O problemie modelowania stopy procentowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "O problemie modelowania stopy procentowej"

Transkrypt

1 Krzyszof Paseck Akadema Ekonomczna w Poznanu O probleme modelowana sopy procenowe Na dowolnym rynku fnansowym znaduemy nsrumeny fnansowe obarczone ryzykem warośc począkowe lub ez ryzykem warośc końcowe. W e pracy ogranczymy sę do problemayk nsrumenów fnansowych obarczonych ryzykem warośc końcowe. Inżynera fnansowa obdarza nas weloma różnym modelam sopy procenowe. Przykładem mogą być ua dwa rodzae sóp zwrou: arymeyczne logarymczna. To rodz perwsze nasze pyane. Czy wymenone powyże modele konkuruą ze sobą, czy eż nawzaem uzupełnaą sę w celu sworzena bardze unwersalnego modelu poęca sopy zwrou? W nżyner fnansowe ryzyko warośc końcowe każdego nsrumenu es opsane przy pomocy procesu losowego opsuącego ewolucę obarczone ryzykem sopy procenowe. Leraura przedmou przynos nam ua szereg zaawansowanych formalne model opsuących e sopy. Zasane bogacwo różnorodnośc rodz druge nasze pyane. Czy różne modele ewoluc sopy procenowe konkuruą ze sobą, czy eż nawzaem uzupełnaą sę w celu sworzena bardze unwersalnego ryzyka warośc końcowe? Odpowedz na e pyana będzemy szukać badaąc wzaemne relace pomędzy poszczególnym procesam ewoluc ceny nsrumenu fnansowego wynkaącym sąd procesam sóp procenowych. Punkem wyśca do sformułowana defnc ych procesów będze deermnsyczna eora krzywych ermnowych. Osaecznym celem przesawane pracy es usysemayzowane pewnych szczegółowych eor. Z e przyczyny, dla uproszczena całego wykładu, przymemy ua, że proces przyrosów ceny nsrumenu fnansowego obarczonego ryzykem es ruchem Browna.

2 . Modele deermnsyczne - podsawowe poęca Wyróżnmy pewen nsrumen fnansowy maący w momence czasowym znaną cenę C. Cena a będze opsywać równocześne warość począkową kapału przypsanego emu nsrumenow. Obserwować będzemy ewolucę ceny C : ;T wyróżnonego nsrumenu fnansowego. Na cenę ą składa sę cena począkowa powększona o dodakową premę za uraę płynnośc fnansowe wynkaące z posadana ego nsrumenu. Przysępuąc do dokładneszego opsu e prem, w przedzale,t prem spełnaący dodakowo warunek T wyróżnamy cąg n momenów kapalzac T T T T T T () n n Wymenone powyże momeny są edynym momenam, w akch nasępue kapalzaca prem. Kapalzaca prem polega na dodanu z dołu należne prem do warośc kapałowe przypsane danemu nsrumenow fnansowemu.. Podsawą nalczena prem za uraę płynnośc es zawsze warość kapałowa obserwowanego nsrumenu fnansowego. Formalnym obrazem prem za uraę płynnośc es sopa forward rozumana ako funkca F s, : s T zależnoścą,,, n : : zwązana z procesem ceny Cs CT s Fs T s T C,. () O dowolne sope forward zakładamy dodakowo, że spełnone są warunk lm F p, p, (3), T: lm Fs, p ; s. (4) W [3] warość p znerpreowano, ako sopę forward nwesyc zero kuponowe o horyzonce wymagalnośc. W [5] sformułowano sugesę denyfkuącą - -

3 opsaną powyże sopę z beżącą sopą konraku overngh noowaną dale w skróce O/N. Tamże warość p zdenyfkowano, ako sopę reny weczyse Wygodnym narzędzem formalnym pozwalaącym opsać sopę forward es chwlowa sopa forward opsana ako funkca f, T ożsamośc f F, s s : dana przy pomocy lm. (5) Można pokazać, że dzęk () mamy ua,,, n : T s T Fs, f d. (6) s Zgodne z (3) (4) mamy ua f p, (7) lm f p. (8) Innym narzędzem formalnym sosowanym do oceny ewoluc ceny nsrumenu fnansowego es sopa spo opsana ako funkca y, T pomocy ożsamośc F s : dana przy y,. (9) Dzęk (3) (4) mamy lm y p, () lm y p. () Innym, częso sosowanym do oceny procesu ewoluc ceny, narzędzem formalnym es sopa zwrou. Dla każdego,,,n sopa zwrou r :, T es rozumana ako opłaa r należna za użykowane ednosk kapału w przedzale, spełnaącym ogranczena, T,, T T,. Opłaa a es wnoszona z dołu w pełn w - 3 -

4 każdym momence kapalzac prem k k użykowana.,t pomocy ożsamośc T oraz na konec okresu. Zgodne z ą defncą sopa zwrou es opsana przy FT, T T T F T T r, () co razem z (6) dae r f d,, (3) r. (4) Ponado z (6) orzymuemy ożsamość y. (5) f d r Z zależnośc (3) orzymuemy równane różnczkowe rendu sopy zwrou, T r : : dr f d. (6) Jedynym rozwązanem problemu począkowego (4) (6) es funkca opsana przy pomocy ożsamośc (3). Z zależnośc (5) orzymuemy równane różnczkowe sopy spo, T y : : d dy f y. (7) Jedynym rozwązanem problemu () (7) es funkca opsana przy pomocy ożsamośc (5). Dodakowo waro ua zwrócć uwagę na auokorekcyny charaker równane (7). Ławo można zauważyć, że znak przyrosu sopy spo powodue zmneszene różncy pomędzy sopam spo forward. Prędkość zbeżnośc sopy forward w sronę sopy nomnalne es wpros proporconalna do - 4 -

5 różncy pomędzy ym sopam równocześne es odwrone proporconalna do długośc horyzonu czasowego sopy spo. Idenyczną własność ma uogólnony model Vasceka [6] ewoluc sopy procenowe obarczone ryzykem. Do problemu ego będzemy wracal w dalszych częścach e pracy.. Jednookresowy model deermnsyczny W przypadku rozparywana nsrumenów fnansowych o blskm ermne zapadalnośc analzę procesu ewoluc ceny nsrumenu fnansowego ogranczamy do przedzału czasowego, T. Oznacza o przyęce założena, że wspomnany horyzon czasowy es na yle krók, ż możemy wykluczyć przypadek kapalzac prem za uraę płynnośc. O kszałce budowanych model ewoluc ceny sóp procenowych decydue ua rodza posadanych nformac. W przedzale, T znany es przebeg zmennośc krzywe chwlowe sopy forward f, T m :.Wyróżnamy rosnący cąg, T momenów czasowych akch, że spełnony es warunek n T Dla ; dowolne warośc począkowe C prześledźmy rend ewoluc ceny. W ym celu przymmy nasępuące oznaczena: C,,, m C C ; (8),,, m. (9) Zależność () prowadz wpros do modelu różncowego C C, () C,,, m f. () C Nazywany nacze modelem Hulla-Whe a W szczególnym przypadku es o ermn planowanego zbyca nsrumenu fnansowego

6 Jeśl zagęścmy podzał przedzału, T, o wedy powyższe równane różncowe możemy zasąpć adekwanym równanem różnczkowym dc C f d. () Jedynym rozwązanem problemu () () es rend ceny nsrumenu, T C : opsany przy pomocy ożsamośc C f d C r C. (3) Dzęk emu osanemu równanu możemy swerdzć, że w przypadku nwesyc krókoermnowych należy sosować arymeyczną sopę zwrou. 3.Welokresowy model deermnsyczny W przypadku rozparywana nsrumenów fnansowych o odległym ermne zapadalnośc analzę procesu ewoluc ceny nsrumenu fnansowego prowadzmy dla całego przedzału czasowego,t. Oznacza o zaakcepowane możlwośc kapalzac prem za uraę płynnośc. Prowadz o wpros do swerdzena, że w przypadku nwesyc długoermnowych rend warośc es dany ako model welookresowy. W przedzale,t znany es przebeg zmennośc krzywe chwlowe sopy forward f, T :. Dla dowolne warośc począkowe C prześledźmy rend ewoluc ceny. W ym celu przymmy nasępuące oznaczena: CT ; (4),,, n C C T. (5),,, n T T T Zależność () prowadz wpros do równana różncowego C,,, n p T. (6) C Jrśl w dowolny sposób zagęścmy podzał przedzału,t, o wedy osane równane różncowe zasąpć adekwanym równanem różnczkowym - 6 -

7 dc f d. (7) C Jedynym rozwązanem problemu () (7) es funkca opsana przy pomocy ożsamośc C exp. (8) r C f d C e Z osane zależnośc orzymuemy bezpośredno oszacowane sopy zwrou ako funkc procesu ceny C r ln. (9) C Oznacza o, że w przypadku nwesyc długoermnowych wprowadzone poęce sopy zwrou es denyczne z poęcem logarymczne sopy zwrou. 4. Modele sochasyczne dobór rozkładu ryzyka Oczekwana nwesora, co do przyszłych korzyśc są obarczone nepewnoścą. Za Mandelbroem [] możemy przyąć ogólne założene, że rendy cen lub sóp procenowych podlegaą przypadkowym nezależnym wahanom o -sablnym rozkładze. W przypadku polskego rynku fnansowego założene o es w pełn usprawedlwone ploażowym badanam ekonomerycznym []. Przyęce ego założena będze nam gwaranować snene warośc oczekwanych opsywanych procesów losowych. Posługwane sę w analze rynku fnansowego rozkładam -sablnym oznacza wększą werność obserwowanym realom, co podnos warygodność analz rynku fnansowego. Warygodność a ma ednak swoą cenę. Akualny san wedzy maemayczne ne pozwala w pełn badać wzaemnych relac pomędzy dwoma różnczkam sochasycznym o dowolnych rozkładach -sablnych. Sanow o przesłankę do skoncenrowana nasze uwag na modelach rynku fnansowego obcążonego ryzykem z gaussowskm rozkładem. To ogranczene ne obnża ednak ednoznaczne akośc formalne badanych - 7 -

8 model, gdyż w zaman uzyskuemy możlwość skorzysana z lemau Io (zob.[4]). Na końcu e pracy zosane wyraźne zaznaczone, kedy uzyskane wynk można uogólnć do ogólne klasy -sablnych rozkładów ryzyka. Zebrane dośwadczena upoważnaą nas do ogranczena dalszych szczegółowych rozważań losowych model nsrumenów fnansowych edyne do ych losowych procesów ceny, kórych warośc oczekwane są opsane przez deermnsyczne rendy cen. Z formalnego punku wdzena oznacza o, że dowolny proces ceny będzemy opsywal przy pomocy losowego procesu 3 ceny C :, T spełnaącego ua warunk : C, (3) C, T: C C E, (3) C :,T es deermnsycznym procesem ceny. gdze 5. Model ednookresowy ruchy arymeyczne Ze względu na blsk horyzon czasowy naszą analzę ogranczamy do przedzału czasowego, T. Przymuemy założena denyczne z założenam przyęym w ozdzale. ozważmy eraz cąg zmennych losowych C m. W ym celu przymuemy dodakowo oznaczena:,,, m C C C. (3) W ozdzale własnośc procesu ceny zosały opsane przy pomocy przyrosu względnego (). Korzysaąc z zebranych am dośwadczeń zakładamy eraz, że analogczne przyrosy względne maą nezależne rozkłady normalne, co zapsuemy 3 Dowolny proces losowy :, T ndeksowana rodzna zmennych losowych : :, T w raze porzeby będzemy denyfkować z

9 C,,, m,, : C N,. (33) C Korzysaąc z zależnośc () (3) oraz własnośc rozkładu normalnego orzymuemy ua, (34) C W,,, m : C C f gdze W N,. Z powyższego równana orzymuemy nasępuące sochasyczne równane różnczkowe procesu ceny C :, T dc C f d C dw, (35) gdze d W N, d. Korzysaąc eraz z (3), (35) lemau Io orzymuemy nasępuące sochasyczne równane różnczkowe opsuące proces sopy zwrou dr f d dw, (36) Jedynym rozwązanem powyższego zagadnena es proces losowy dany przy pomocy ożsamośc r f s ds Wˆ. (37) Jedynym rozwązanem problemu (3) (35) es proces opsany przy pomocy ożsamośc C. (38) C f s ds C W C r Zammy sę eraz losowym procesem sopy spo y :, T.Korzysaąc z lemau Io, z (), (5) (38) mamy lm y p, (39) d dy f y dw. (4) : - 9 -

10 Jedynym rozwązanem powyższego problemu es rend sopy spo zadany za pomocą procesu y r f s ds W. (4) Procesy (37), (38) (4) należą do klasy procesów losowych nazywanych arymeycznym rucham Browna. 6.Model welookresowy ruchy pseudo-geomeryczne Ze względu na odległy ermn zapadalnośc analzę procesu ewoluc ceny nsrumenu fnansowego prowadzmy dla całego przedzału czasowego,t. Przymuemy założena denyczne z założenam przyęym w ozdzale 3. ozważmy eraz cąg zmennych losowych C T n. W ym celu przymuemy dodakowo oznaczena:,,, n C C T C T. (4) W ozdzale 3 własnośc procesu ceny zosały opsane przy pomocy przyrosu względnego (6). Korzysaąc z zebranych am dośwadczeń zakładamy eraz, że analogczne przyrosy względne maą nezależne rozkłady normalne, co zapsuemy C,,, n,, : ˆ C N, T. (43) E C Zależnośc (6), (8) (3) wraz z właścwoścam rozkładu normalnego wprowadzą wpros do równana różncowego,,, n : C E C p T E C C exp T f W T sds p T C exp f sds W T Z osanego równana orzymuemy równane różnczkowe procesu ceny T. (44) - -

11 dc C exp f sds f d C exp f sds dw. (45) Proces ceny es opsany przy pomocy pseudo-geomerycznego ruchu Browna C C exp f sds W. (46) Korzysaąc z (9), (45) lemau Io wyznaczamy równane różnczkowe procesu sopy zwrou dr f d W W W. (47) Zagadnene począkowe (4) (47) posada dokładne edno rozwązane. ównane (4.7) wraz z prowadz do równana różnczkowego procesu sopy spo d dw d y f y W W Zagadnene począkowe () (48) posada dokładne edno rozwązane. 7.Model welookresowy ruchy geomeryczne (48) Ponowne, ze względu na odległy ermn zapadalnośc analzę procesu ewoluc ceny nsrumenu fnansowego prowadzmy dla całego przedzału czasowego,t. Przymuemy założena denyczne z założenam przyęym w ozdzałach 3 6. W ozdzale 3 własnośc procesu ceny zosały opsane przy pomocy przyrosu względnego (6). Korzysaąc z zebranych am dośwadczeń zakładamy eraz, że analogczne przyrosy względne maą nezależne rozkłady normalne, co zapsuemy C,,, n,, : C N, T. (49) C Z (6), (8) (3) mamy - -

12 W T. (5),,, n : C C p T C Z osanego równana orzymuemy sochasyczne równane różnczkowe procesu ceny dc C f d C dw. (5) Jedyne rozwązane zagadnena począkowego (3) (5) es dane ako geomeryczny ruch Browna C C exp f sds W. (5) Borąc pod uwagę (9), z równana (5) orzymuemy równane różnczkowe procesu sopy zwrou dr f d dw. (53) Zagadnene począkowe (4) (53) posada dokładne edno rozwązane dane ako arymeyczny ruch Browna r f sds W. (54) Krzywa ermnowa chwlowe sopa forward może być nerpreowana ako prognoza przyszłych oczekwanych warośc sopy forward powększonych o beżącą premę wymaganą za ryzyko ermnu wynkaące z uray płynnośc mplkowane przez wydłużane sę horyzonu nwesyc. Zgodne z ym dowolną warość f nerpreuemy ako wygasaącą w momence prognozę warośc chwlowe sopy zwrou powększoną o beżącą warość prem za ryzyko ermnu. W e syuac deermnsyczny składnk dryfu równana (7.9) uawna mechanzm umarzana - po wygaśnęcu prognozy - prem za ryzyko. Z (5) (54) orzymuemy sochasyczne równane różnczkowe procesu sopy spo - -

13 d dy f y dw (55) Zagadnene począkowe () posada (55) dokładne edno rozwązane dane ako arymeyczny ruch Browna y f sds W. (56) ównane (55) nawązue w swe posac modelu sopy procenowe Vascek a [6]. Oznacza o, że procesow sopy spo kapalzac cągłe przysługuą wszyske własnośc formalne możlwośc zasosowana modelu Vascek a. Podsumowane Główny cel posawony w arykule zosał osągnęy. Powyże zosały przedsawone logczne powązana pomędzy poszczególnym modelam sopy procenowe. Wykazano mędzy nnym, że sosowane model oparych na geomerycznym ruchu Browna ne wyklucza równoczesnego sosowana model oparych na arymeycznym ruchu Browna. Wskazano na fak, że soną przesłanką przy doborze właścwego modelu es czasowy horyzon zapadalnośc nwesyc. Każdy przedsawony ua proces ceny można uogólnć do przypadku przyrosu względnego o rozkładze sablnym ze zmennym paramerem skal. W syuac rozważana modelu ednokresowego rozszerzene o możemy zasosować akże dla procesów sopy zwrou sopy spo. Przedsawony w e pracy zesaw model sanow edyne newelk ułamek ogólnego dorobku nauk prakyk w dzedzne. Przy wyborze kerowano sę kryerum prosoy wykładu. Nemne waro ua zauważyć, że pomnęe ua modele różną sę pomędzy założonym kszałem krzywe ermnowe chwlowe sopy forward oraz założenam o zmennośc odchylena sandardowego (parameru skal)

14 Leraura [] Gołębewska A., Analza grubośc ogona rozkładu sóp zwrou, w Panek E., Maemayka w ekonom, Zeszyy Naukowe AE 4, Poznań, 4, s [] Manelbro B.B.; The varaon of ceran speculave prces, w Cooner P. (red.) The random characer of sock marke prces. MIT Press, Cambrdge 964, s [3] Segel A.F., Nelson Ch.., Parsmonous modelng of yeld curves, Journal of Busness 6, 987. [4] Sobczyk K. Sochasyczne równana różnczkowe, WNT, Warszawa 996. [5] Svensson L., Esmang and nerpreng forward neres raes: Sweden , Naonal Bureau of Economc esearch, Cambrdge 994. [6] Vascek O.A., An equlbrum characerzaon of erm srucure, J. Fnancal Economcs, November 977, s Krzyszof Paseck On problem of neres rae modelng Summary The man goal of hs paper s presenaon relaonshps beween some knds of well-known sochasc processes of reurn rae and spo rae. All comparsons are consdered for he case of Brownan moons. Mos obaned resuls may be generalzed for he case of Levy moons

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano

Bardziej szczegółowo

MODEL DWUCZYNNIKOWY w ARYTMETYCE FINANSOWEJ PROBLEM BADAWCZY 1.MODEL APRECJACJI KAPITAŁU

MODEL DWUCZYNNIKOWY w ARYTMETYCE FINANSOWEJ PROBLEM BADAWCZY 1.MODEL APRECJACJI KAPITAŁU Krzyszof Paseck Akadema Ekonomczna w Poznanu MODEL DWUCZYNNIKOWY w ARYTMETYCE FINANSOWEJ PROBLEM BADAWCZY W [7] przedsawono aksjomayczno-dedukcyjną eorę arymeyk fnansowej oparą na pojęcu warośc przyszłej

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

FINANSOWE SZEREGI CZASOWE WYKŁAD 3

FINANSOWE SZEREGI CZASOWE WYKŁAD 3 FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).

Bardziej szczegółowo

13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998)

13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998) 3. Dwa modele pooku ruchu (eorokolejkowe) 3. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,998) 3.. Model Hagha Isneje wele prac z la powojennych, w kórych wysępują próby modelowana kolejek ruchowych

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x Wykład z Podsaw maemayk dla sudenów Inżyner Środowska Wykład 8. CŁKI NIEOZNCZONE Defnca (funkca perwona) Nech F es funkcą perwoną funkc f na przedzale I, eżel F '( ) f ( ) dla każdego I. Udowodnć, że funkce

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Inne kanały transmisji

Inne kanały transmisji Wykład 4 Inne kanały ransmsj Plan wykładu. Ceny akywów 3. Ceny akywów Wzros sopy procenowej powoduje spadek cen domów akcj. gdze C warość kuponu, F warość nomnalna gdze dywdenda, g empo wzrosu dywdendy

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Podstawowe algorytmy indeksów giełdowych

Podstawowe algorytmy indeksów giełdowych Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 25-11-13 Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 2013-11-25 Sps reśc I. Algorymy oblczana warośc ndeksów gełdowych...3 1. Warość beżąca

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.

Bardziej szczegółowo

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 64 Transpor 28 Tomasz AMBROZIAK, Konrad LEWCZUK Wydzał Transporu Polechnk Warszawske Zakład Logsyk Sysemów Transporowych ul. Koszykowa 75, -662 Warszawa am@.pw.edu.pl;

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH SCRIPTA COMENIANA LESNENSIA PWSZ m. J. A. Komeńskego w Leszne R o k 0 0 8, n r 6 TOMASZ ŚWIST* WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaa Kopernka w Torunu Unwersye Mkołaa Kopernka w Torunu Ops kurozy rozkładów

Bardziej szczegółowo

Finansowe szeregi czasowe wykład 7

Finansowe szeregi czasowe wykład 7 Fnansowe szereg czasowe wykład 7 dr Tomasz Wójowcz Wydzał Zarządzana AGH 38 33 28 23 18 13 8 1 11 21 31 41 51 61 71 Kraków 213 Noowana ndeksu WIG w okrese: 3 marca 29 31 syczna 211 55 5 45 4 35 3 25 2

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Rozmyta efektywność portfela

Rozmyta efektywność portfela Krzysztof PIASECKI Akadema Ekonomczna w Poznanu Problem badawczy Rozmyta ektywność portfela Buckley [] Calz [] zaproponowal reprezentowane wartośc przyszłych nwestycj fnansowych przy pomocy lczb rozmytych.

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

Modelowanie równowagi cenowej na Giełdzie Papierów Wartościowych w Warszawie w okresach przed i po wejściu Polski do Unii Europejskiej

Modelowanie równowagi cenowej na Giełdzie Papierów Wartościowych w Warszawie w okresach przed i po wejściu Polski do Unii Europejskiej Sansław Urbańsk * Modelowane równowag cenowej na Gełdze Paperów Waroścowych w Warszawe w okresach przed po wejścu Polsk do Un Europejskej Wsęp Praca nnejsza sanow konynuację badań doyczących wyceny akcj

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane

Bardziej szczegółowo

HSC Research Report. Principal Components Analysis in implied volatility modeling (Analiza składowych głównych w modelowaniu implikowanej zmienności)

HSC Research Report. Principal Components Analysis in implied volatility modeling (Analiza składowych głównych w modelowaniu implikowanej zmienności) HSC Research Repor HSC/04/03 Prncpal Componens Analyss n mpled volaly modelng (Analza składowych głównych w modelowanu mplkowanej zmennośc) Rafał Weron* Sławomr Wójck** * Hugo Senhaus Cener, Wrocław Unversy

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Ewolucja metod konstrukcji krzywej terminowej stóp procentowych po kryzysie płynności rynku międzybankowego w latach 2007-2009

Ewolucja metod konstrukcji krzywej terminowej stóp procentowych po kryzysie płynności rynku międzybankowego w latach 2007-2009 Unwersye Ekonomczny w Poznanu Wydzał Ekonom Paweł Olsza Ewolucja meod konsrukcj krzywej ermnowej sóp procenowych po kryzyse płynnośc rynku mędzybankowego w laach 007 009 Rozprawa dokorska przygoowana pod

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

Brak arbitrażu na rynkach z proporcjonalnymi kosztami transakcji *

Brak arbitrażu na rynkach z proporcjonalnymi kosztami transakcji * Zeszyy Unwersye Ekonomczny w Krakowe Naukowe (937) ISSN 898-6447 Zesz. Nauk. UEK, 205; (937): 27 39 DOI: 0.5678/ZNUEK.205.0937.009 Agneszka Rygel Kaedra Maemayk Unwersye Ekonomczny w Krakowe Brak arbrażu

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

Monika Kośko Wyższa Szkoła Informatyki i Ekonomii TWP w Olsztynie Michał Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu

Monika Kośko Wyższa Szkoła Informatyki i Ekonomii TWP w Olsztynie Michał Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolske Semnarum Naukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Monka Kośko Wyższa Szkoła Informayk Ekonom TWP w Olszyne

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

Zbigniew Palmowski. Analiza Przeżycia

Zbigniew Palmowski. Analiza Przeżycia Zbgnew Palmowsk Analza Przeżyca Wrocław 9 Zbgnew Palmowsk Docendo dscmus (Ucząc nnych, sam sę uczymy) Seneka Mos of he me I fnd myself workng n heorecal problems, because I am neresed n applcaons. I also

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Kurtoza w procesach generowanych przez model RCA GARCH

Kurtoza w procesach generowanych przez model RCA GARCH Joanna Górka * Kuroza w procesach generowanych przez model RCA GARCH Wsęp Na przesrzen osanej dekady odnoowuje sę szybk rozwój model nelnowych. Wdoczna jes zwłaszcza różnorodność nelnowych specyfkacj modelowych,

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

WYBRANE SYMULACJE WYCENY AKTYWÓW NA PRZYKŁADZIE SPÓŁEK NOTOWANYCH NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE 1

WYBRANE SYMULACJE WYCENY AKTYWÓW NA PRZYKŁADZIE SPÓŁEK NOTOWANYCH NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE 1 Suda Ekonomczne. Zeszyy Naukowe Unwersyeu Ekonomcznego w Kaowcach ISSN 2083-86 Nr 325 207 Sansław Urbańsk Akadema Górnczo-Huncza w Krakowe Wydzał Zarządzana Kaedra Ekonom, Fnansów Zarządzana Środowskem

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0

i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0 Maemayka finansowa i ubezpieczeniowa - 1 Sopy procenowe i dyskonowe 1. Sopa procenowa (sopa zwrou, sopa zysku) (Ineres Rae). Niech: F - kapiał wypoŝyczony (zainwesowany) w momencie, F T - kapiał zwrócony

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Rozdział III Dynamiczna ocena projektów inwestycyjnych 1. Ocena projektu inwestycyjnego

Rozdział III Dynamiczna ocena projektów inwestycyjnych 1. Ocena projektu inwestycyjnego Rozdzał III Dynamczna ocena proektów nwestycynych. Ocena proektu nwestycynego,t Stopa nomnalna y 9 Przykład y w w K w 2 b w, 2 K w w,, w 2, Kb- stopa kosztu użyca kredytu bankowego ( z wyłączenem prowz

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

OCENA RYZYKA INWESTYCJI W METALE SZLACHETNE W OKRESIE ŚWIATOWEGO KRYZYSU FINANSOWEGO 2007-2012

OCENA RYZYKA INWESTYCJI W METALE SZLACHETNE W OKRESIE ŚWIATOWEGO KRYZYSU FINANSOWEGO 2007-2012 Elza Buszkowska Unwersye m. Adama Mckewcza w Poznanu, Wydzał Prawa Admnsracj, Kaedra Nauk Ekonomcznych Por Płucennk Unwersye m. Adama Mckewcza w Poznanu, Wydzał Maemayk Informayk, Pracowna Ekonomer Fnansowej

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

PODAŻOWE CZYNNIKI WZROSTU GOSPODARCZEGO PODSTAWOWE MODELE TEORETYCZNE

PODAŻOWE CZYNNIKI WZROSTU GOSPODARCZEGO PODSTAWOWE MODELE TEORETYCZNE ACTA UIVRSITATIS LODZISIS FOLIA OCOOMICA 294, 23 Paweł Dykas *, Tomasz Tokarsk ** PODAŻOW CZYIKI WZROSTU GOSPODARCZGO PODSTAWOW MODL TORTYCZ Sreszczene. Celem prezenowanego opracowana jes analza podażowych

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

Model CAPM z ryzykiem płynności na polskim rynku kapitałowym

Model CAPM z ryzykiem płynności na polskim rynku kapitałowym UNIWERSYTET SZCZECIŃSKI Z e s z y y Naukowe nr 858 Współczesne Problemy Ekonomczne DOI: 10.18276/wpe.2015.11-18 Sebasan Porowsk* odel CAP z ryzykem płynnośc na polskm rynku kapałowym Słowa kluczowe: eora

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene

Bardziej szczegółowo

RYNEK AKCJI A KOSZTY WAHAŃ KONIUNKTURALNYCH W POLSCE

RYNEK AKCJI A KOSZTY WAHAŃ KONIUNKTURALNYCH W POLSCE Jan Acedańsk RYNEK AKCJI A KOSZTY WAHAŃ KONIUNKTURALNYCH W POLSCE Wprowadzene W pracy z 1987 r. R. Lucas zdefnował kosz wahań konunkuralnych ako procenowe zwększene konsumpc, kóre es koneczne, aby użyeczność

Bardziej szczegółowo

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max

Bardziej szczegółowo

Model CAPM z ryzykiem płynności na polskim rynku kapitałowym

Model CAPM z ryzykiem płynności na polskim rynku kapitałowym UNIWERSYTET SZCZECIŃSKI Zeszyy Naukowe nr 858 Wspó łczesne Problemy Ekonomczne n r 11 ( 2 0 1 5 DOI: 10.18276/wpe.2015.11-18 Sebasan Porowsk* Model CAPM z ryzykem płynnośc na polskm rynku kapałowym Słowa

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

EKONOMETRIA. metody analizy i wykorzystania danych ekonomicznych

EKONOMETRIA. metody analizy i wykorzystania danych ekonomicznych UIWERSYE EKOOMICZY w Krakowe EKOOMERIA EKOOMERIA meod analz wkorzsana danch ekonomcznch (handous zapsk wkładowc dla sudenów) Kraków Anon Gorl Anna Walkosz Unwerse Ekonomczn w Krakowe emaka. Wprowadzene..

Bardziej szczegółowo

Modele ekonometryczne w Gretlu

Modele ekonometryczne w Gretlu Modele ekonomeryczne w Grelu Grel jes aplkacją przede wszyskm do zasosowań ekonomerycznych (oraz do analzy szeregów czasowych nekórzy wolą rozgranczać ekonomerę analzę szeregów czasowych, przy czym a osana

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

III. Przetwornice napięcia stałego

III. Przetwornice napięcia stałego III. Przewornce napęca sałego III.1. Wsęp Przewornce: dosarczane pożądanej warośc napęca sałego koszem energ ze źródła napęca G. Możlwość zmnejszana, zwększana, odwracana polaryzacj lb kszałowane pożądanego

Bardziej szczegółowo

Prąd sinusoidalny. najogólniejszy prąd sinusoidalny ma postać. gdzie: wartości i(t) zmieniają się w czasie sinusoidalnie

Prąd sinusoidalny. najogólniejszy prąd sinusoidalny ma postać. gdzie: wartości i(t) zmieniają się w czasie sinusoidalnie Opracował: mgr nż. Marcn Weczorek www.marwe.ne.pl Prąd snsodalny najogólnejszy prąd snsodalny ma posać ( ) m sn(2π α) gdze: warość chwlowa, m warość maksymalna (amplda), T okres, α ką fazowy. T m α m T

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

ARTYKUŁY PRZYDATNOŚĆ WYBRANYCH METOD OCENY PAPIERÓW WARTOŚCIOWYCH

ARTYKUŁY PRZYDATNOŚĆ WYBRANYCH METOD OCENY PAPIERÓW WARTOŚCIOWYCH ARYKUŁY onka oścbrodzka, Jolana Żukowska PRZYDANOŚĆ WYBRANYCH EOD OCENY PAPIERÓW WAROŚCIOWYCH Wprowadzene Rzeczywsość gospodarcza nese za sobą koneczność kerowana sę przez przedsęborców nwesorów kryerum

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Stateczność układów ramowych

Stateczność układów ramowych tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 5 4 EWA DZIAWGO Uniwersye Miołaa Kopernia w Toruniu ANALIZA WRA LIWO CI CENY KOSZYKOWEJ OPCJI KUPNA WPROWADZENIE

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Inwestowanie w jakość na rynkach akcji w Europie Środkowo-Wschodniej

Inwestowanie w jakość na rynkach akcji w Europie Środkowo-Wschodniej Bank Kredy 46(2 205 65-90 Inwesowane w jakość na rynkach akcj w Europe Środkowo-Wschodnej Adam Zarema* Nadesłany: 2 wrześna 204 r. Zaakcepowany: 3 marca 205 r. Sreszczene Opracowane ma na celu przedsawene

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1 Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa

Bardziej szczegółowo