O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

Wielkość: px
Rozpocząć pokaz od strony:

Download "O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE"

Transkrypt

1 MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska Sreszczenie: W arykule scharakeryzowano opcje na akcje Wyjaśniono podsawowe pojęcia, akie jak: ermin wykonania, ermin wygaśnięcia, cena wykonania, cena opcji Do opisu ewolucji cen akcji wykorzysano geomeryczny ruch Browna Sformułowano kilka problemów doyczących inwesowania w opcje na akcje orzymując zadania programowania sochasycznego Korzysając z własności ruchu Browna pokazano, w jaki sposób szacować prawdopodobieńswa zdarzeń polegających na osiągnięciu przez inwesora zysków na żądanym poziomie lub przy usalonym poziomie ryzyka Dla każdego z zadań dokonano przykładowych obliczeń Słowa kluczowe: opcje na akcje, sandardowy ruch Browna, geomeryczny ruch Browna WSĘ Opcje na akcje są jednym z najpopularniejszych insrumenów pochodnych na świecie Umożliwiają one inwesorom osiągać zarówno ponadprzecięne zyski, gdy cena wykonania opcji jes lepsza niż cena oferowana na wolnym rynku, jak i zabezpieczać się przed nadmiernymi sraami związanymi ze zmianami kursów akcji Celem niniejszej pracy jes pokazanie, w jaki sposób można szacować prawdopodobieńswa osiągnięcia ych zysków z uwzględnieniem oczekiwań inwesora co do inwesycji w opcje CHARAKERYSYKA OCJI Opcja kupna (ang call) jes konrakem, kóry daje nabywcy prawo do kupna usalonej ilości insrumenu podsawowego, na kóry opcja zosała wysawiona, po

2 44 omasz Warowny określonej cenie i w usalonym erminie Opcja sprzedaży (ang pu) daje prawo do sprzedaży insrumenu podsawowego po określonej cenie i w usalonym erminie Dla nabywcy opcja jes prawem, a nie obowiązkiem Skorzysa z ego prawa, gdy będzie mu się o opłacało Naomias sprzedający (wysawiający) opcje ma obowiązek, na życzenie nabywcy opcji, odsprzedać (w przypadku opcji kupna) lub odkupić (w przypadku opcji sprzedaży) insrumen podsawowy, na kóry opcja jes wysawiona Z inwesycjami w opcje wiąże się duże ryzyko W związku z ym wysawca opcji musi złożyć depozy zabezpieczający (ang margin), kóry ma zagwaranować spełnienie jego ewenualnych zobowiązań [Luenberger 003] ermin, w kórym posiadacz opcji wykorzysał swoje prawo nazywamy erminem wykonania (ang exercise dae) ermin, po kórym opcja raci swoją ważność i nie może być wykonana nazywamy erminem wygaśnięcia opcji (ang mauriy, expiraion dae) Wyróżnia się dwa ypy opcji: europejskie, kóre mogą być wykonane ylko w dniu wygaśnięcia opcji, amerykańskie, kóre mogą być wykonane w dowolnym dniu do erminu wygaśnięcia opcji Nazwy obu ypów nie są w żaden sposób związane z miejscem obrou erminy e w przeszłości odnosiły się do różnych zasad handlu opcjami, jakie obowiązywały w Europie i Ameryce Większość opcji, kórymi handluje się na świaowych rynkach o opcje amerykańskie owodem ego, między innymi, jes fak, że opcje europejskie są bardziej narażone na manipulacje w okresie bliskim erminowi wygaśnięcia [Weron, Weron 1998] Cena insrumenu podsawowego usalona w konrakcie nazywa się ceną wykonania (ang srike, exercise price) Jeżeli opcję opłaca się wykonać mówimy, że opcja jes w cenie (ang in he money), np w przypadku opcji sprzedaży dzieje się ak, gdy cena wykonania jes wyższa niż cena insrumenu podsawowego Gdy cena insrumenu podsawowego jes równa cenie wykonania mówimy, że opcja jes po cenie (ang a he money) Opcja nie jes w cenie (ang ou of he money), gdy nie opłaca się jej wykonać, np w przypadku opcji sprzedaży dzieje się ak, gdy cena wykonania jes niższa niż cena insrumenu podsawowego Opcjami na świaowych rynkach handluje się od dawna Na Giełdzie apierów Warościowych w Warszawie oferowane są wyłącznie opcje na indeks WIG 0 Opcje na akcje były noowane od października 005 r, ale od 4 lipca 007 r zawieszono wprowadzanie do obrou kolejnych serii opcji na akcje oraz zawieszono obró wszyskimi seriami opcji na akcje 1 1 wwwgpwpl/opcje_insrumeny

3 O pewnych kryeriach inwesowania w opcje 45 ROCES WIENERA I MODEL EWOLUCJI CENY AKCJI Do opisu ewolucji ceny akcji posłuży proces geomerycznego ruchu Browna posaci: p = p gdzie: p - cena akcji w chwili, p - cena akcji w chwili począkowej, o w - sandardowy ruch Browna, w σ σ + m oe, 0, m,σ - paramery modelu reprezenujące odpowiednio warość średnią i wariancję (na jednoskę czasu) sopy zmiany ceny akcji roces geomerycznego ruchu Browna ma nasępujące własności: jeżeli p 0 jes warością dodanią, o dla każdego > 0 jes p > 0, dla każdego usalonego > 0 zmienna losowa p ma rozkład lognormalny, wariancja Var[ p ], gdy Jeżeli rajekoria ruchu Browna saruje od dodaniej warości, o proces osiąga ylko warości dodanie Fak en, jak również o, że dla procesów oparych na rozkładzie Gaussa jes dobrze rozwinięy apara maemayczny, zadecydował, że właśnie en proces wielu badaczy rynku przyjmuje do opisu ewolucji cen papierów warościowych Wykorzysali go, między innymi, Osborne, Samuelson, kórych prace w laach pięćdziesiąych dokonały przełomu w maemayce finansowej Z modelowaniem sochasycznym rynków kapiałowych związane są eż akie nazwiska jak: Meron, Blaska, Scholesa roces geomerycznego ruchu Browna jes rozwiązaniem sochasycznego równania różniczkowego dp = p[ md +σ dw] Więcej na ema ruchu Brona można znaleźć w [Banek 000], [Luenberger 003], [Sobczyk 1996], [Weron, Weron 1998]

4 46 omasz Warowny roces sochasyczny { w, 0} (,ω ) w Browna, jeżeli: 1 w 0 = 0, w lieraurze spoyka się eż oznaczenie, nazywamy sandardowym procesem Wienera lub sandardowym ruchem rzyros sandardowego procesu Wienera na przedziale o długości Δ ma rozkład normalny z warością oczekiwaną 0 i wariancją równą długości ego przedziału, czyli dla każdego 0, Δ > 0 jes ( w + Δ w ) ~ N( 0, Δ ) 3 Jeżeli 1 < 3 < 4, o zmienne losowe ( w w ) i ( w w ) 1 4 są 3 niezależne 4 Funkcja w(, ω ) R jes z prawdopodobieńswem równym 1 ciągła względem, czyli proces Wienera ma ciągłe rajekorie W dalszej części pracy wykorzysane zosaną poniższe własności procesu Wienera Własność 1 Niech a > 0 i b R, wedy a + b ab a b ( max w b + a) = 1 F + e 1 F, gdzie F jes dysrybuaną sandardowego rozkładu normalnego Dowód powyższej własności można znaleźć w [Szirajev, Kabanov, Kramkov, Mielnikov 1994] W szczególności, gdy b = 0 orzymujemy Własność [Billingsley 1987] a ( w a) = 1 F = ( w a) max W ym miejscu waro przyoczyć wzór Blacka-Scholesa na wycenę opcji na akcje Rozważmy europejską opcję kupna z ceną wykonania q i erminem wygaśnięcia Zakładamy, że akcja, na kórą zosała wysawiona opcja nie daje dywidendy w okresie [ 0, ], sopa wolna od ryzyka ( r ) jes sała i ma miejsce kapializacja ciągła Wedy wzór na cenę opcji (cena a nazywana jes eż premią) 0, jes nasępujący [Luenberger 003]: w chwili [ ]

5 O pewnych kryeriach inwesowania w opcje 47 r( ) ( d ) qe F( ) E c = pf 1 d, gdzie: E c - cena europejskiej opcji kupna w chwili, p - cena akcji w chwili, F - dysrybuana sandardowego rozkładu normalnego, d p σ ln + r q + = σ ( ) 1, p σ ln + r ( ) q d = σ E Znając cenę europejskiej opcji kupna ( c ) cenę europejskiej opcji sprzedaży ( s ) można wyznaczyć z paryeu kupna-sprzedaży [Weron, Weron 1998]: E E E r( ) c s = p qe W [Weron, Weron 1998] pokazano, że w przypadku opcji amerykańskich prawdziwe są nierówności: A A r( ) p q < c s p qe, gdzie akcji A A c, s oznaczają odpowiednio ceny amerykańskich opcji kupna i sprzedaży WYBRANE KRYERIA INWESOWANIA W OCJE NA AKCJE Sformułowanych zosanie kilka problemów związanych z inwesowaniem w opcje na akcje Oszacujemy prawdopodobieńswa zdarzeń osiągnięcia przez inwesora zysku na żądanym poziomie lub przy usalonym poziomie ryzyka Zadanie 1 usalony poziom zysku, europejska opcja kupna Inwesor posiada europejską opcję kupna akcji z erminem wygaśnięcia i ceną rozliczenia opcji q Obliczmy r ( e ( p q) z) Jes o prawdopodobieńswo ego, że rozliczając opcje w chwili inwesor osiągnie zysk co najmniej z Wielkość zysku jes zdyskonowana na chwilę

6 48 omasz Warowny obecną ze sopą kapializacji ciągłej r Usalając warość z inwesor powinien uwzględnić poniesione koszy, akie jak: koszy ransakcji, cenę opcji W przypadku europejskiej opcji sprzedaży należałoby rozważyć r prawdopodobieńswo ( e ( q p ) z) Zajmijmy się przypadkiem opcji kupna Mamy σ σw + m r r ( e ( p q) z) = e = poe q z r ze q 1 + σ = w m = F( C ) ln p 1, σ o gdzie r 1 ze + q σ C = ln m, σ po F jes dysrybuaną sandardowego rozkładu normalnego rzykład Niech począkowa cena akcji będzie równa 50 zł Inwesor nabywa europejską opcję kupna ej akcji z ceną wykonania 50 zł i erminem wygaśnięcia za rok Sopa wolna od ryzyka dla ego okresu o 6% Zaem p o = 50, q = 50, r = 0, 06, = 1 Załóżmy ponad o, że sopa zmiany ceny akcji i odchylenie sandardowe ej sopy są równe odpowiednio m = 0, 08, σ = 0, 1 Korzysając ze wzoru Blacka-Scholesa orzymujemy, że cena opcji wynosi E c = 3,73 zł rzyjmijmy z = 5 Obliczymy, zaem prawdopodobieńswo ego, że za rok inwesor wykona posiadaną opcję z ceną wykonania 50 zł i naychmias sprzedając akcję po akualnej cenie rynkowej osiągnie zysk zdyskonowany na chwilę obecną na poziomie co najmniej 5 zł Rozważane prawdopodobieńswo ma warość r ( e ( p q) z) = 0, 398 Zadanie - usalony poziom ryzyka, europejska opcja kupna Inwesor nieskłonny do dużego ryzyka może usalić jego maksymalną warość i szukać akiej wielkości zysku, kóra może być zrealizowana z prawdopodobieńswem nie mniejszym niż usalił Zadanie można sformułować w nasępującej posaci

7 O pewnych kryeriach inwesowania w opcje 49 ρ będzie usaloną przez inwesora liczbą, kórą będziemy nazywać poziomem ryzyka Należy wyznaczyć aką warość z ρ, że Niech [ 0,1] r { z : ( e ( p q) z) 1 } zρ = max ρ owyższa warość jes największym poziomem zysku, jaki można osiągnąć przy usalonym poziomie ryzyka ρ Z poprzedniego zadania wiemy, że r ( e ( p q) z) = F( C ) 1, gdzie r 1 ze + q σ C = ln m σ po Zaem F C 1 1 ( ) ρ 1 lub równoważnie C F ( ρ) Mamy więc σ z poe Osaecznie orzymujemy r ze + q σ ln m F po 1 1 z σ F ( ρ ) + m r 1 σ -qe r σ F ( ρ ) + m r r ρ = poe -qe 1 σ ( ρ) rzykład Dla warości akich jak w poprzednim przykładzie: p o = 50, q = 50, r = 0, 06, = 1, m = 0, 08, σ = 0, 1 przyjmijmy, że inwesor usalił poziom ryzyka ρ = 0,3 z ρ jes zaem maksymalną warością (zdyskonowaną) zysku jaki można osiągnąć z prawdopodobieńswem równym co najmniej 0,7 Z powyższego wzoru orzymujemy z = 1, 07 ρ,

8 50 omasz Warowny Zadanie 3 usalony poziom zysku, amerykańska opcja kupna Rozważmy amerykańską opcję kupna akcji z erminem wygaśnięcia i ceną wykonania opcji q Oszacujemy nasępujące prawdopodobieńswo: r ( e ( p q) z) max o Jes o prawdopodobieńswo ego, że do erminu wygaśnięcia opcji inwesor będzie mógł wykonać opcję i osiągnie zysk zdyskonowany na chwilę obecną na poziomie co najmniej z Mamy ( ( ) ) r r 1 ze + q σ maxe p q z = max w ln m o o σ po Oznaczmy r 1 ze + q σ B() = ln m σ po i niech B = min B() o rawdopodobieńswo, że rajekoria procesu Wienera dojdzie do krzywej B () jes nie większe niż prawdopodobieńswo, że rajekoria procesu Wienera dojdzie do B Sąd i z własności orzymujemy B ( w B() ) ( max w B) = ( w B) = 1 F max, o o gdzie F jes dysrybuaną sandardowego rozkładu normalnego Ławo sprawdzić, że B " () r qzr e =, σ r ( ze + q) " czyli, dla każdego 0 jes B () > 0 Druga pochodna funkcji B () jes dodania, a więc funkcja jes wypukła Jej 0, B 0 wykres na przedziale [, ] i ( B( )) 0 znajduje się pod prosą zawierającą punky ( ( )), rzyjmijmy, że prosa a ma równanie l () = a + b B 0, czyli Warość współczynnika a o ( ) a 1 = ln σ z + q p o

9 O pewnych kryeriach inwesowania w opcje 51 Naomias warość współczynnika b wyliczymy z równania b a = B( ) Mamy co daje r 1 z + q 1 ze + q σ b + ln = ln m, σ po σ po r 1 ze + q σ b = ln m σ z + q + rawdopodobieńswo, że na przedziale [ 0, ] rajekoria ruchu Browna dojdzie do krzywej B () jes, zaem większe niż prawdopodobieńswo, że rajekoria ruchu Browna dojdzie do prosej l () Korzysając z własności 1 mamy r ( max e ( p q) z) = max w B() o ( ) ( max w a + b)= o o a + b a b = 1 F + e ab 1 F 1 z + q Oczywiście, musi być a > 0, czyli ln > 0 więc z + q > po σ p o Gdyby było inaczej, z + q po, oznaczałoby o, że już w chwili zerowej inwesor rozliczając opcję i naychmias sprzedając akcje osiągnąłby wymagane z Osaecznie orzymaliśmy r B ( maxe ( p q) z) 1 F a + b ab a b 1 F + e 1 F o ze wszyskimi oznaczeniami jak wcześniej rzykład Inwesor posiada amerykańską opcję kupna z erminem wygaśnięcia jeden rok, z ceną rozliczenia 50 zł, aką samą jak obecna cena akcji Mamy, zaem p o = 50, q = 50, = 1 Załóżmy ponad o, że sopa zmiany ceny akcji i odchylenie sandardowe ej sopy są równe odpowiednio m = 0, 08, σ = 0, 1, sopa wolna od ryzyka r = 0, 06 Inwesor usala z = 5 Oszacujemy, zaem prawdopodobieńswo ego, że w ciągu roku inwesor będzie mógł wykonać opcję i osiągnie zysk zdyskonowany na chwilę obecną na poziomie co najmniej 5 zł Dla powyższych warości orzymujemy r ( maxe ( p q) z) 0, 79 0,58 o

10 5 omasz Warowny ZAKOŃCZENIE Opcje dają możliwość worzenia różnych sraegii inwesycyjnych na wypadek różnych scenariuszy rozwoju wydarzeń na giełdzie Zaprezenowane kryeria mają zasosowanie do oceny inwesycji w opcje na akcje Mogą one być pomocne inwesorowi przy ocenie warości prawdopodobieńsw osiągnięcia oczekiwanych zysków lub szacowaniu przyszłych zysków przy usalonym poziomie ryzyka okazano, w jaki sposób szacować e prawdopodobieńswa zarówno dla opcji amerykańskich jak i europejskich BIBLIOGRAFIA Banek (000) Rachunek ryzyka, Cenrum Badawczo-Szkoleniowe WSZiA w Zamościu, Lublin Billingsley (1987) rawdopodobieńswo i miara, WN, Warszawa Luenberger D, G (003) eoria inwesycji finansowych, Wydawnicwo Naukowe WN, Warszawa Sobczyk K (1996) Sochasyczne równania różniczkowe, Wydawnicwo Naukowo- echniczne, Warszawa Szirajev AN, Kabanov JM, Kramkov DO, Mielnikov AB, (1994) K eorii raszczoov opcionov Evropejskogo i Amerikanskogo ipov, Nepreryvnoje vremia - eoria veroja i promen, om 39 Weron A, Weron R, (1998) Inżynieria finansowa, Wydawnicwo Naukowo-echniczne, Warszawa SOME CRIERIA OF INVESMEN IN SOCKS OIONS Absrac: his aricle describes he sock opions I explains he basic conceps, such as selemen dae, expiraion dae, srike price and premium o describe he evoluion of share prices we used he geomerical Brownian moionwe presened he several crieria for invesmen in opions and shares and hen obained he exercises of sochasic programming Using he properies of Brownian moion, we explained how o esimae he probabiliy of achieving he profi of desired amoun or on fixed level of risk For each of hese crieria we presened he sample calculaions Keywords: sock opions, Brownian moion, geomerical Brownian moion

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów dr Dariusz Sańko Kaedra Ubezpieczenia Społecznego Szkoła Główna Handlowa dariusz.sanko@gmail.com lisopada 006 r., akualizacja i poprawki: 30 sycznia 008 r. U b e zpieczenie w eo r ii użyeczności i w eo

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

Zastosowanie narzędzi analizy technicznej w bezpośrednim i pośrednim inwestowaniu w towary

Zastosowanie narzędzi analizy technicznej w bezpośrednim i pośrednim inwestowaniu w towary Anna Górska 1 Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych Szkoła Główna Gospodarswa Wiejskiego Warszawa Zasosowanie narzędzi analizy echnicznej w bezpośrednim i pośrednim inwesowaniu

Bardziej szczegółowo

REGULAMIN FUNDUSZU ROZLICZENIOWEGO

REGULAMIN FUNDUSZU ROZLICZENIOWEGO REGULAMIN FUNDUSZU ROZLICZENIOEGO przyjęy uchwałą nr 10/60/98 Rady Nadzorczej Krajowego Depozyu Papierów arościowych S.A. z dnia 28 września 1998 r., zawierdzony decyzją Komisji Papierów arościowych i

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 5 4 EWA DZIAWGO Uniwersye Miołaa Kopernia w Toruniu ANALIZA WRA LIWO CI CENY KOSZYKOWEJ OPCJI KUPNA WPROWADZENIE

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE O pewnym algorymie rozwiązującym problem opymalnej alokacji zasobów Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE W kierowaniu firmą Zarząd częso saje wobec problemu rozdysponowania (alokacji)

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Ocena wpływu zmian poziomu rezerw walutowych na premię za ryzyko kredytowe Polski wykorzystanie metody roszczeń warunkowych

Ocena wpływu zmian poziomu rezerw walutowych na premię za ryzyko kredytowe Polski wykorzystanie metody roszczeń warunkowych Bank i Kredy 455, 04, 467 490 Ocena wpływu zmian poziomu rezerw waluowych na premię za ryzyko kredyowe Polski wykorzysanie meody roszczeń warunkowych Michał Konopczak* Nadesłany: 5 kwienia 04 r. Zaakcepowany:

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. OPCJE Slide 1 Informacje ogólne definicje opcji: kupna (call)/sprzedaŝy (put) terminologia typy opcji krzywe zysk/strata Slide 2 Czym jest opcja KUPNA (CALL)? Opcja KUPNA (CALL) jest PRAWEM - nie zobowiązaniem

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

Użyteczność bezpośredniej likwidacji szkód (BLS) dla klientów zakładów ubezpieczeń

Użyteczność bezpośredniej likwidacji szkód (BLS) dla klientów zakładów ubezpieczeń Sanisław Garska 1 Ubezpieczeniowy Fundusz Gwarancyjny Użyeczność bezpośredniej likwidacji szkód (LS) dla klienów zakładów ubezpieczeń Sreszczenie Wprowadzeniu bezpośredniej likwidacji szkód jako produku

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego TRANSFORM ADVICE PROGRAMME Invesmen in Environmenal Infrasrucure in Poland Analiza efekywności koszowej w oparciu o wskaźnik dynamicznego koszu jednoskowego dr Jana Rączkę Warszawa, 13.06.2002 2 Spis reści

Bardziej szczegółowo

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH METODA ZDYSONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH W meodach dochodowych podsawową wielkością, kóa okeśla waość pzedsiębioswa są dochody jakie mogą być geneowane z powadzenia działalności gospodaczej

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

Maksyminowe strategie immunizacji portfela

Maksyminowe strategie immunizacji portfela Alina Kondraiuk-Janyska Maksyminowe sraegie immunizacji porfela rozprawa dokorska Promoor: dr hab. Leszek Zaremba Kaedra Meod Ilościowych Wyższa Szkoła Zarządzania- The Polish Open Universiy Wydział Fizyki

Bardziej szczegółowo

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział

Bardziej szczegółowo

z graniczną technologią

z graniczną technologią STUDIA OECOOMICA POSAIESIA 23, vol., no. (25) Uniwersye Ekonomiczny w Poznaniu, Wydział Informayki i Gospodarki Elekronicznej, Kaedra Ekonomii Maemaycznej emil.panek@ue.poznan.pl iesacjonarny model von

Bardziej szczegółowo

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 87 Transpor 01 Jarosław Poznański Danua Żebrak Poliechnika Warszawska, Wydział Transporu ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20

POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 450 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 17 2006 KATARZYNA KUZIAK Akademia Ekonomiczna Wrocław POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 25.01.2003 r.

Matematyka ubezpieczeń życiowych 25.01.2003 r. Maemayka ubezpieczeń życiowych 25.01.2003 r. 1.. Dany jes wiek całkowiy x. Nasępujące prawdopodobieńswa przeżycia: g= 2p x + 1/3, h= 2p x + 1/ 2, j= 2p x + 3/4 obliczono sosując inerpolację zakładającą,

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYMULACJAMI NUMERYCZNYMI

WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYMULACJAMI NUMERYCZNYMI Zeszyy Naukowe Wydziału Informaycznych Technik Zarządzania Wyższej Szkoły Informayki Sosowanej i Zarządzania Współczesne Problemy Zarządzania Nr 1/2010 WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYULACJAI

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 MAŁGORZATA BOŁTUĆ Uniwersye Ekonomiczny we Wrocławiu ZALEŻNOŚĆ POMIĘDZY RYNKIEM SWAPÓW KREDYTOWYCH

Bardziej szczegółowo

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options).

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options). Opcje na GPW (I) Opcje (ang. options) to podobnie jak kontrakty terminowe bardzo popularny instrument notowany na rynkach giełdowych. Ich konstrukcja jest nieco bardziej złożona od kontraktów. Opcje można

Bardziej szczegółowo

Raport: Modele Matematyczne w Finansach 2014

Raport: Modele Matematyczne w Finansach 2014 Rapor: Modele Maemayczne w Finansach 2014 Krzyszof Bisewski Pior Bochnia Kamila Domańska Pior Garbuliński Elżbiea Gawłowska Grzegorz Głowienko Barosz Głowinkowski Magdalena Hubicz Marcin Kania Paweł Marcinkowski

Bardziej szczegółowo

Rozwiązanie uogólnionego problemu optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE

Rozwiązanie uogólnionego problemu optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE Rozwiązanie uogólnionego problemu opymalnej alokacji zasobów Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE Niniejszy arykuł rozwiązuje problem owary posawiony w [4], dzięki czemu będzie można znaleźć

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

KONTRAKTY FUTURES STOPY PROCENTOWEJ

KONTRAKTY FUTURES STOPY PROCENTOWEJ KONTRAKTY FUTURES STOPY PROCENTOWEJ Zasosowanie z perspekywy radera Dominik Łogin 18 październik 2013 Agenda I. Fuures obligacyjne Podsawy konsrukcji Porównanie międzynarodowe Baza Cash-Fuures Wyznaczanie

Bardziej szczegółowo

OPCJE W to też możesz inwestować na giełdzie

OPCJE W to też możesz inwestować na giełdzie OPCJE NA WIG 20 W to też możesz inwestować na giełdzie GIEŁDAPAPIERÓW WARTOŚCIOWYCH WARSZAWIE OPCJE NA WIG 20 Opcje na WIG20 to popularny instrument, którego obrót systematycznie rośnie. Opcje dają ogromne

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1 Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Rynek opcji walutowych. dr Piotr Mielus

Rynek opcji walutowych. dr Piotr Mielus Rynek opcji walutowych dr Piotr Mielus Rynek walutowy a rynek opcji Geneza rynku opcji walutowych Charakterystyka rynku opcji Specyfika rynku polskiego jako rynku wschodzącego 2 Geneza rynku opcji walutowych

Bardziej szczegółowo

MODELOWANIE PREFERENCJI A RYZYKO 11

MODELOWANIE PREFERENCJI A RYZYKO 11 MODELOWANIE PREFERENCJI A RYZYKO Sudia Ekonomiczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH MODELOWANIE PREFERENCJI A RYZYKO Kaowice 20 Komie Redakcyjny Tadeusz Trzaskalik (redakor

Bardziej szczegółowo

OPCJE MIESIĘCZNE NA INDEKS WIG20

OPCJE MIESIĘCZNE NA INDEKS WIG20 OPCJE MIESIĘCZNE NA INDEKS WIG20 1 TROCHĘ HISTORII 1973 Fisher Black i Myron Scholes opracowują precyzyjną metodę obliczania wartości opcji słynny MODEL BLACK/SCHOLES 2 TROCHĘ HISTORII 26 kwietnia 1973

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 6. Wycena opcji modele ciągłe, metoda Monte Carlo Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na

Bardziej szczegółowo

Optymalne strategie inwestycyjne wobec ryzyka modelu

Optymalne strategie inwestycyjne wobec ryzyka modelu Dariusz Zawisza Opymalne sraegie inwesycyjne wobec ryzyka modelu Praca dokorska Insyu Maemayki Wydział Maemayki i Informayki Uniwersye Jagielloński Promoor: dr hab. Armen Edigarian KRAKÓW 1 Spis reści

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Analiza kosztów wytwarzania energii elektrycznej w elektrowniach systemowych

Analiza kosztów wytwarzania energii elektrycznej w elektrowniach systemowych POLITYKA ENERGETYCZNA Tom 10 Zeszy specjalny 2 2007 PL ISSN 1429-6675 Janusz SOWIÑSKI* Analiza koszów wywarzania energii elekrycznej w elekrowniach sysemowych STRESZCZENIE. Zaporzebowanie na energiê elekryczn¹

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie

Bardziej szczegółowo

Ocena dochodu i ryzyka inwestycji w akcje spółek z branży TSL notowanych na GPW w Warszawie 2

Ocena dochodu i ryzyka inwestycji w akcje spółek z branży TSL notowanych na GPW w Warszawie 2 Anea Włodarczyk 1 Poliechnika Częsochowska Ocena dochodu i ryzyka inwesycji w akcje spółek z branży TSL noowanych na GPW w Warszawie Wprowadzenie Globalizacja rynku usług TSL (Transpor, Spedycja, Logisyka)

Bardziej szczegółowo

ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ

ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ Ryszard Barczyk ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ 1. Wsęp Organy pańswa realizując cele poliyki sabilizacji koniunkury gospodarczej sosują

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 GRZEGORZ MICHALSKI POZIOM ZAANGAŻOWANIA KAPITAŁU W ZAPASACH W ORGANIZACJACH NON-PROFIT * Wprowadzenie

Bardziej szczegółowo

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy Dobromił Serwa Reakcje rynków finansowych na szoki w poliyce pieniężnej.. Wsęp Czy prowadzona poliyka pieniężna jes skueczna? Jaki ma wpływ na procesy ekonomiczne zachodzące w kraju? Czy jes ona równie

Bardziej szczegółowo

Modele rynku, kontrakty terminowe, spekulacje

Modele rynku, kontrakty terminowe, spekulacje Modele rynku, kontrakty terminowe, spekulacje Marcin Abram WFAIS UJ w Krakowie 9 marca 2009 Założenia modelu Cena rozpatrywanego obiektu zmienia się skokowo co czas δt. Bezwzględna wartość zmiany ceny

Bardziej szczegółowo

PROGNOSTYCZNE UWARUNKOWANIA RYZYKA GOSPODARCZEGO I SPOŁECZNEGO

PROGNOSTYCZNE UWARUNKOWANIA RYZYKA GOSPODARCZEGO I SPOŁECZNEGO PROGNOSTYCZNE UWARUNKOWANIA RYZYKA GOSPODARCZEGO I SPOŁECZNEGO Sudia Ekonomiczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH PROGNOSTYCZNE UWARUNKOWANIA RYZYKA GOSPODARCZEGO I SPOŁECZNEGO

Bardziej szczegółowo