Wielomiany Hermite a i ich własności
|
|
- Bogna Nowicka
- 7 lat temu
- Przeglądów:
Transkrypt
1 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x) = ( 1) n e x2 x n e x2, który pozwala konstruktywnie obliczać kolejne wielomiany. I tak mamy (B.1) H 0 (x) = 1, H 1 (x) = 2x, H 2 (x) = 4x 2 2, H 3 (x) = 8x 3 12x, H 4 (x) = 16x 4 48x (B.2) Wiać więc, że wielomiany Hermite a stopnia parzystego n = 2k zawierają tylko parzyste potęgi argumentu są funkcjami parzystymi. Gy zaś n = 2k + 1, to H n (ξ) są nieparzyste. Można inaczej efiniować wielomiany Hermite a, a potem inaczej wyprowazać ich własności. Wybór efinicji jest jenak sprawą "smaku matematycznego". Zanim przejziemy o alszej yskusji, zauważmy, że zachozi następująca relacja n x n e (s x)2 = ( 1) n n e (s x)2, (B.3) która wynika z zasa różniczkowania funkcji złożonej. Zresztą łatwo jest przeprowazić owó tej relacji metoą inukcji. Zastosujmy więc (B.3) o wzoru Roriguesa H n (x) = ( 1) n e x2 n x n e (s x)2 s=0 = e x2 n e (s x)2 s=0 = n +2sx e s2 s=0. (B.4) Przypomnijmy teraz, że funkcję zmiennej s można zapisać w postaci rozwinięcia w szereg Taylora F (s) = ( n ) F (s) s=0. (B.5) Rozwinięcie to możemy zastosować o funkcji F (s) = e s2 +2sx pisząc e s2 +2sx = ( n ) +2sx e s2, (B.6) s=0 S.Kryszewski MECHANIKA KWANTOWA 4
2 Do. mat. B. Wielomiany Hermite a i ich własności 5 ską, po postawieniu wyrażenia (B.4), otrzymamy e s2 +2sx = H n(x). (B.7) Funkcję stojącą po prawej nazwiemy funkcją tworzącą wielomianów Hermite a. Wzór Roriguesa efiniujący H n (x) jest równoważny efinicji (B.7) przez funkcję tworzącą. B.2 Relacje rekurencyjne i równanie różniczkowe Hermite a Szereg związków pomięzy wielomianami Hermite a ujmiemy w postaci krótkich twierzeń. Lemat B.1 Wielomiany Hermite a spełniają relację rekurencyjną H n+1 (x) = 2xH n (x) x H n(x). (B.8) Dowó. Różniczkując obustronnie wzór Roriguesa (B.1) mamy x H n(x) = ( 1) n (e n ) x2 x x n e x2 [ = ( 1) n 2xe n ] x2 x n e x2 x2 n+1 + e e x2 xn+! = 2xH n (x) H n+1 (x). (B.9) Po elementarnym przekształceniu mamy więc tezę. Lemat B.2 Pochona z wielomianu Hermite a wyraża się wzorem x H n(x) = 2nH n 1 (x). (B.10) Dowó. Definicję funkcji tworzącej (B.7) różniczkujemy obustronnie wzglęem x x e s2 +2sx = 2s e s2 +2sx = x H n(x), (B.11) gzie wyraz n = 0 po prawej znika, ponieważ H 0 (x) = 1. Ponownie stosując (B.7) mamy 2 s k+1 k! H k (x) = x H n(x). (B.12) Po lewej zamieniamy ineks sumowania k n = k + 1, przy czym n = 1, 2, lots i otrzymujemy 2 (n 1)! H n 1(x) = x H n(x). (B.13) Współczynniki przy tych samych potęgach zmiennej s muszą być równe, wobec tego 2 (n 1)! H n 1(x) = 1 x H n(x). (B.14) Po uproszczeniu ostajemy tezę. S.Kryszewski MECHANIKA KWANTOWA 5
3 Do. mat. B. Wielomiany Hermite a i ich własności 6 Lemat B.3 Wielomiany Hermite a spełniają relację rekurencyjną H n+1 (x) = 2xH n (x) 2nH n 1 (x). (B.15) Dowó. Teza wynika z postawienia wzoru (B.10) o relacji rekurencyjnej (B.8). Twierzenie B.1 Wielomiany Hermite a spełniają równanie różniczkowe (tzw. równanie Hermite a) 2 x 2 H n(x) 2x x H n(x) + 2n H n (x) = 0. (B.16) Dowó. Weźmy relację rekurencyjną (B.8) i zróżniczkujmy x H n+1(x) = 2H n (x) + 2x x H n(x) 2 x 2 H n(x). Stą wynika 2 x 2 H n(x) 2x x H n(x) 2 H n (x) = x H n+1(x). (B.17) (B.18) Do wyrażenia po prawej stronie stosujemy relację (B.10) otrzymując 2 x 2 H n(x) 2x x H n(x) 2 H n (x) = 2(n + 1)H n (x). (B.19) Po uproszczeniu mamy tezę. B.3 Całki z wielomianami Hermite a Wielomiany Hermite a wchozą o wielu całek spotykanych przy rozwiązywaniu różnoronych zaganień fizycznych. W tym rozziale skupimy się na przestawieniu metoy obliczania następujących całek I (p) = y H k (y) H n (y) y p e y2. (B.20) Posłużymy się funkcją tworzącą wielomianów Hermite a i zbaamy całkę pomocniczą J(s, t, a) = y e s2 +2sy e t2 +2ty e 2ay y2. (B.21) Przestawiając funkcje wykłanicze za pomocą ich rozwinięć ostajemy J(s, t, a) = = = y p=0 p=0 s k k! H k(y) (2a) p k! p! (2a) p k! p! t n H n(y) I (p). (2a) p y p e y2 p! p=0 y H k (y) H n (y) y p e y2 (B.22) S.Kryszewski MECHANIKA KWANTOWA 6
4 Do. mat. B. Wielomiany Hermite a i ich własności 7 Trzeba więc obliczyć całkę J, a następnie wynik rozwinąć w szereg. Porównując współczynniki rozwinięć przy opowienich potęgach parametrów s, t oraz a możemy później oczytać wartości całek I (p). Przee wszystkim więc trzeba obliczyć całkę J. Wychoząc z określenia (B.21) J(s, t, a) = e s2 t 2 y e y2 +2y(s+t+a) = e s2 t 2 +(s+t+a) 2 y e y2 +2y(s+t+a) (s+t+a) 2 = e s2 t 2 +(s+t+a) 2 y exp{ [y (s + t + a)] 2 } (B.23) Biorąc nową zmienną całkowania z = y (s + t + a), sprowazamy pozostałą całkę o postaci "tablicowej" i otrzymujemy J(s, t, a) = e s2 t 2 +(s+t+a) 2 z e z2 e a2 +2st+2sa+2ta (B.24) Uzyskane la całki J wyrażenie rozwijamy w szereg J(s, t, a) (a 2 + 2st + 2sa + 2ta) m [2st + (a 2 + 2sa + 2ta)] m 1 m l=0 ( ) m (2st ) l ( a 2 + 2sa + 2ta ) m l, (B.25) l gzie w ostatnim kroku skorzystaliśmy z rozwinięcia wumianowego. Zestawmy teraz rozwinięcia (B.22) i (B.25) całki pomocniczej J p=0 (2a) p k! p! I (p) = π m l=0 ( ) m (2st ) l ( a 2 + 2sa + 2ta ) m l. (B.26) l Możnaby alej ciągnąć ogólne rozważania i starać się porównywać współczynniki rozwinięć po obu stronach. Takie ogólne rachunki są jenak ość skomplikowane, poprzestaniemy więc na szczegółowym omówieniu wóch przypaków szczególnych. Przypaek p = 0 Przypaek opowiaa całce = y H k (y) H n (y) e y2, (B.27) czyli tzw. całce ortogonalizacyjnej wielomianów Hermite a. W tym przypaku (p = 0), po lewej stronie wzoru (B.26) interesują nas jeynie te człony rozwinięcia, w których nie występuje parametr a. Wobec tego parametr ten nie może również występować w opowienich członach po stronie prawej. Możliwe to jest jeynie w tych wyrazach, w których m = l. Symbol wumianowy aje wówczas 1 i możemy napisać k! I(0) = π ( 2st ) m (B.28) S.Kryszewski MECHANIKA KWANTOWA 7
5 Do. mat. B. Wielomiany Hermite a i ich własności 8 Po prawej parametry s i t występują w tej samej potęze, a zatem po lewej zostają jeynie te wyrazy, w których k = n. Oznacza to, że = I(0) nn δ, (B.29) biorąc to po uwagę, z (B.28) alej otrzymujemy t n π () 2 I(0) nn = 2 m s m t m. (B.30) Stą już bez truu oczytujemy wartość poszukiwanej całki nn = 2n π. (B.31) Łącząc formuły (B.27), (B.29) oraz (B.31) finalnie mamy = y H k (y) H n (y) e y2 = 2 n π δ, (B.32) co kończy obliczenia całki ortogonalizacyjnej wielomianów Hermite a. Przypaek p = 1 Baamy więc teraz całkę = y H k (y) H n (y) y e y2. (B.33) Tym razem w relacji (B.26) powinniśmy wyorębnić człony, w których p = 1, a więc z parametrem a w pierwszej potęze. A zatem po prawej także interesują nas skłanik w których występuje a = a 1. Człony takie opowiaają więc przypakowi, w którym m l = 1. Zauważmy przy tym, że człon m = 0 nie może ać wkłau, zatem możemy go pominąć, co więcej przyczynek o a 2 także jest nam niepotrzebnego więc i jego możemy także pominąć. W ten sposób, z (B.26) ostajemy 2a I(p) k! = m=1 π ( ) m 2a (2st) m 1 (s + t). m 1 (B.34) Czynnik 2a występujący po obu stronach się skraca, symbol wumianowy jest równy m. Wobec tego π k! I(p) = (m 1)! (2st)m 1 (s + t) m=1 2 m s m t m (s + t), (B.35) m gzie "przesunęliśmy" ineks sumacyjny. Rozpisując prawą stronę, gzie zamieniamy ineks sumowania, otrzymujemy k! I(1) = 2 k π k! ( s k+1 t k + s k t k+1) P. (B.36) Aby teraz oczytać współczynniki rozwinięcia, zajmiemy się opowienim przekształceniem prawej strony. P 2 k k! tk δ n,k+1 + π 2 k k! sk t n δ n,k+1 (B.37) S.Kryszewski MECHANIKA KWANTOWA 8
6 Do. mat. B. Wielomiany Hermite a i ich własności 9 W pierwszej sumie zamieniamy nazwy ineksów sumowania n k, otrzymując P 2 n tn s k δ k,n+1 + π k! (2 n k! δ k,n k δ n,k+1 ) 2 k k! sk t n δ n,k+1 (B.38) Ponieważ δ k,n+1 = δ n,k 1, więc przyrównując lewą stronę (B.36) i prawą (B.38) mamy poszukiwane współczynniki rozwinięcia. A zatem = y H k (y) H n (y) y e y2 = ) π (2 n k! δ n,k k δ n,k+1 = [ ] π 2 n (n + 1)! δ n,k n 1 δ n,k+1 gzie w rugiej linii skorzystaliśmy z własności elt Kroneckera. Całka "o końca". B.4 Inne sposoby obliczania całek Całka Ponownie zajmiemy się całką = y H k (y) H n (y) y e y2, (B.39) jest więc obliczona (B.40) ale teraz policzymy ją zupełnie inną metoą. Występujący w obliczanej całce czynnik y H n (y) wyrazimy za pomocą relacji rekurencyjnej (B.15), która pozwala napisać y H n (y) = 1 2 H n+1(y) + n H n 1 (y), (B.41) co po wstawieniu o (B.40) aje nam = y H k (y) ( 1 2 H n+1(y) + n H n 1 (y) ) e y2. (B.42) Całka ta jest złożona z wóch całek, przy czym każa z nich jest typu całki ortogonalizacyjnej (B.32). Wobec tego bez truu otrzymujemy [ 1 = 2 2k k! π δ k,n+1 + n 2 k k! ] π δ k,n 1. (B.43) Korzystając z własności elt Kroneckera otrzymujemy [ 2 n (n + 1)! δ n,k n 1 δ n,k+1 ]. (B.44) co kończy obliczenia całki, bowiem mamy rezultat ientyczny z wynikiem (B.39). Powyżej przestawione obliczenia za pomocą funkcji tworzącej są nieco barziej złożone niż te, w których korzystaliśmy z relacji rekurencyjnej la wielomianów Hermite a. Mimo to jenak, w wielu innych zastosowaniach, metoa funkcji tworzącej bywa niezwykle pożyteczna. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * S.Kryszewski MECHANIKA KWANTOWA 9
Harmoniki sferyczne. Dodatek C. C.1 Wprowadzenie. Całka normalizacyjna I p (n)
3.1.24 Do. mat. C. Harmoniki sferyczne 1 Doatek C Harmoniki sferyczne C.1 Wprowazenie Harmoniki sferyczne są funkcjami specjalnymi pojawiającymi się w wielu zaganieniach fizyki. W poręcznikach fizyki matematycznej
Ważny przykład oscylator harmoniczny
6.03.00 6. Ważny przykła oscylator harmoniczny 73 Rozział 6 Ważny przykła oscylator harmoniczny 6. Wprowazenie Klasyczny, jenowymiarowy oscylator harmoniczny opowiaa potencjałowi energii potencjalnej:
Wielomiany Legendre a, itp.
3.0.2004 Dod. mat. D. Wieomiany Legendre a, itp. 25 Dodatek D Wieomiany Legendre a, itp. Wieomiany Legendre a i stowarzyszone z nimi funkcje są szeroko omawiane w wieu podręcznikach fizyki matematycznej.
Przekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
Całka nieoznaczona, podstawowe wiadomości
Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
1 Całki funkcji wymiernych
Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...
R R. dt w 1 (t) w 2 (t), forma b Q przybiera postać. 175 f 3 f
WIELOMIANY LEGENDRE A DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA) R R Rozważmy przestrzeń wektorowa V := R [ ] [,] na ciałem R wielomiany owolnego stopnia na ocinku omkniȩtym [, ]), wyposażona w formȩ kwaratowa
(U.6) Oscylator harmoniczny
3.0.004 7. U.6 Oscylator harmoniczny 47 Rozdział 7 U.6 Oscylator harmoniczny 7. Rozwiązanie przez rozwinięcie w szereg W głównej części wykładu rozwiązanie zagadnienia własnego dla hamiltonianu kwantowo-mechanicznego
Matematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład / 6 Ortonormalne
Wielomiany Legendre a
grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane
Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek
Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy
Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,
Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,
Obliczenia Symboliczne
Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych
Wyk lad 3 Grupy cykliczne
Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
15 Potencjały sferycznie symetryczne
z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
ROZDZIAŁ 5. Renty życiowe
ROZDZIAŁ 5 Renty życiowe Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy czy osoba której przyszły czas
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
Weźmy wyrażenie. Pochodna tej funkcji wyniesie:. Teraz spróbujmy wrócić.
Po co nam całki? Autor Dariusz Kulma Całka, co to takiego? Nie jest łatwo w kilku słowach zdefiniować całkę. Najprościej można powiedzieć, że jest to pojęcie odwrotne do liczenia pochodnych, Mówimy czasami
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę:
Układy funkcji ortogonanych Ioczyn skaarny w przestrzeniach funkcji ciągłych W przestrzeni iniowej funkcji ciągłych na przedziae [a, b] można okreśić ioczyn skaarny jako następującą całkę: f, g = b a f(x)g(x)w(x)
Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.
1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną
Równanie Schrödingera
3.10.2004 4. Równanie Schröingera 52 Rozział 4 Równanie Schröingera Równanie Schröingera jest postulatem mechaniki kwantowej określającym tzw. ynamikę. Zaaje ono (przy opowienio obranym warunku początkowym)
Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................
1. Podstawowe pojęcia w wymianie ciepła
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Całki z funkcji trygonometrycznych. Autorzy: Tomasz Drwięga
Całki z funkcji trygonometrycznych Autorzy: Tomasz Drwięga 08 Całki z funkcji trygonometrycznych Autor: Tomasz Drwięga TWIERDZENIE Twierdzenie : o całkowaniu funkcji postaci R(sin x, cos x) Do obliczania
III. Wstęp: Elementarne równania i nierówności
III. Wstęp: Elementarne równania i nierówności Fryderyk Falniowski, Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie ryderyk Falniowski, Grzegorz Kosiorowski (Uniwersytet III. Wstęp: Ekonomiczny
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Wykład Pole magnetyczne, indukcja elektromagnetyczna
Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki
1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania
1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1.1 Podstawowe definicje Def. Funkcję F nazywamy funkcją pierwotną funkcji f, określonej w przedziale otwartym P (skończonym
O geometrii semialgebraicznej
Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań
Zaawansowane metody numeryczne
Wykład 6 Własności wielomianów ortogonalnych Wszystkie znane rodziny wielomianów ortogonalnych dzielą pewne wspólne cechy: 1) definicja za pomocą wzoru różniczkowego, jawnej sumy lub funkcji tworzącej;
3a. Wstęp: Elementarne równania i nierówności
3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania
Relacje Kramersa Kroniga
Relacje Kramersa Kroniga Relacje Kramersa-Kroniga wiążą ze sobą część rzeczywistą i urojoną każej funkcji, która jest analityczna w górnej półpłaszczyźnie zmiennej zespolonej. Pozwalają na otrzymanie części
Indukcja matematyczna
Indukcja matematyczna Zadanie 1 Wykazać, że dla dowolnego prawdziwa jest równość: Do obu stron założenia indukcyjnego należy dodać brakujący wyraz. Sprawdzamy prawdziwość równości (1) dla. Prawa strona:.
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład
Geometria Różniczkowa II wykład dziesiąty
Geometria Różniczkowa II wykła ziesiąty Wykła ziesiąty rozpoczyna serię wykłaów poświęconych geometrii symplektycznej. Zajmować się bęziemy głównie zastosowaniami geometrii symplektycznej w mechanice,
(U.5) Zasada nieoznaczoności
3.0.2004 26. (U.5) Zasaa nieoznaczoności 42 Rozział 26 (U.5) Zasaa nieoznaczoności 26. Pakiet falowy minimalizujący zasaę nieoznaczoności 26.. Wyprowazenie postaci pakietu Stan kwantowo-mechaniczny (lub
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
(U.13) Atom wodoropodobny
3.10.200 3. U.13 Atom wodoropodobny 122 Rozdział 3 U.13 Atom wodoropodobny 3.1 Model Bohra przypomnienie Zaznaczmy na wstępie o czym już wspominaliśmy w kontekście zasady nieoznaczoności, że model Bohra
CAŁKI NIEOZNACZONE C R}.
CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos
ROZWIĄZANIA I ODPOWIEDZI
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
jest więc blisko 2000 razy mniejsza niż masa nukleonu. Masa zredukowana elektronu w atomie 1 m e M
3.1.4 15. Atom wooropoobny 161 Rozział 15 Atom wooropoobny UWAGA : W rozziale tym traktujemy elektron jako cząstkę bezspinową. Innymi słowy, nie bierzemy po uwagę faktu, że elektron posiaa spin 1/. W alszych
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
1 Postulaty mechaniki kwantowej
1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27
Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim
x = cos θ. (13.13) P (x) = 0. (13.14) dx 1 x 2 Warto zauważyć, że miara całkowania w zmiennych sferycznych przyjmuje postać
3.. Zaeżność od kąta θ Aby rozwiązać równanie 3.9) da dowonego ν m, rozważymy przypadek z m 0, a potem pokażemy jak z tego rozwiązania przez wieokrotne różniczkowanie wygenerować rozwiązanie da dowonego
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.
Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o
Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie
Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy oziom: szkoły ponadgimnazjalne, 0 punktów za każde zadanie Zadanie Znajdź dwa dzielniki pierwsze liczby - Można skorzystać z artykułu
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.
8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
Rachunek różniczkowy i całkowy 2016/17
Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
Podstawianie zmiennej pomocniczej w równaniach i nie tylko
Tomasz Grębski Matematyka Podstawianie zmiennej pomocniczej w równaniach i nie tylko Zadania z rozwiązaniami Spis treści Wstęp... Typowe podstawienia... 6 Symbole używane w zbiorze... 7. Podstawienie zmiennej
5. Całka nieoznaczona
5. Całka nieoznaczona Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Całka nieoznaczona zima 2017/2018 1 / 31 Całka nieoznaczona
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.
Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 6/15 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Zadania z analizy matematycznej - sem. II Całki nieoznaczone
Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
KO OF Szczecin:
XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr
Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK205 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 6/14 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii
Ciągi liczbowe Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są ciągi? Ciąg skończony o wartościach w zbiorze A to dowolna funkcja f: 1,2,, n A Ciąg nieskończony o wartościach w zbiorze
Zadania z ekonomii matematycznej Teoria produkcji
Paweł Kliber Zadania z ekonomii matematycznej Teoria produkcji Zadania Zad Dla podanych funkcji produkcji a fk z k + z b fk z 6k z c fk z k z d fk z k 4 z e fk z k + z wykonaj następujące polecenia: A
x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:
RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma
x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.
Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech