością V w rurze o śrenicy D. Jeśli L RE > 00 przepływ jes płynu jes laminarny. Zakłaając, że szukana zależność maemayczna ma posać (µ) a (V) b (D) c (ρ), należy wyznaczyć warości wykłaników a, b, c i korzysając z reguł analizy wymiarowej. Za..3 a) Oszacuj powierzchnię i objęość swego ciała. b) Warość prękości cząseczek gazu iealnego V zależy o masy cząseczki, sałej Bolzmanna k B oraz emperaury bezwzglęnej T gazu, przy czym warość V ana jes (przypuszczamy) wzorem (m) a (k B ) b (ωt) c ; należy wyznaczyć warości wykłaników a, b, c korzysając z reguł analizy wymiarowej. Za..4 a) Oszacuj liczbę uerzeń serca w ciągu prognozowanego samozielnie czasu swego życia. b) Warość energii E elekronu w moelu Bohra aomu wooru zależy o masy elekronu m, łaunku elekronu q, przenikalności elekrycznej próżni ε 0 i sałej Plancka h. Zakłaając, że poszukiwana zależności jes posaci (m) a (q) b (h) c (ε 0 ) wyznacz warości wykłaników a, b, c i korzysając z reguł analizy wymiarowej. Za..5 a) Oszacuj liczbę oechów w ciągu prognozowanego samozielnie czasu swego życia. b) Korzysając z reguł analizy wymiarowej należy oworzyć posać maemayczną zależności prękości V fali mechanicznej w mealu zakłaają, że zależność a ma posać (E) (ρ) e, gzie E mouł Younga, ρ gęsość mealu, j. należy wyznaczyć warości wykłaników i e. Za..6 a) Oszacuj liczbę aomów miezi w jenym merze sześciennym ego mealu, niezbęne ane znajź w ablicach. b) Korzysając z reguł analizy wymiarowej należy oworzyć zależności i obliczyć warości wykłaników, e, f, jeśli założyć, że poszukiwana zależność ma posać l P = (ħ ) (c) e (G) f ługość (mer) Plancka); więcej na sronach hp://pl.wikipeia.org/wiki/jenoski_plancka i hp:// Za..7 a) Oszacuj liczbę aomów powierza w pomieszczeniu, w kórym akualnie przebywasz. b) Za..5. Siła F bezwłaności Coriolisa, ziała na ciała o masie m poruszające się z prękością o warości V w ukłazie oniesienia obracającym się z prękością kąowa ω, przy czym warość F ana jes (zakłaamy) formułą (m) a (V) b (ω) c ; należy wyznaczyć warości wykłaników a, b, c korzysając z reguł analizy wymiarowej. Za..8 a) Oszacuj liczbę cząseczek woy we własnym ciele, zakłaając, że ciało skłaa się w 80% z woy. b) Korzysając z reguł analizy wymiarowej należy oworzyć zależności czasu T obiegu gwiazy o masie m planey orbiującej wokół ej gwiazy w oległości r, wieząc, że szukana zależności jes ana wzorem (G) a (r) b (m) c, gzie G sała grawiacji; należy wyznaczyć warości wykłaników a, b, c. Uwaga: Niezbęne ane posaraj się określić/przyjąć/wyznaczyć samozielnie Grupa. Elemeny rachunku wekorowego i ukłay współrzęnych Za. A Pokaż z efinicji, że iloczyn skalarny wóch wekorów ma posać w karezjańskim ukłazie współrzęnych posać a b = a b + a b + a b. x x y y z z Za. B Pokaż z efinicji, że iloczyn wekorowy wóch wekorów anych w karezjańskim ukłazie współrzęnych ma posać: i j k a a a a a a y z x z x y a b = b a = a a a = i j + k = x y z b b b b b b y z x z x y b b b x y z ( ) + ( y z z y z x x z ) + ( x y y x ) = a b a b i a b a b j a b a b k.

3 . a) Przesaw rozwiązanie zaań A i B zamieszczonych powyżej. b) Dane są wa wekory: a = 3î + 4ĵ 5k oraz b = î +ĵ +6k. Wyznacz: ługość każego wekora, iloczyn skalarny a b, ką pomięzy wekorem (a b) a wekorem (a + b), współrzęne wekora a + b w sferycznym ukłazie współrzęnych, przyjmując, że jes zaczepiony w począku ukłau współrzęnych.. a) Przesaw rozwiązanie zaań A i B zamieszczonych powyżej. b) Wekory a i b spełniają relacje: a + b = î ĵ +5k ; a 5b = 5î +ĵ + 9k. Wyznacz wekory a i b. Czy wekory e są o siebie prosopałe? Wyznacz współrzęne wekora a b w cylinrycznym ukłazie współrzęnych, przyjmując, że jes zaczepiony w począku ukłau współrzęnych..3 a) Przesaw rozwiązanie zaań A i B zamieszczonych powyżej. b) Dany jes wekor a = 7î + ĵ. Wyznacz wekor jenoskowy, prosopały o ego wekora, współrzęne wekora 5a w biegunowym ukłazie współrzęnych, przyjmując, że jes zaczepiony w począku ukłau współrzęnych..4 a) Przesaw rozwiązanie zaań A i B zamieszczonych powyżej. b) Dane są wa wekory: a = 3î + 4ĵ oraz b = 6î + 6ĵ. Rozłóż wekor b na skłaowe: równoległą i prosopałą o wekora a. Wyznacz współrzęne wekora a b w sferycznym ukłazie współrzęnych, przyjmując, że jes zaczepiony w począku ukłau współrzęnych..5 a) Przesaw rozwiązanie zaań A i B zamieszczonych powyżej. b) Wekor siły A o ługości 5 N ziała w płaszczyźnie XY i jes nachylony po kąem 30 wzglęem osi 0X. Zapisz wekor w posaci A = A x î + A y ĵ. Wyznacz współrzęne wekora 3A w biegunowym i cylinrycznym ukłazie współrzęnych, przyjmując, że jes zaczepiony w począkach ukłaów współrzęnych..6 a) Przesaw rozwiązanie zaań A i B zamieszczonych powyżej. b) Dane są wa wekory: A = î + 5ĵ oraz B = î 4ĵ. Wyznacz: ługości obu wekorów, ługość C = A + B oraz ką jaki worzy on z wekorem A. Wyznacz współrzęne wekora C w biegunowym i sferycznym ukłazie współrzęnych, przyjmując, że jes zaczepiony w począkach ukłau współrzęnych..7 a) Przesaw rozwiązanie zaań A i B zamieszczonych powyżej. b) Wekory a i b spełniają relacje: a + b = 5î + 3ĵ +7k ; a 5b = 5î +8ĵ 5k. Wyznacz wekory a i b oraz ką mięzy ymi wekorami. Wyznacz współrzęne wekora a b w sferycznym ukłazie współrzęnych, przyjmując, że jes zaczepiony w począku ukłau współrzęnych..8 a) Przesaw rozwiązanie zaań A i B zamieszczonych powyżej. b) Dane są wa wekory: a = 3î + 4ĵ + 9k oraz b = 6î ĵ +4k. Wyznacz: ługość każego wekora, iloczyn skalarny a b, ką pomięzy ymi wekorami. Wyznacz współrzęne wekora a+b w cylinrycznym ukłazie współrzęnych, przyjmując, że jes zaczepiony w począku ukłau współrzęnych. Grupa 3. Elemeny rachunku różniczkowo-całkowego Rozwiąż zaanie korzysając z ablic maemaycznych, zamieszczonych poniżej; należy znaleźć w ablicy opowienie wzory i zasosować je. Przykła. Całka nieoznaczona jes roziną funkcji, kórych pochone sa równe funkcji pocałkowej; całka oznaczona jes liczbą, kórej warość obliczamy, jako różnicę warości całki nieoznaczonej, opowienio, la górnej i olnej granicy całkowania. Przykła: ( ) ( ) ln x x = x ln x x + cons, ale ln x x = x ln x x = ln ln. Można sprawzić bezpośrenim rachunkiem, że pochona funkcji pierwonej x ln x x + cons jes równa funkcji pocałkowej ln x. Za. 3. Wyznaczyć pochoną, całkę nieoznaczoną i oznaczoną (parz ablica wzorów maemaycznych): sin A ( ) ( ( )) v =, cos( A ), sin ( A) ; A sała. Za. 3. Wyznaczyć pochoną, całkę nieoznaczoną i oznaczoną (parz ablica wzorów maemaycznych): ( ) ( cos ( A )) v =, sin ( A ), cos( A) 3 ; A sała.

4 Za. 3.3 Wyznaczyć pochoną, całkę nieoznaczoną i oznaczoną (parz ablica wzorów maemaycznych): v ( ) = ( ln( A ) sin ( ω )), sin, 6 e ; A sała. Za. 3.4 Wyznaczyć pochoną, całkę nieoznaczoną i oznaczoną (parz ablica wzorów maemaycznych): ( ) A v ( ) = e sin ( A ), cos, 6 e ; A sała; ws-ka: sin + cos =. Za. 3.5 Wyznaczyć pochoną, całkę nieoznaczoną i oznaczoną (parz ablica wzorów maemaycznych): =,, + A A ( ) ( e ) v ; A sała. Za. 3.6 Wyznaczyć pochoną, całkę nieoznaczoną i oznaczoną (parz ablica wzorów maemaycznych): A ( ) ( sin( A ) e ) v =, ( + A ) 3/, 4 ( + 7 ) 3/ ; A sała. Za. 3.7 Wyznaczyć pochoną, całkę nieoznaczoną i oznaczoną (parz ablica wzorów maemaycznych): v ( ) = ( A ln(a )), ( + A ) 3/, 7 ( + 7 ) 5 3/ ; A sała. Za. 3.8 Wyznaczyć pochoną, całkę nieoznaczoną i oznaczoną (parz ablica wzorów maemaycznych): v = +,, + A ( ) ( A ln(a )) 5 ( + 7 ) 3/ ; A sała. Wrocław, X 05 W. Saleja 4

5 Pożyeczne maeriały osępne w Inernecie hp://pl.wikibooks.org/wiki/meoy_maemayczne_fizyki hp://pl.wikibooks.org/wiki/meoy_maemayczne_fizyki/działania_na_wekorach#iloczyn_mieszany Dowó ze srony: hp://pl.wikibooks.org/wiki/meoy_maemayczne_fizyki/działania_na_wekorach#iloczyn_mieszany Iloczyn mieszany Pierwsza równość w (.3) jes iloczynem skalarnym wekorów c i a b. Tożsamości (.4) są nasępswem właściwości wyznacznika z (.3). Przesawiając pierwszy wiersz kolejno z rugim i rzecim orzymujemy pierwszą równość (.4), j. a a a x y c b b b x y z c c c x y c Poobnie przesawiając osani wiersz kolejno z rugim i pierwszym osajemy rugą równość w (.4), j. Wrocław, X 05 b b b x y c c c c. x y z a a a x y c. W. Saleja 5

6 6

7 7

8 Wrocław, X K. Tarnowski

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna, Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje

Bardziej szczegółowo

światła, G stała grawitacji. Proszę wyznaczyć wartości wykładników a i b korzystając z tego, że jednostki miar

światła, G stała grawitacji. Proszę wyznaczyć wartości wykładników a i b korzystając z tego, że jednostki miar Praca omowa nr. Meoologia Fizyki. Grupa. Szacowanie rzęów warości wielkości fizycznych Za... A) Jeśli jeseś suenką, proszę oszacować ile merów kwaraowych maeriału krawieckiego zosałoby zużye oakowo, gyby

Bardziej szczegółowo

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015 WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Grupa 2. Podstawy analizy wymiarowej

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Grupa 2. Podstawy analizy wymiarowej Praca domowa nr. Metodologia Fizyki. Grupa. Szacowanie wartości wielkości fizycznych Wprowadzenie: W wielu zagadnieniach interesuje nas przybliżona wartość wielkości fizycznej X. Może to być spowodowane

Bardziej szczegółowo

3. Pokazać z definicji, że iloczyn wektorowy dwóch wektorów ma postać:

3. Pokazać z definicji, że iloczyn wektorowy dwóch wektorów ma postać: Wyział PPT; kierunek Inż. Biomeyczna. Lisa nr o kursu Fizyka.3A, r. ak. 04/5. Lisa po koniec zawiera zaania przeznaczone o samozielnego rozwiązania Suia. sopnia na kierunku Inżynieria Biomeyczna obywają

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

3. Prąd elektryczny. 3.1Prąd stały. 3.2Równanie ciągłości, 3.3Prawo Ohma. 3.4Prawa Kirchhoffa. 3.5Łączenie oporów

3. Prąd elektryczny. 3.1Prąd stały. 3.2Równanie ciągłości, 3.3Prawo Ohma. 3.4Prawa Kirchhoffa. 3.5Łączenie oporów 3 Prą elekryczny 3Prą sały 3ównanie ciągłości, 33Prawo Ohma 34Prawa Kirchhoffa 35Łączenie oporów 45 3Prą sały Prą elekryczny o uporząkowany ruch nośników Prą może płynąć w przewonikach, ale akże elekroliach

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

Składowe wektora y. Długość wektora y

Składowe wektora y. Długość wektora y FIZYKA I Wykła II Rachunek Pojęcia postawowe wektorowy i (I) historia b a Skłaowe wektora y n = n cos(α) y n = n sin(α) y b Ԧa = a, y a a b = b, y b b a Długość wektora y Ԧa = a + y a y b b = b + y b b

Bardziej szczegółowo

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie II. Położenie i prędkość cd. Wekory syczny i normalny do oru. II.3 Przyspieszenie Wersory cylindrycznego i sferycznego układu współrzędnych krzywoliniowych Wyrażenia na prędkość w układach cylindrycznym

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Pańswowa Wyższa Szkoła Zawoowa w Kaliszu Ć wiczenia laboraoryjne z fizyki Ćwiczenie Wyznaczanie współczynnika rozszerzalności objęościowej cieczy za pomocą piknomeru Kalisz, luy 25 r. Opracował: Ryszar

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2018/2019 PIERWSZE ZAJĘCIA ZADANIA

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2018/2019 PIERWSZE ZAJĘCIA ZADANIA P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 PIERWSZE ZJĘCI Ukła kartezjański, wektory jenostkowe wersory Skalary, wektory, tensory Iloczyn skalarny, iloczyn wektorowy

Bardziej szczegółowo

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej. 1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną

Bardziej szczegółowo

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA Semestr zimowy r ak 6/7 ZDNI I Pokazać, że iv rot =, rot gra f =, iv (gra f gra g) =, gzie wektor i skalary f i g owolne funkcje różniczkowalne Wykazać tożsamości wektorowe (f, g wektory, B owolne funkcje

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

Przemieszczeniem ciała nazywamy zmianę jego położenia

Przemieszczeniem ciała nazywamy zmianę jego położenia 1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12 Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania

Bardziej szczegółowo

Ważny przykład oscylator harmoniczny

Ważny przykład oscylator harmoniczny 6.03.00 6. Ważny przykła oscylator harmoniczny 73 Rozział 6 Ważny przykła oscylator harmoniczny 6. Wprowazenie Klasyczny, jenowymiarowy oscylator harmoniczny opowiaa potencjałowi energii potencjalnej:

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

elektryczna. Elektryczność

elektryczna. Elektryczność Pojemność elektryczna. Elektryczność ść. Wykła 4 Wrocław University of Technology 4-3- Pojemność elektryczna Okłaki konensatora są przewonikami, a więc są powierzchniami ekwipotencjalnymi: wszystkie punkty

Bardziej szczegółowo

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda Chemia teoretyczna Postulaty mechaniki kwantowej Katarzyna Kowalska-Szoja Spis treści 1 Postulaty mechaniki kwantowej 2 1.1 Postulat pierwszy.......................... 2 1.2 Postulat rugi.............................

Bardziej szczegółowo

Wielomiany Hermite a i ich własności

Wielomiany Hermite a i ich własności 3.10.2004 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x)

Bardziej szczegółowo

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3 WYKŁAD 3 3.4. Postawowe prawa hyroynamiki W analizie problemów przepływów cieczy wykorzystuje się trzy postawowe prawa fizyki klasycznej: prawo zachowania masy, zachowania pęu i zachowania energii. W większości

Bardziej szczegółowo

1 Postulaty mechaniki kwantowej

1 Postulaty mechaniki kwantowej 1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych

Rozwiązywanie równań różniczkowych Rozwiązwanie równań różniczkowch. Równanie różniczkowe zwczajne. rzęu A. Metoa rkfie - zaimplementowana w Mathcazie metoa Rungego-Kutt. rzęu ze stałm krokiem całkowania: rkfie(,,ma, N, P) gzie: ma N P

Bardziej szczegółowo

Zadanie 1. Rozwiązanie. opracował: Jacek Izdebski.

Zadanie 1. Rozwiązanie. opracował: Jacek Izdebski. Zaanie 1 Jaką pracę należy wykonać, aby w przetrzeń mięzy okłakami konenatora płakiego wunąć ielektryk całkowicie tę przetrzeń wypełniający, jeśli napięcie na okłakach zmienia ię w trakcie tej operacji

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera. 7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I Wymagania konieczne ocena dopuszczająca wie że długość i odległość mierzymy w milimerach cenymerach merach lub kilomerach

Bardziej szczegółowo

Harmoniki sferyczne. Dodatek C. C.1 Wprowadzenie. Całka normalizacyjna I p (n)

Harmoniki sferyczne. Dodatek C. C.1 Wprowadzenie. Całka normalizacyjna I p (n) 3.1.24 Do. mat. C. Harmoniki sferyczne 1 Doatek C Harmoniki sferyczne C.1 Wprowazenie Harmoniki sferyczne są funkcjami specjalnymi pojawiającymi się w wielu zaganieniach fizyki. W poręcznikach fizyki matematycznej

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką

Bardziej szczegółowo

Relacje Kramersa Kroniga

Relacje Kramersa Kroniga Relacje Kramersa Kroniga Relacje Kramersa-Kroniga wiążą ze sobą część rzeczywistą i urojoną każej funkcji, która jest analityczna w górnej półpłaszczyźnie zmiennej zespolonej. Pozwalają na otrzymanie części

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir

Bardziej szczegółowo

LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna.

LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna. LEPKOŚĆ Opracowanie: r Urszula Lelek-Borkowska Płyn substancja ciekła, gazowa lub proszek, który ma zolność płynięcia, czyli owolnej zmiany kształtu oraz swobonego przemieszczania, np. przepompowywania.

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wyział Mechaniczno-Energetyczny Postawy elektrotechniki Prof. r hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bu. A4 Stara kotłownia, pokój 359 Tel.: 71 320

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Semesr I 1. Wykonujemy pomiary Tema zajęć Wielkości fizyczne, kóre

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

Ćwiczenie 7. Zasady przygotowania schematów zastępczych do analizy stanów ustalonych obliczenia indywidualne

Ćwiczenie 7. Zasady przygotowania schematów zastępczych do analizy stanów ustalonych obliczenia indywidualne Laboratorium Pracy ystemów Elektroenergetycznych stuia T 017/18 Ćwiczenie 7 Zasay przygotowania schematów zastępczych o analizy stanów ustalonych obliczenia inywiualne Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

LABORATORIUM Z MECHANIKI PŁYNÓW

LABORATORIUM Z MECHANIKI PŁYNÓW LABORATORIUM Z MECHANIKI PŁYNÓW SPIS ĆWICZEŃ 1. Baanie pompy ośrokowej. Baanie pompy wirowej 3. Baanie wentylatora ośrokowego 4. Określanie wyatku za pośrenictwem pomiaru rozkłau prękości wyznaczanie współczynnika

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa Metoa obrazów wielki skrypt prze poświąteczny, CZĘŚĆ POTRZEBNA DO OFa 1. Równania i warunki brzegowe Dlaczego w ogóle metoa obrazów ziała? W elektrostatyce o policzenia wszystkiego wystarczą 2 rzeczy:

Bardziej szczegółowo

Fale elektromagnetyczne spektrum

Fale elektromagnetyczne spektrum Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

ZADANIA TEORETYCZNE. E e = hc λ

ZADANIA TEORETYCZNE. E e = hc λ LV Olimpiaa Fizyczna(2005/2006) Etap I Część II(Rozwiązane) 1 ZADANIA TEORETYCZNE Zaanie 1 Jena z okłaek konensatora płaskiego jest oświetlana(poprzez mały otwór w rugiej okłace) światłem lasera o ługości

Bardziej szczegółowo

Projektowanie Systemów Elektromechanicznych. Wykład 3 Przekładnie

Projektowanie Systemów Elektromechanicznych. Wykład 3 Przekładnie Projektowanie Systemów Elektromechanicznych Wykła 3 Przekłanie Zębate: Proste; Złożone; Ślimakowe; Planetarne. Cięgnowe: Pasowe; Łańcuchowe; Linowe. Przekłanie Przekłanie Hyrauliczne: Hyrostatyczne; Hyrokinetyczne

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl LVIII OLIMPIADA FIZYCZNA (2008/2009). Stopień II, zaanie oświaczalne D. Źróło: Autor: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej. Ernest Groner Komitet Główny Olimpiay Fizycznej,

Bardziej szczegółowo

LABORATORIUM PODSTAW AUTOMATYKI

LABORATORIUM PODSTAW AUTOMATYKI LABORATORIUM PODSTAW AUTOMATYKI Ćwiczenie LP Projektowanie regulacji metoą linii pierwiastkowych Zaanie: Zaprojektować sposób stabilizowania owróconego wahała (rys.1) la małych ochyleń o położenia pionowego.

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary ocena dopuszczająca Wymagania podsawowe ocena dosaeczna ocena dobra Wymagania dopełniające ocena bardzo dobra 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 Wielkości fizyczne, kóre mierzysz na co dzień wymienia

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem yfrakcji światła na pojeynczej i powójnej szczelinie. Pomiar ługości fali światła laserowego, oległości mięzy śrokami szczelin

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Substancja, masa, energia

Substancja, masa, energia Sbst energ 0ZT Sbstancja, masa, energia Miarą ilości sbstancji jest liczba atomów i cząsteczek, z których skłaa się sbstancja. W procesie fizycznym ilość sbstancji jest niezależna o jej energii. Masa sbstancji

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzysano: M A T E M A T Y K A Wykład dla sudenów Część Krzyszo KOŁOWROCKI, ZBIÓR ZADAŃ Z RACHUNKU CAŁKOWEGO Krzyszo PISKÓRZ Deinicja CAŁKA NIEOZNACZONA Funkcję

Bardziej szczegółowo

Ć W I C Z E N I E N R E-17

Ć W I C Z E N I E N R E-17 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-17 WYZNACZANIE STAŁEJ DIELEKTRYCZNEJ RÓŻNYCH

Bardziej szczegółowo

Geometria Różniczkowa II wykład dziesiąty

Geometria Różniczkowa II wykład dziesiąty Geometria Różniczkowa II wykła ziesiąty Wykła ziesiąty rozpoczyna serię wykłaów poświęconych geometrii symplektycznej. Zajmować się bęziemy głównie zastosowaniami geometrii symplektycznej w mechanice,

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

Dyskretyzacja równań różniczkowych Matlab

Dyskretyzacja równań różniczkowych Matlab Akaemia Morska w Gyni Katera Automatyki Okrętowej Teoria sterowania Mirosław Tomera Można zaprojektować ukła sterowania ciągłego i zaimplementować go w ukłaach sterowania cyfrowego stosując metoy aproksymacji

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

UZUPEŁNIA UCZEŃ PESEL

UZUPEŁNIA UCZEŃ PESEL Arkusz zawiera informacje prawnie chronione do momenu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUEŁNIA UCZEŃ ESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ

Bardziej szczegółowo

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy

Bardziej szczegółowo

16. CHARAKTERYSTYKI CZASOWE UKŁADÓW SLS

16. CHARAKTERYSTYKI CZASOWE UKŁADÓW SLS OBWODY I SYGNAŁY Wykła 6 : Carakeryyki czaowe ukłaów SS 6. CHAATEYSTYI CZASOWE UŁADÓW SS 6.. SPOT FUNCJI A) DEFINICJA Niec ane bęą wie unkcje () i () całkowalne w każym przeziale (, ),

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści LOKALNA ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW. Deinicja. Okna 3. ransormacja Gabora Spis reści Analiza czasoo-częsoliościoa sygnału moy Ampliuda.. andrzej 35_m.av -. 3 4 5 6 7 8 9 D 4. 3.5 D 3. DW D3 D4.5..5

Bardziej szczegółowo

LVII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LVII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA Zaanie 1 Na poziome płaszczyźnie znaue sie enorony, cienki, początkowo nieruchomy krążek o promieniu R i masie M. W chwili t 0 = 0 z punktu P na te płaszczyźnie, oległego o o śroka krążka S, est wystrzeliwany

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera 3.10.2004 4. Równanie Schröingera 52 Rozział 4 Równanie Schröingera Równanie Schröingera jest postulatem mechaniki kwantowej określającym tzw. ynamikę. Zaaje ono (przy opowienio obranym warunku początkowym)

Bardziej szczegółowo

W3. PRZEKSZTAŁTNIKI SIECIOWE 2 ( AC/DC;)

W3. PRZEKSZTAŁTNIKI SIECIOWE 2 ( AC/DC;) W3. PRZEKSZTAŁTNK SECOWE ( AC/DC;) PROSTOWNK STEROWANE [L: str 17-154], [L6: str 10-160] (prostowniki tyrystorowe sterowane fazowo) Postawowe cechy prostowników - kryteria poziału - liczba faz - liczba

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Rozdział 8: Podstawowe zadania geodezyjne z rachunku współrzędnych

Rozdział 8: Podstawowe zadania geodezyjne z rachunku współrzędnych 183 Rozział 8: ostawowe zaania geoezyjne z rachunku współrzęnych 8.1. Orientacja pomiarów geoezyjnych W rozziale 1 przestawiliśmy krótką charakterystykę ukłaów współrzęnych stosowanych w geoezji, w tym

Bardziej szczegółowo