Analityczne metody kinematyki mechanizmów
|
|
- Teodor Janiszewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier mechanism) zworook przeguowy (four ar linkage) Mechanizm jarzmowy 5 Orót i przesunięcie mechanizmu 6 Współrzęne opisujące położenia ogniw pary kinematycznej Rysunek Para orotowa i para przesuwna Położenie ogniwa orotowego jest opisane kątem położenie suwaka na jarzmie (lu w prowanicy) w parze przesuwnej jest opisane oległością omierzaną o charakterystycznego węzła W celu ujenolicenia zapisu wektorów przyjmujemy że kąt jest oatni jeżeli jest omierzany przeciwnie o ruchu wskazówek zegara o oatniego kierunku osi poziomej o ogniwa Kąt ujemny 0 0 omierzany jest zgonie z ruchem wskazówek zegara np α 90 jest równoważny α 70 Kąt jest wprowazany w tym węźle ogniwa który jest punktem początkowym wektora opisującego to ogniwo w równaniu zamkniętej pętli Rysunek Ilustracja kierunku omierzania oatniego i ujemnego kąta
2 Mechanizm korowo-wozikowy (crank-slier mechanism) J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Rysunek Mechanizm korowo-wozikowy Analiza geometryczna mechanizmu korowo-wozikowego Dane są wymiary ogniw a e kąt określający położenie kory θ oraz prękość kątowa ω oraz przyspieszenie kątowe ε kory Dla wyznaczenia położenia suwaka wprowazono oległość s ( a la łącznika kąt θ Równaniami wyjściowymi są równania wektorowe O A O B + BA [ a cosθ a] [ s( e] + [ cosθ ] Które zapiszemy w postaci algeraicznej a cosθ cos s θ a e jθ jθ j0 Opowieni zapis zespolony miały postać ae e + ee + se i po rozzieleniu części rzeczywistej oraz urojonej prowaziły o tego samego ukłau równań Rozwiązaniami są j gzie oraz M ± M 4LN s L L ; M acosθ ; N a ae + e acosθ s a e cosθ Możliwe są wie konfiguracje la owolnego położenia kory Analiza kinematyczna Rysunek 4 Dwa rozwiązania położeń ogniw iernych mechanizmu korowo-wozikowego j j θ jθ j0 Prękości: ae ( e + ee + se ) t t Po oliczeniu pochonej równania wektorowego lu równania zapisanego za pomocą licz zespolonych otrzymamy ukła wóch równań algeraicznych z którego wyznaczymy
3 prękość kątową łącznika s prękość suwaka aω + ω t ω J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów a cosθ ω cosθ j j θ jθ j0 Przyspieszenia: ae ( e + ee + se ) t t Po oliczeniu rugiej pochonej równania wektorowego lu równania zapisanego za pomocą licz zespolonych otrzymamy ukła wóch równań algeraicznych z którego wyznaczymy a ε cosθ aω + ω przyspieszenie kątowe łącznika ε cosθ s przyspieszenie suwaka ε + ω cosθ aε aω cosθ t zworook przeguowy (four ar linkage) Rysunek 5 zworook przeguowy Wewnętrzny poział czworooku przeguowy (four ar linkage): - I klasa suma najmniejszego i największego wymiaru jest mniejsza lu równa sumie pozostałych wymiarów - II klasa nie zachozi warunek powyższy Mechanizm I klasy - napęzające ogniwo to ogniwo najkrótsze mechanizm korowo wahaczowy - ogniwo nieruchome jest najkrótsze mechanizm wukorowy - w przeciwnym wypaku mamy mechanizm wuwahaczowy Mechanizm II klasy jest zawsze wuwahaczowy Np a 48 cm; 58cm; c 46cm; 4cm < Mechanizm I klasy najkrótsze ogniwo nieruchome mechanizm wukorowy Analiza geometryczna mechanizmu czworooku przeguowego Dane są ługości ogniw a c kąt określający położenie kory θ oraz prękość kątowa ω oraz przyspieszenie kątowe ε kory Dla wyznaczenia położenia łącznika oraz wahacza wprowazono kąty θ θ Równaniami wyjściowymi są równania wektoroweo A + AB O + B (opowienia postać zespolona jθ jθ j( + θ ) j ae + e + ce + e 0 ) Które w postaci algeraicznej przyjmuje postać [ a cosθ a] + [ cosθ ] [ 0] + [ ccosθ c ]
4 J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów 4 To aje równania algeraiczne a cosθ + cosθ ccosθ + a + c Po przekształceniach otrzymuje się zależności K cosθ K cosθ + K cos( θ θ) K 4 cosθ + K cosθ + K5 cos( θ θ) gzie: K a oraz kąty K c K a + c + ac K 4 K 5 a + c a B ± B 4A E ± E 4DF θ arctg θ arctg A D W których oznaczono A cosθ + K K K cosθ B K + K ( + K) cosθ D cosθ + K5 K + K4 cosθ E F K + K5 + ( K4 ) cosθ Możliwe są wie konfiguracje la owolnego położenia kory Rysunek 6 Dwa rozwiązania położeń ogniw iernych czworooku przeguowego Powtarzając czynności jak la mechanizmu korowo wozikowego olicza się jθ prękości kątowe ( jθ + jθ j ae e + ce + e ) 0 t aω sin( θ θ) aω sin( θ θ) ω ω sin( θ θ ) c sin( θ θ ) jθ jθ oraz przyspieszenia kątowe ( jθ j ae + e + ce + e ) 0 t ' D' A' F' ' E' B' F' ε ε A' E' B' D' A' E' B' D' w których oznaczono A ' c B ' ' aε + aω cosθ + ω cosθ cω cosθ D ' ccosθ E ' cosθ F ' aε cosθ aω ω + cω
5 J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów 5 Mechanizm jarzmowy Rysunek 7 Analizowany mechanizm jarzmowy Analiza geometryczna mechanizmu jarzmowego Dane są ługości ogniw a c kąt AB kąt określający położenie kory θ oraz prękość kątowa ω oraz przyspieszenie kątowe ε kory Dla wyznaczenia położenia jarzma oraz wahacza wprowazono kąty θ θ Położenie suwaka B na jarzmie określa wymiar Wyjściowym równaniem wektorowym jest równanie postaci jθ jθ [ a cosθ a] [ 0] + [ ccosθ c ] + [ ( cosθ ( ] ( ae ( e jθ + ce j0 + e ) Mięzy szukanymi kątami istnieje zależność θ θ + To aje wa równania algeraiczne a cosθ + ccosθ + ( cosθ a c + ( a c z których wyznacza się θ B'' ± arctg A B'' 4A'' '' '' gzie: A' ' c acosθ B '' a ' ' acosθ c Postępując analogicznie jak wóch pierwszych mechanizmów wyznacza się prękości i przyspieszenia ogniw jθ jθ jθ j0 Prękości ae ( ( e + ce + e ) t t aω Prękość suwaka wzglęem jarzma ( cos( θ θ) + csin( θ θ )) t aω Prękość kątowa wahacza i jarzma ω sin( θ θ) jθ jθ jθ j0 Przyspieszenia ae ( ( e + ce + e ) t t E B F Przyspieszenie suwaka wzglęem jarzma t A E B D A F D Przyspieszenie kątowe wahacza i jarzma ε A E B D A B cosθ + c aε + aω cosθ + ω cω cosθ ω cosθ D cosθ E + ccosθ F aε cosθ aω + ω cosθ + cω + ω
6 J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów 6 Orót i przesunięcie mechanizmu Jeżeli mechanizm jest orócony lu przesunięty wzglęem położenia pokazanego na schemacie korzystamy ze wzorów wyprowazonych powyżej Współrzęne punktów mechanizmu wyznacza się ze wzorów transformacyjnych Omówimy to na przykłazie czworooku przeguowego który jest poparty w taki sposó że oś łącząca punkty poparcia A i D tworzy z poziomem kąt γ Wtey kąty opisujące położenia ogniw są omierzane o tej osi o ogniwa i oliczane z wyprowazonych wzorów Punkt łącznika o współrzęnych ( x y) x acosθ + L cos( θ + α ) y a + L sin( θ + α ) zostaje orócony o kąt γ wzglęem początku ukłau współrzęnych Współrzęne punktu prze orotem i po orocie można wyrazić za pomocą współrzęnych iegunowych x r cosθ y r x ' r cos( θ + γ ) r cosθ cosγ r sinγ x cosγ y sinγ y ' r sin( θ + γ ) r cosγ + r cosθ sinγ y cosγ + x sinγ Gy węzeł O ma współrzęne (a) mechanizm należy przesunąć o wektor [ a ] Punkt ęzie miał współrzęne: x '' a + x ' y '' + y ' Rysunek 8 Krzywa łącznikowa po orocie czworooku o kąt γ
KO OF Szczecin:
XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr
i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015
WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Zadania kinematyki mechanizmów
Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki
Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same
Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2
Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12
Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara
Zadania kinematyki mechanizmów
Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Przekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
GAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
A. ZałoŜenia projektowo konstrukcyjne
Projekt przekłani pasowej ZADANIE KONSTRUKCYJNE Zaanie polega na opracowaniu konstrukcji przekłani pasowej przenoszącej moment obrotowy z wałka silnika na wał napęowy zespołu obrabiarki. A. ZałoŜenia projektowo
Ćwiczenie 7. Zasady przygotowania schematów zastępczych do analizy stanów ustalonych obliczenia indywidualne
Laboratorium Pracy ystemów Elektroenergetycznych stuia T 017/18 Ćwiczenie 7 Zasay przygotowania schematów zastępczych o analizy stanów ustalonych obliczenia inywiualne Cel ćwiczenia Celem ćwiczenia jest
Ćwiczenie 9. Zasady przygotowania schematów zastępczych do analizy układu generator sieć sztywna obliczenia indywidualne
Ćwiczenie 9 Zasay przygotowania schematów zastępczych o analizy ukłau generator sieć sztywna obliczenia inywiualne Cel ćwiczenia Przeprowazenie obliczeń parametrów ukłau generator - sieć sztywna weryfikacja
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0
WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego
Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
Projektowanie Systemów Elektromechanicznych. Wykład 3 Przekładnie
Projektowanie Systemów Elektromechanicznych Wykła 3 Przekłanie Zębate: Proste; Złożone; Ślimakowe; Planetarne. Cięgnowe: Pasowe; Łańcuchowe; Linowe. Przekłanie Przekłanie Hyrauliczne: Hyrostatyczne; Hyrokinetyczne
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Z poprzedniego wykładu:
Z poprzedniego wykładu: Człon: Ciało stałe posiadające możliwość poruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stopni swobody) Niższe i wyższe pary
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
2.12. Zadania odwrotne kinematyki
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.12. Zadania odwrotne kinematyki Określenie zadania odwrotnego kinematyki T 0 N = [ ] n s a p = r 11 r 12 r 13 p x r 21 r 22 r 23
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz
Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii
Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH.
Podstawy modeowania i syntezy mechanizmów. CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH. Charakterystyki kinematyczne to zapis parametrów ruchu
dopuszczalna prędkość zmiany przyspieszenia na krzywej przejściowej dopuszczalne przyśpieszenie niezrównoważone dla pociągów pasażerskich
Oznaczenia : V max V t f op φ op maksymalna prękość (pąciągi pasażerskie) km maksymalna prękość (pąciągi towarowe) h opuszczalna prękość ponoszenia się koła po rampie przechyłkowej opuszczalna prękość
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 1 Badanie kinematyki czworoboku przegubowego metodą analitycznonumeryczną. 1 Cel ćwiczenia Celem ćwiczenia jest
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Funkcja liniowa i prosta podsumowanie
Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
2.9. Kinematyka typowych struktur manipulatorów
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu
Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 1 Badanie kinematyki czworoboku przegubowego metodą analitycznonumeryczną. 1 Cel ćwiczenia Celem ćwiczenia jest
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Manipulatory i roboty mobilne AR S1 semestr 5
Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
W3. PRZEKSZTAŁTNIKI SIECIOWE 2 ( AC/DC;)
W3. PRZEKSZTAŁTNK SECOWE ( AC/DC;) PROSTOWNK STEROWANE [L: str 17-154], [L6: str 10-160] (prostowniki tyrystorowe sterowane fazowo) Postawowe cechy prostowników - kryteria poziału - liczba faz - liczba
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Z poprzedniego wykładu:
Z orzedniego wykładu: Człon: Ciało stałe osiadające możliwość oruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stoni swobody) Niższe i wyższe ary kinematyczne
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
II. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
Praca domowa - seria 2
Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =
Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI
UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Położenia, kierunki, płaszczyzny
Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia)
Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert, Z. Skoczylas, Analiza Matematyczna 1. Przykłady i zadania, GiS 2008) 4 Pochodne
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
1. K 5 Ruch postępowy i obrotowy ciała sztywnego
1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości
Podstawy robotyki Wykład V Jakobian manipulatora i osobliwości Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Metoda bezpośrednia uzyskania macierzy
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
Zadania zamknięte (0- pkt) Zadanie Jeżeli a = log 6 to a jest równe: 4 A. B. C. - Zadanie Warunek x ; 8 jest rozwiązaniem nierówności: A. x + 5 > B. x 5 C. x 5 x + 5 Zadanie Wskaż warunek, który opisuje
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej