Przekształcenie całkowe Fouriera

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przekształcenie całkowe Fouriera"

Transkrypt

1 Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy czym la n =,,... a + n= a n = b n = a = ( a n cos nπt f(t) t, f(t) cos nπt f(t) sin nπt + b n sin nπt ) Dokonując prostych przekształceń trygonometrycznych możemy szereg () przestawić w postaci zespolonej [ c n exp i nπt ] () n= gzie c n = [ f(t) exp i nπt ] t, n =, ±, ±,... Jeżeli jest okresem funkcji f, to powyższy wzór można przekształcić o postaci Przykła c n = t, t. [ f(t) exp i nπt ] t, n =, ±, ±,... Rozwinąć w szereg zespolony Fouriera funkcję okresową u(t) = la t = t la < t < T T () la t = T u(t) = u(t + T ), t R która przestawia napięcie półkształtne wytwarzane w tzw. generatorach postawy czasu. Napięcie takie może służyć o okresowego ochylania wiązki elektronów paającej na wewnętrzną stronę ekranu telewizora. Mamy tutaj = T, stą π = π = ϖ, gzie ϖ jest pulsacją analizowanego T napiecia okresowego.

2 Korzystając ze wzorów na współczynniki c n mamy kolejno Stą c n = T T T c n = c = T T T t t = t exp [ i nϖt] t =, n = ±, ±,... iϖt n la n = i nπ la n = ±, ±,... Szukane rozwinięcie jest więc następujące u(t) = + n= (n ) i nπ exp [i nϖt] Definicja Ciąg liczb {A n }, n =, ±, ±,..., gzie A n = c n nazywamy wimem amplituowym funkcji okresowej u(t) = c n exp [i nϖt] n= Definicja Ciąg liczb {φ n }, n =, ±, ±,..., gzie arg c n gy Im c n φ n = gy c n π sgn n gy c n < nazywamy wimem fazowym funkcji okresowej u(t) = n= c n exp [i nϖt] Symbol arg c n oznacza argument główny liczby c n, a więc π < arg c n π. Przykła Wyznaczymy wimo amplituowe i fazowe napięcia półkształtnego z poprzeniego przykłau. Z uwagi na rozwinięcie tej funkcji mamy A n = Wzór całkowy Fouriera la n = la n = ±, ±,... π n φ n = π sgn n n =, ±, ±,... Poamy teraz twierzenie Fouriera Twierzenie Jeżeli funkcja f spełnia warunki Dirichleta w każym przeziale skończonym, a ponato całka f(t) t

3 jest bezwzglęnie zbieżna, to π Całkę w powyższym wzorze rozumiemy nastepująco π [ f(τ) cos (t τ) τ t R (3) f(τ) cos (t τ) τ ] Korzystając z wzoru na cosinus różnicy kątów wzór (3) możemy zapisać w postaci gzie funkcje a i b są określone wzorami [ a() cos t + b() t ] (4) a() = π f(τ) cos τ τ (5) b() = f(τ) τ τ (6) π Całkę po prawej stronie równości (4) nazywamy całką Fouriera. Na postawie wzorów (5) i (6) można stwierzić, że funkcja a jest parzysta, a funkcja b - nieparzysta. Jeżeli f jest funkcją parzystą, to b() =, Jeżeli f jest funkcją nieparzystą, to a() =, a() = π b() = π f(τ) cos τ τ a() cos t (7) f(τ) τ τ a() t (8) Wzór (7) nazywamy cosinusowym wzorem całkowym Fouriera, a wzór (8) - sinusowym wzorem całkowym Fouriera. Przykła Przestawimy za pomocą wzoru całkowego Fouriera funkcję la t < la t = la t > Ponieważ poana funkcja jest parzysta, więc b() = a() = π f(τ) cos τ τ = π Postawiając obliczoną wartość a() o wzoru (7), otrzymujemy π 3 cos τ τ = π cos t

4 Równość ta stanowi przestawienie poanej funkcji za pomocą cosinusowego wzoru całkowego Fouriera. waga Porównując otrzymany wzór całkowy z wzorem poanej funkcji możemy zapisać a więc na przykła la t = otrzymamy cos t = = π π la t < π la t = 4 la t > Poobnie jak w zastosowaniach szeregów Fouriera, zachozi niekiey potrzeba przestawienia za pomocą całki Fouriera funkcji, która jest określona jeynie la oatnich wartości argumentu. Często zarza się, że nasze żąania są barziej sprecyzowane: chcemy przestawić funkcję f za pomocą cosinusowego wzoru całkowego Fouriera, wtey przełużamy funkcję w sposób parzysty f( t) la t < f(+) la t = f(t) la t > bąź za pomocą sinusowego wzoru całkowego Fouriera, wtey przełużamy funkcję w sposób nieparzysty f( t) la t < la t = Przykła Przestawimy funkcję f(t) la t > { t la t (, ] la t (, ) za pomocą cosinusowego, a następnie sinusowego wzoru całkowego Fouriera. W pierwszym przypaku przełużamy funkcję w sposób parzysty la t (, ) + t la t [, ) la t = t la t (, ] la t (, ) Mamy b() = a() = π ( τ) cos τ τ = π ską otrzymujemy cosinusowy wzór całkowy Fouriera π cos cos cos t t > 4

5 W rugim przypaku przełużamy funkcję w sposób nieparzysty la t (, ) t la t [, ) la t = t la t (, ] la t (, ) Mamy a() = b() = π ską otrzymujemy sinusowy wzór całkowy Fouriera π ( τ) τ τ = π t t > 3 Postać zespolona wzoru całkowego Fouriera Wzór całkowy Fouriera w postaci zespolonej jest następujący gzie c() = π Zgonie ze wzorem Eulera mamy c() exp [it] (9) f(τ) exp [ iτ] τ exp [ iτ] = cos τ i τ można wyrazić c() przez a() i b() określone wzorami opowienio (5) i (6) Przykła c() = a() i b() Przestawimy za pomocą wzoru całkowego Fouriera w postaci zespolonej funkcję la t < la t = la t > Ponieważ poana funkcja jest parzysta, więc b() = Wobec tego mamy a() = π f(τ) cos τ τ = π π c() = π cos τ τ = π exp [it] 5

6 4 Przekształcenie całkowe Fouriera Rozważmy wzór całkowy Fouriera w postaci zespolonej (9). Jeśli wprowazimy oznaczenie F (i) = exp[ it]f(t) t () to wzór (9) można zapisać w postaci π exp[it]f (i) () Wzór () przyporząkowuje funkcji f zmiennej rzeczywistej t funkcję F zmiennej urojonej i. Przyporząkowanie to nazywa się przekształceniem Fouriera funkci f i oznacza sie symbolem F: F (i) = F [f(t)] () Funkcja f nazywa się transformatą Fouriera funkcji f. Wzór () określa owrotne przekształcenie Fouriera, które funkcji F zmiennej urojonej i przyporząkowuje funkcję f zmiennej rzeczywistej t. Przekształcenie to znaczamy symbolem F, więc F [F (i)] (3) Przykła Obliczyć transformatę Fouriera funkcji t la t < sgn t la t = la t > Mamy F (i) = t e it t = t cos t t i t t t Część rzeczywista obliczanej transformaty jest równa zeru z uwagi na nieparzystość funkcji t cos t, natomiast część urojona jest równa t t t = t t t = cos + stą F (i) = i ( cos ) 4. Własności przekształcenia Fouriera. liniowość przekształcenia F gzie λ, λ R F [λ f (t) + λ f (t)] = λ F [f (t)] + λ F [f (t)] 6

7 . pochona F-transformaty 3. przesunięcie argumentu funkcji k F (i) k = ( i) k F [ t k f(t) ] k =,,..., n F [f(t t )] = e it F [f(t)] t R 4. przesunięcie argumentu transformaty F [ e i t f(t) ] = F (j( )) R 5. F-transformata pochonej jeżeli pochone f (k), k =,,,..., n spełniają warunki to lim f (k) (t) = t lim f (k) (t) = t + F [ f (n) (t) ] = (i) n F [f(t)] 4. Cosinusowe i sinusowe przekształcenie Fouriera Wzór określa cosinusowe, a wzór F c () = F s () = sinusowe przekształcenie Fouriera. Przykła Niech e αt, α >, t (, ). Wtey F c () = F s () = f(t) cos t t (4) f(t) t t (5) e αt cos t t = e αt t t = Można sprawzić, że jeżeli funkcja f jest parzysta, to a jeżeli f jest nieparzysta, to Wzór określa owrotne cosinusowe, a wzór π F (i) = F c () F (i) = if s () α α + α + F c () cos t (6) π owrotne sinusowe przekształcenie Fouriera. F s () t (7) 7

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

Relacje Kramersa Kroniga

Relacje Kramersa Kroniga Relacje Kramersa Kroniga Relacje Kramersa-Kroniga wiążą ze sobą część rzeczywistą i urojoną każej funkcji, która jest analityczna w górnej półpłaszczyźnie zmiennej zespolonej. Pozwalają na otrzymanie części

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

Wielomiany Hermite a i ich własności

Wielomiany Hermite a i ich własności 3.10.2004 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x)

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

TRANSFORMATA FOURIERA

TRANSFORMATA FOURIERA TRANSFORMATA FOURIERA. Wzór całkowy Fouriera Wzór ten wykorzystujemy do analizy funkcji nieokresowych; funkcje te mogą opisywać np.przebiegi eleektryczne. Najpierw sformułujmy tzw. warunki Dirichleta.

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 7 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 7 1 / 11 Reprezentacja

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych. Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17 41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m

Bardziej szczegółowo

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej. 1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 2 Definicja funkcji przypomnienie Definicja Dla danych dwóch niepustych zbiorów X, Y przypisanie każdemu elementowi zbioru X dokładnie jednego elementu

Bardziej szczegółowo

Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę

Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę MATEMATYKA Lista 1 1. Zbadać liniową niezależność wektorów. (a) (1, 2, 3), (3, 4, 5), V = R 3 ; (b) (1, 2, 3), (3, 2, 1), (1, 1, 1), V = R 3 ; (c) (1, 0, 0, 0), ( 1, 1, 0, 0), (1, 1, 1, 0), ( 1, 1 1, 1),

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

1 Postulaty mechaniki kwantowej

1 Postulaty mechaniki kwantowej 1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 6 Transformata Laplace a Funkcje specjalne Przekształcenia całkowe W wielu zastosowaniach dużą rolę odgrywają tzw. przekształcenia całkowe

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Ważny przykład oscylator harmoniczny

Ważny przykład oscylator harmoniczny 6.03.00 6. Ważny przykła oscylator harmoniczny 73 Rozział 6 Ważny przykła oscylator harmoniczny 6. Wprowazenie Klasyczny, jenowymiarowy oscylator harmoniczny opowiaa potencjałowi energii potencjalnej:

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda Chemia teoretyczna Postulaty mechaniki kwantowej Katarzyna Kowalska-Szoja Spis treści 1 Postulaty mechaniki kwantowej 2 1.1 Postulat pierwszy.......................... 2 1.2 Postulat rugi.............................

Bardziej szczegółowo

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty momenty Oprócz omówionych już do tej pory charakterystyk rozkładów bardzo wygodnym i skutecznym narzędziem badanie zmiennej losowej są tzw. transformaty jej rozkładu: funkcje tworzące i funkcje charakterystyczne.

Bardziej szczegółowo

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie

Bardziej szczegółowo

Algebra liniowa i geometria analityczna. Autorzy: Agnieszka Kowalik Michał Góra

Algebra liniowa i geometria analityczna. Autorzy: Agnieszka Kowalik Michał Góra Algebra liniowa i geometria analityczna Autorzy: Agnieszka Kowalik Michał Góra 9 Spis treści Liczby zespolone Postać algebraiczna liczby zespolonej Moduł i argument liczby zespolonej Postać trygonometryczna

Bardziej szczegółowo

SZEREG TRYGONOMETRYCZNY FOURIERA

SZEREG TRYGONOMETRYCZNY FOURIERA SZEREG TRYGONOMETRYCZNY FOURIERA Rozważmy ciag funkcji: 1, cos πx πx 2πx, sin, cos, sin 2πx,..., cos nπx, sin nπx,...}, gdzie jest pewną iczbą dodatnią. Zauważmy, że na przedziae , da dowonych dwóch

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

ROZDZIAŁ 5. Renty życiowe

ROZDZIAŁ 5. Renty życiowe ROZDZIAŁ 5 Renty życiowe Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy czy osoba której przyszły czas

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2.2B (2017/18)

ANALIZA MATEMATYCZNA 2.2B (2017/18) ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo