Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB"

Transkrypt

1 Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe zadane mnmalzacj funkcj z ogranczenam zapsuje sę następująco: mn f ( g( Warunk Kuhna Tuckera: Warunkam konecznym optymalnośc rozwązana zadana standardowego są równana KuhnaTuckera w postac: f g j ( ( = =,..., n j =,..., m Strona

2 Rozwązywane zadań optymalzacj w środowsku programu MATLAB λ j g j ( = j =,..., m λ j j =,...,m Warunek wystarczający mnmum: = Warunk koneczne + d f ( Powyższe warunk pozwalają znaleźć punkt stacjonarny będący mnmum lokalnym, o le spełna on warunk regularnośc. Zamana znaku funkcj Zamanę zadań optymalzacj ogranczeń do postac standardowej można dokonać stosując następujące zależnośc: ma f ( mn( f ( g ( g ( Ogranczena równoścowe można przedstawć za pomocą ogranczeń nerównoścowych: g ( = g ( g ( Zależnośc znaku mnożnka Lagrange a w warunkach KuhnaTuckera od zadana optymalzacj oraz rodzaju ogranczena są podane w tabel: f ( ( g λ j mn mn ma ma Strona

3 Rozwązywane zadań optymalzacj w środowsku programu MATLAB Metody optymalzacj funkcj bez ogranczeń: Do podstawowych metod poszukwana mnmum zalczane są mędzy nnym: metoda spadku (gradentu optymalnego, metoda gradentu sprzężonego. Metoda spadku polega na poszukwanu mnmum funkcj w kerunku przecwnym do gradentu funkcj w punkce wyjścowym. Gradent funkcj jest kerunkem najszybszego wzrostu funkcj. Metoda gradentu optymalnego w przypadku funkcj celu w postac formy kwadratowej daje analtyczną postać długośc kroku. Dla formy kwadratowej: T f = Q długość kroku oblcza sę z zależnośc: T Q k = T 3 Q Następny punkt wyjścowy, w którym oblcza sę kolejny krok, wynos: = + k f ( +. + Strona 3

4 Rozwązywane zadań optymalzacj w środowsku programu MATLAB Metoda gradentu sprzężonego jest bardzej efektywna od metody gradentu optymalnego. Dla formy kwadratowej, nty krok przechodz dokładne przez punkt optymalny. Sposób oblczena kolejnych kroków algorytmu przedstawony jest metodą Fletcher Reevesa.. Wyberamy punkt wyjścowy perwszy kerunek mnmalzacj oblczmy metodą spadku: v = f (. Dla =,,,n;..podstawamy: + v = mn f ( λ = λ ; gdze: λ + λ v.. oblczamy gradent funkcj w punkce : f.3. dla <n: v = f ( + ( f f ( (.4. dla =n n n n = + λn v podstawamy = n, powracamy do punktu (; powtarzamy do spełnena warunku stopu. v Strona 4

5 Rozwązywane zadań optymalzacj w środowsku programu MATLAB Porównane metod gradentu optymalnego sprzężonego: Dla funkcj: f = , przy ogranczenu: + 3 +, za pomocą programu Matlab, została przygotowana prezentacja metody gradentu optymalnego oraz gradentu sprzężonego. Do oblczeń została zastosowana metoda zamrażana zmennej. Ponższe wykresy przedstawają krok wykonane przy mnmalzacj funkcj. Poszukwane mnmum przebega weloetapowo, przy czym w każdym etape realzowana jest mnmalzacja w przestrzen wymarowej. Stąd trajektore na rysunkach ne są cągłe. Ogranczene jest uwzględnone metodą funkcj kary. Dla punktu startowego X =[ 3] oraz zastosowanej regule stopu eps>(f *+f *, gdze eps=,, otrzymane zostały następujące wynk w postac grafcznej: Metoda gradentu optymalnego: 3.5 X X3.5 X.5.5 X.5 X X3 wynk oblczeń: =,4395; =,5574; 3 =,544 f*(x=.945 lość wywołań funkcj (lość kroków: 75 Strona 5

6 Rozwązywane zadań optymalzacj w środowsku programu MATLAB Metoda gradentu sprzężonego: 3.5 X X3.5 X.5.5 X.5 X X3 wynk oblczeń: =.464; =.4668; 3 =.375 f*(x=.93 lość wywołań funkcj (lość kroków: 5 stosunkowo duża lczba kroków jest wynkem zastosowana metody funkcj kary punkt stacjonarny praktyczne pokrywa sę z rozwązanem analtycznym Z otrzymanych wynków można zauważyć, że metoda gradentu sprzężonego jest szybsza dokładnejsza. Algorytmy mnmalzacj w Matlabe: Matlab oferuje do mnmalzacj m.n. następujące algorytmy: mnmalzacja funkcj jednej zmennej (fmn algorytm smple bez ogranczeń (fmns quasnewtona (reguła BFGS bez ogranczeń (fmnu SQP (metoda kolejnych aproksymacj kwadratowych z regułą BFGS z ogranczenam równoścowym nerównoścowym (constr algorytm mnmalzacj sumy kwadratów Levenberga Marquardta bez ogranczeń (leastsq Strona 6

7 Rozwązywane zadań optymalzacj w środowsku programu MATLAB Przykład problemu optymalzacj parametrów równana funkcj Należy wyznaczyć optymalne parametry funkcj, tak aby przebeg funkcj był dopasowany do zadanych punktów (,Y na rysunku. Na funkcję są narzucone warunk ogranczające. Y Y X Y,,9,,88,3333,68,4444,553,5556,43,6667,349,7778,894,8889,76,69 W badanym obszarze funkcja została podzelona w punktach oraz na trzy częśc. Założone równana tych funkcj są następujące: W przedzale (, : W przedzale (, : y = + a a y = a a4 + a5 + a6 W przedzale (,: y = Y 3 + a 7 a9 ( + a 8 Strona 7

8 Rozwązywane zadań optymalzacj w środowsku programu MATLAB F Przebeg funkcj wymusł ogranczena parametrów optymalzowanych. Równeż punkty sklejena przedzałów są zmennym optymalzacj. y ( = y ( (warunk na wartośc funkcj y ( = y ( = = d d ( ( = d = a = d = a ( ( (warunk na sze pochodne Funkcję celu oblcza sę z następującej zależnośc: ( [ d ( d ( ] y Y + ε [ d ( d ( +. ] + ε Ogranczena: a a a 3 a 4 a 5 a 6 a 7 a 8 a 9. a 7 a 8 [ d ( d ( ] [ d ( d ( +. ] Korzystając z paketu Optmzaton Toolbo oraz programu constr, zostały uzyskane następujące wynk: =,5 =,6948 Optymalne parametry: a 3,695 a,399 a3,4 a4,866 a5,9 a6,434 a7,55 a8 57,78 a9 5,3976 a,5 a,6948 Strona 8

9 Rozwązywane zadań optymalzacj w środowsku programu MATLAB Porównane wynków: Y y obl błąd δ%,,,9,97,8,,88,847,43,3333,68,6859,54,4444,553,558,7,5556,43,3985,45,6667,349,345,7,7778,894,96,46,8889,76,79,34,69,69, Ponżej jest przebeg funkcj uzyskany po zoptymalzowanu parametrów. Poneważ jest ona okresowa, można ją przedstawć w wększym przedzale. Tak, jak było założone, funkcja posada ekstrema w punktach krańcowych rozpatrywanego przebegu (zeruje sę pochodna na następnym rysunku. Optymalne dopasowane funkcj Y X Strona 9

10 Rozwązywane zadań optymalzacj w środowsku programu MATLAB Aby optymalzacja parametrów dokonana była prawdłowo, funkcja jej perwsza pochodna mus być cągła w całym rozpatrywanym przedzale. Jak wdać na ponższej charakterystyce, warunek ten jest spełnony. Pochodna funkcj optymalnej dy X Środowsko programu Matlab pozwala na: Wnosk: zrealzowane stosunkowo łatwej przejrzystej procedury rozwązana problemu optymalzacj, wykonane oblczeń optymalzacyjnych uwzględnających wzualzacje procesu rozwązana, skorzystane ze skutecznego oprogramowana w pakece Optmzaton Toolbo umożlwającego rozwązane nawet skomplkowanych problemów optymalzacj. Strona

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym.

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym. =DGDQLHSROHJDMFHQDSRV]XNLZDQLXPDNV\PDOQHMOXEPLQLPDOQHMZDUWRFLIXQNFMLZLHOX ]PLHQQ\FKSU]\MHGQRF]HVQ\PVSHáQLHQLXSHZQHMLORFLQDáR*RQ\FKZDUXQNyZ UyZQDOXE QLHUyZQRFLQRVLQD]Z]DGDQLDRSW\PDOL]DF\MQHJROXE]DGDQLDSURJUDPRZDQLD

Bardziej szczegółowo

Optymalizacja belki wspornikowej

Optymalizacja belki wspornikowej Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana

Bardziej szczegółowo

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1 Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Metody oblczenowe wykład nr metody rozwązywana równań nelnowych zadane optymalzacj Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Postać równana

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu. ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH RYNEK CIEŁA 03 DIANOSYKA YMIENNIKÓ CIEŁA Z UIARYODNIENIEM YNIKÓ OMIARÓ EKLOAACYJNYCH Autorzy: rof. dr hab. nż. Henryk Rusnowsk Dr nż. Adam Mlejsk Mgr nż. Marcn ls Nałęczów, 6-8 paźdzernka 03 SĘ Elementam

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

METODA EFEKTYWNEGO ZARZĄDZANIA ROZDZIAŁEM ŚRODKÓW NA REDUKCJĘ EMISJI GAZÓW CIEPLARNIANYCH

METODA EFEKTYWNEGO ZARZĄDZANIA ROZDZIAŁEM ŚRODKÓW NA REDUKCJĘ EMISJI GAZÓW CIEPLARNIANYCH Zeszyty Naukowe Wydzału Informatycznych Technk Zarządzana Wyższej Szkoły Informatyk Stosowanej Zarządzana Współczesne Problemy Zarządzana Nr /20 ETODA EFEKTYWNEGO ZARZĄDZANIA ROZDZIAŁE ŚRODKÓW NA REDUKCJĘ

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Kolokwium poprawkowe z Optymalizacji II (Ściśle tajne przed godz. 16 : stycznia 2016.)

Kolokwium poprawkowe z Optymalizacji II (Ściśle tajne przed godz. 16 : stycznia 2016.) Kolokwum z Optymalzacj II Ścśle tajne przed godz 4 : 00 8 grudna 05) Proszę uważne przeczytać treść zadań Na ocenę bardzo duży wpływ będze mała czytelność rozwązań poprawność uzasadnena każdej odpowedz

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu Wprowadzene do Sec Neuronowych Algorytm wstecznej propagacj błędu Maja Czoków, Jarosław Persa --6 Powtórzene. Perceptron sgmodalny Funkcja sgmodalna: σ(x) = + exp( c (x p)) Parametr c odpowada za nachylene

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI

MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI Inżynera Rolncza 10(108)/2008 MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI Leonard Vorontsov, Ewa Wachowcz Katedra Automatyk, Poltechnka Koszalńska Streszczene: W pracy przedstawono

Bardziej szczegółowo

Materiały do laboratorium Projektowanie w systemach CAD-CAM-CAE. 1. Wprowadzenie do metody elementów skończonych

Materiały do laboratorium Projektowanie w systemach CAD-CAM-CAE. 1. Wprowadzenie do metody elementów skończonych Materały do laboratorum Projektowane w systemach CAD-CAM-CAE Opracowane: dr nŝ. Jolanta Zmmerman 1. Wprowadzene do metody elementów skończonych Przebeg zjawsk fzycznych, dzałane rzeczywstych obektów, procesów

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY SIECI NEURONOWE SVM W ZASTOSOWANIU DO KLASYFIKACJI OBRAZÓW KOMÓREK SZPIKU KOSTNEGO

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY SIECI NEURONOWE SVM W ZASTOSOWANIU DO KLASYFIKACJI OBRAZÓW KOMÓREK SZPIKU KOSTNEGO POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY Instytut Elektrotechnk Teoretycznej Systemów Informacyjno Pomarowych mgr nż. Tomasz Markewcz SIECI NEURONOWE SVM W ZASTOSOWANIU DO KLASYFIKACJI OBRAZÓW KOMÓREK

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

rzeczywiste zawart. składn. maksymalne wymagane zawart. w 1 jednostce mieszanki składn. w 1 jednostce mieszanki

rzeczywiste zawart. składn. maksymalne wymagane zawart. w 1 jednostce mieszanki składn. w 1 jednostce mieszanki P. Kowalk, Laboratorum badań operacyjnych: zadane optymalnej meszank - mnmalzacja kosztu jednostk meszank 4. Zadane optymalnej meszank - mnmalzacja kosztu jednostk meszank Model matematyczny dentyczny

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

Optymalizacja funkcji

Optymalizacja funkcji MARCIN BRAŚ Opymalzacja funcj ) Opymalzacja w obszarze neoranczonym WK: y. y WW: > > y y Znaleźć mnmum funcj: (, y) ( ) y ( ) y y ( ) y solve, P(, ) y y solve, y ( ) y ( ) y y y ( ) y W W W > (, y) > Op.

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań Algorytm FA Metaheurystyczna metoda poszukwań (Xn-She Yang, 2008), nsprowana przez: zachowana społeczne zjawsko bolumnescencj robaczków śwetojańskch (śwetlków) Zastosowane w zadanch optymalzacj z ogranczenam

Bardziej szczegółowo

Wielokryterialny Trójwymiarowy Problem Pakowania

Wielokryterialny Trójwymiarowy Problem Pakowania Łukasz Kacprzak, Jarosław Rudy, Domnk Żelazny Instytut Informatyk, Automatyk Robotyk, Poltechnka Wrocławska Welokryteralny Trójwymarowy Problem Pakowana 1. Wstęp Problemy pakowana należą do klasy NP-trudnych

Bardziej szczegółowo

Ewolucyjne projektowanie filtrów cyfrowych IIR o nietypowych charakterystykach amplitudowych

Ewolucyjne projektowanie filtrów cyfrowych IIR o nietypowych charakterystykach amplitudowych Adam Słowk Mchał Bałko Wydzał Elektronk Poltechnka Koszalńska ul. JJ Śnadeckch 2, 75-453 Koszaln Ewolucyjne projektowane fltrów cyfrowych IIR o netypowych charakterystykach ampltudowych Słowa kluczowe:

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr 0. Badanie rozkładu rzutu śnieżkami do celu WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORJNE Z FIZKI trzec termn wpsu zalczena do USOSu upływa...prowadząca(y)... grupa... podgrupa... zespół... semestr roku akademckego... student(ka)... SPRAWOZDANIE

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Intelgencja oblczenowa Ćwczene nr 6 Algorytmy Genetyczne Schemat blokowy podstawowego algorytmu genetycznego; Reprezentacja osobnków Kodowane rozwązań; Funkcja celu; Podstawowe operacje: selekcja, krzyżowane,

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz dr nż. Robert Geryło Jakość ceplna obudowy budynków - dośwadczena z ekspertyz Wdocznym efektem występowana znaczących mostków ceplnych w obudowe budynku, występującym na ogół przy nedostosowanu ntensywnośc

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

METODA SYNTEZY AUTOMATÓW SKOŃCZONYCH MEALY EGO I MOORE A NA

METODA SYNTEZY AUTOMATÓW SKOŃCZONYCH MEALY EGO I MOORE A NA METODA SYNTEZY AUTOMATÓW SKOŃCZONYCH MEALY EGO I MOORE A NA BAZIE UKŁADÓW CPLD Adam Klmowcz Wydzał Informatyk Poltechnk Bałostockej, ul. Wejska 45A, 15-351 Bałystok e-mal: aklm@.pb.balystok.pl Abstrakt:

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x f l Ry. 3. Rozpatrywany łuk parabolczny 4 f l x x 2 y x l 2 f m l 2 m y x 4 2 x x 2 2 2,86 x,43 x 2 tg y x dy 4 f l 2 x l 2 4 2 2 x 2 2,86,86 x Mechanka Budowl Projekty Zgodne ze poobem rozwązywana układów

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS METODA PROGRAMOWANIA LINIOWEGO. PRZYKŁAD ZASTOSOWANIA W ROLNICTWIE

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS METODA PROGRAMOWANIA LINIOWEGO. PRZYKŁAD ZASTOSOWANIA W ROLNICTWIE FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn., Oeconomca 2014, 308(74)1, 7 16 Agneszka Barczak METODA PROGRAMOWANIA LINIOWEGO. PRZYKŁAD ZASTOSOWANIA W ROLNICTWIE

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

Laboratorium Pomiarów i Automatyki w Inżynierii Chemicznej Regulacja Ciągła

Laboratorium Pomiarów i Automatyki w Inżynierii Chemicznej Regulacja Ciągła Zakład Wydzałowy Inżyner Bomedycznej Pomarowej Laboratorum Pomarów Automatyk w Inżyner Chemcznej Regulacja Cągła Wrocław 2005 . Mary jakośc regulacj automatycznej. Regulacja automatyczna polega na oddzaływanu

Bardziej szczegółowo

ANALIZA DOKŁADNOŚCI WYBRANYCH TECHNIK CAŁKOWO-BRZEGOWYCH W KONTEKŚCIE MODELOWANIA ZAGADNIEŃ EMC NISKIEJ CZĘSTOTLIWOŚCI *)

ANALIZA DOKŁADNOŚCI WYBRANYCH TECHNIK CAŁKOWO-BRZEGOWYCH W KONTEKŚCIE MODELOWANIA ZAGADNIEŃ EMC NISKIEJ CZĘSTOTLIWOŚCI *) Wojcech KRAJEWSKI ANALIZA DOKŁADNOŚCI WYBRANYCH TECHNIK CAŁKOWO-BRZEGOWYCH W KONTEKŚCIE MODELOWANIA ZAGADNIEŃ EMC NISKIEJ CZĘSTOTLIWOŚCI *) STRESZCZENIE W artykule przeprowadzono analzę dokładnośc metod:

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

I. Poziom: poziom podstawowy (nowa formuła)

I. Poziom: poziom podstawowy (nowa formuła) Przedmot: matematyka Dorota Marcnkowska Analza wynków egzamnu maturalnego wosna 2016 I. Pozom: pozom podstawowy (nowa formuła) 1. Zestawene wynków dla Technkum Nr 1 Lczba ucznów zdających -T 52 Zdało egzamn

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

Wyznaczenie promienia hydrodynamicznego cząsteczki metodą wiskozymetryczną. Część 2. Symulacje komputerowe

Wyznaczenie promienia hydrodynamicznego cząsteczki metodą wiskozymetryczną. Część 2. Symulacje komputerowe Rafał Górnak Wyznaczene promena hydrodynamcznego cząsteczk metodą wskozymetryczną. Część. Symulacje komputerowe Pojęca podstawowe Symulacje komputerowe, zasady dynamk Newtona, dynamka molekularna, potencjał

Bardziej szczegółowo

Badania operacyjne w logistyce i zarządzaniu produkcją

Badania operacyjne w logistyce i zarządzaniu produkcją Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badana operacyne w logstyce zarządzanu produkcą cz. I Andrze Woźnak Nowy Sącz Komtet Redakcyny doc. dr Zdzsława Zacłona przewodncząca, prof. dr hab. nż. Jarosław

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

ZAJĘCIA III. Metody numeryczne w zadaniach identyfikacji

ZAJĘCIA III. Metody numeryczne w zadaniach identyfikacji ZAJĘCIA III Metody numeryczne w zadanach dentyfkacj Rozwązywane układów równań lnowych Mnmalzacja funkcj Symulacja układów dynamcznych Transformata sygnału do dzedzny częstotlwośc WPROWADZENIE Komputerowa

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Ryszard Kutyłowski. Optymalizacja topologii kontinuum materialnego

Ryszard Kutyłowski. Optymalizacja topologii kontinuum materialnego Ryszard Kutyłowsk Optymalzacja topolog kontnuum materalnego Ofcyna Wydawncza Poltechnk Wrocławskej Wrocław 2004 Recenzje Leszek MIKULSKI Paweł ŚNIADY Opracowane redakcyjne korekta Mara IZBICKA Copyrght

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW ZASTOSOWANIE PROGRAOWANIA DYNAICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EISJI GAZÓW ANDRZEJ KAŁUSZKO Instytut Bada Systemowych Streszczene W pracy opsano zadane efektywnego przydzału ogranczonych rodków

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI

RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI Wojcech BOŻEJKO, Marusz UCHROŃSKI, Meczysław WODECKI Streszczene: W pracy rozpatrywany jest ogólny problem kolejnoścowy

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

Regulamin promocji fiber xmas 2015

Regulamin promocji fiber xmas 2015 fber xmas 2015 strona 1/5 Regulamn promocj fber xmas 2015 1. Organzatorem promocj fber xmas 2015, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna 2015

Bardziej szczegółowo

Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID

Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID Symulator układu regulacj automatycznej z samonastrajającym regulatorem PID Założena. Należy napsać program komputerowy symulujący układ regulacj automatycznej, który: - ma pracować w trybe sterowana ręcznego

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Metody numeryczne, III rok Informatyki, 2013/2014

Metody numeryczne, III rok Informatyki, 2013/2014 Metody numeryczne, III rok Informatyk, 2013/2014 1. Rozwązywane równań nelnowych 2. Arytmetyka zmennopozycyjna 3. Błędy w oblczenach. Uwarunkowane zadana. Numeryczna poprawność stablność algorytmu 4. Rozwązywane

Bardziej szczegółowo

Równania rekurencyjne na dziedzinach

Równania rekurencyjne na dziedzinach Marek Materzok Równana rekurencyjne na dzedznach Pommo, ż poczynłem starana, aby praca ta była możlwe kompletna wolna od błędów, ne mogę zagwarantować, że ne wkradły sę do nej żadne neścsłośc czy pomyłk.

Bardziej szczegółowo

WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Grupa: Elektrotechnka, sem 3., wersja z dn. 14.1.015 Podstawy Technk Śwetlnej Laboratorum Ćwczene nr 5 Temat: WYZNACZANE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ Opracowane wykonano na podstawe następującej

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo