7. Wykład VII: Warunki Kuhna-Tuckera

Wielkość: px
Rozpocząć pokaz od strony:

Download "7. Wykład VII: Warunki Kuhna-Tuckera"

Transkrypt

1 Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n ( x ) 0; Km } h ( x ) C (7) Tw 7 (Kuhna - Tuckera) Jeśl w punkce regularnym X o funkca F(x) osąga mnmum lokalne, to w punkce tym stneą mnożnk λˆ, spełnaące następuące warunk F( ) + m h ( ) ˆ λ 0 (7) h ( ) 0 (7) ( ˆ λ ) ( ) 0 (74) h ˆ λ 0 (75) gdze: K m ; Kn W zapse wektorowo-macerzowym, wykorzystuąc funkcę Lagarnge a oraz przy oznaczenu ogranczeń ako wektora: h ( x) 0, otrzymuemy następuące sformułowane warunków Kuhna-Tuckera: xl(, ˆ) λ 0 L(, ˆ) λ 0 λ T ( ˆ) λ h( ) 0 ˆ λ 0 Wykład VII -9-

2 Wocech Grega, Metody Optymalzac Uzasadnene warunków Kuhna-Tuckera Def7 Warunek ogranczaący h ( x) 0 est aktywny w punkce dopuszczalnym, eśl ( ) 0 Gdy spełnone est h ( ) < 0 - warunek nazywamy neaktywnym Zatem w danym punkce dopuszczalnym ze zboru ogranczeń zadana (7) można wydzelć podzbór ogranczeń aktywnych, scharakteryzowany przez zbory ndeksów Oznaczene: Α ( ) zbór ndeksów ogranczeń aktywnych, tzn Α ( ) { : h ( ) 0 } Dla uzasadnena warunków Kuhna-Tuckera zostaną rozważone trzy przypadk - wszystke dla przykładu sformułowanego w przestrzen R (n, m dla zadana 7) Funkca Lagrange a (6) dla takego przykładu est w postac: L F( x) + λ h ( x) Załóżmy, że w punkce optymalnym mnożnk Lagrange a stneą rozważmy trzy przypadk: A, B, C W każdym z nch zbadamy zachowane sę warunków Lagrange a w punkce optymalnym: L(, ˆ) λ h ( ) ˆ F x + λ 0, (76) sprawdzaąc, w ak sposób należy e uzupełnć, aby uwzględnć ogranczena (7) h Przypadek A Brak ogranczeń aktywnych W punkce rozwązana (Rys 7) otrzymuemy): ( F ( x)) ˆ 0 oraz h ( ) 0 ; h ( ) 0 ; h ( ) 0, czyl Α (x ˆ) Warunek Lagrange a (76) będze spełnony, gdy: ˆ λ ˆ λ ˆ λ 0, wtedy: F( x) 0 x x ˆ < < < Wykład VII -9-

3 Wocech Grega, Metody Optymalzac Rys 7 Przypadek A: brak ogranczeń aktywnych Przypadek B Jedno ogranczene aktywne Rys 7 Przypadek B: poedyncze ogranczene aktywne W punkce rozwązana (Rys 7): h ( ) 0 ; h ( ) 0 ; h ( ) 0, czyl Α( x ˆ) { } < < W otoczenu, zadane B est równoznaczne z poszukwanem mn F ( x) przy ogranczenu h ( x) 0, co na podstawe warunku Lagrange a dae warunek koneczny optymalnośc: ˆF λ ˆh A zatem, warunek Lagrange a (76) est spełnony, gdy ˆ λ > 0, ˆ λ ˆ λ 0 x x Wykład VII -94-

4 Wocech Grega, Metody Optymalzac Dodatn znak mnożnka Lagrange a wynka z kerunku wektora h : dla ogranczena w postac h ( ) 0 est on skerowany na zewnątrz hperpowerzchn h ( ) 0, zatem mus być λ 0 dla zachowana F λ h > Przypadek C Dwa ogranczena aktywne Aktywne są ogranczena (Rys7): h ( ) 0 ; h ( ) 0; h ( ) 0, Α( x ˆ) {, } Warunek Lagrange a dla ogranczeń równoścowych est w postac: < h ( ) ˆ h F x + ˆ λ + λ co est spełnane przez (76), gdy: ˆ λ > 0, ˆ λ > 0, ˆ λ 0 (patrz uwaga dotycząca znaku mnożnka dla przypadku B) 0 Rys 7 Przypadek B: dwa ogranczene aktywne Podsumowuąc trzy przypadk (A, B, C) można stwerdzć, że: 0 λ 0 dla,, o Gdy ogranczene ne est aktywne ( h ( ) < 0 ), to zawsze ˆ λ 0 o gdy λ > 0, to zawsze ( ) 0 h Wykład VII -95-

5 Wocech Grega, Metody Optymalzac 4 o W szczególnym przypadku, gdy ogranczene est aktywne h ( ) 0, to może być ˆ λ 0 (gdy mnmum bezwarunkowe pokrye sę z warunkowym, patrz Rys 74) Rys74 Przypadek szczególny: rozwązana zadań z ogranczenam bez ogranczeń sę pokrywaą o, o, 4 o będą uwzględnone, gdy warunk Lagrange a uzupełnmy warunkem: lub ˆ λ ( ) 0, h ˆ L λ 0,,, λ Warunek ten nos nazwę warunku komplementarnośc Ostateczne węc dla rozważanego przykładu warunk optymalnośc wynkaące bezpośredno z metody Lagarnge a są w postac: L, ˆ λ Są węc one dentyczne z warunkam (7)-(75) 0, L 0, ˆ L λ 0 λ λ ˆ λ 0,,, Warto także zwrócć uwagę, że warunk koneczne optymalnośc dla zadań z ogranczenam równoścowym sformułowane w rozdzale 6 są szczególnym przypadkem warunków Kuhna-Tuckera Jedyna różnca polega na tym, że mnożnk Lagrange a mogą przymować wartośc uemne, a warunek komplementarnośc est tożsamoścą, nezależną od wartośc λ, a zatem może być pomnęty Wykład VII -96-

6 Wocech Grega, Metody Optymalzac Istnene mnożnków Lagrange a, czyl tzw regularność punktu rozwązana gwarantuą nam warunk regularnośc 7 Warunk regularnośc Jest to problem analogczny ak dla ogranczeń równoścowych (patrz rozdzał 6): należy sformułować krytera gwarantuące stnene mnożnków Lagrange a w punkce rozwązana W punkce rozwązana: ˆ λ ; ( h ) ( F ) A( ) n F R Mamy węc n równań o J newadomych, gdze: J lczba ogranczeń aktywnych w punkce ; J m h J ] x ˆ Macerze [ h K zbudowana z gradentów ogranczeń aktywnych mus meć odpowedn rząd, co gwarantue lnową nezależność tych wektorów Gdy rząd te macerzy wynos J to rozwązane λˆ est ednoznaczne Warunek ten sformułowal Facco Mc Cormck War7: Punkt est regularny, eśl stneące w nm gradenty ogranczeń aktywnych są lnowo nezależne Rys 75 lustrue sytuace, kedy warunek ten ne est spełnony Rys 75 Rozwązane ne est punktem regularnym Geometryczne oznacza to, że gradent funkc celu w punkce rozwązana może być reprezentowany przez lnową kombnacę gradentów ogranczeń aktywnych Inne warunk regularnośc: Wykład VII -97-

7 Wocech Grega, Metody Optymalzac War7 (Karlna): Jeżel funkce h (x) są lnowe, to każdy punkt x X o est regularny + + War7 (Slatera): Jeżel funkce h (x) są wypukłe, oraz stnee punkt x : h ( x ) < 0 m punkt x X 0 est regularny, to każdy Jeśl problem optymalzac spełna warunk regularnośc, oznacza to, że wszystke rozwązana są wykrywalne poprze rozwązane układu równań (7) (75) Poedyncze ogranczene est zawsze regularne Badane warunków Kuhna Tuckera sprowadza sę do rozwązana równań generowanych przez warunk komplementarnośc, to est ˆ λ ( ) 0 Na przykład, eśl mamy m ogranczeń nerównoścowych, to wtedy musmy przebadać h m przypadków Przykład 7 Znaleźć mnmum funkc (rys76): przy ogranczenu: x Rozwązane: Funkca Lagrange a est w postac: Warunk K-T są w postac: Do rozważena są dwa przypadk: mn( x x ), L( x, λ ) ( x x ) + λ( x ) x x + λ (x) 0, Ogranczene neaktywne: λ 0 ( x ) 0, lub x, λ 0, λ ( x ) 0 Wykład VII -98-

8 Wocech Grega, Metody Optymalzac Ogranczene aktywne: λ 0 ( x ) 0 Dla perwszego przypadku otrzymuemy: x x 0 co dae rozwązana: x lub x 0 Dla drugego przypadku mamy: x ˆ wtedy ˆ 5 λ, x ˆ wtedy ˆ λ (ne spełnony warunek λ 0) 5 A zatem rozwązanam są pary: ( 0,0), (, ), (,0) Problem neregularnośc ne występue F(x) - x - Rys 76 Funkca celu do przykładu 7 Przykład 7 (do samodzelnego rozwązana) Sprawdzć warunk regularnośc dla problemu max x ( x ) + ( x ) 0 -( x ) + ( x ) 0 w punkce rozwązana (,) Wykład VII -99-

9 Wocech Grega, Metody Optymalzac 7 Warunek koneczny dostateczny Kuhna-Tuckera Każdy punkt regularny będący rozwązanem zadana (7) spełna warunk Kuhna-Tuckera, ale ne każde spełnaące warunk mus być szukanym mnmum zadana (7) Tw 7 Jeśl dla zadana (7) są spełnone w punkce warunk Kuhna-Tuckera, a funkce h (x), Km oraz funkca F(x) są wypukłe, to est rozwązanem 7 Interpretaca geometryczna warunków Kuhna-Tuckera Def7 Kerunek d est dopuszczalny w punkce dla zboru ogranczeń aktywnych Α ( ), gdy: h ( x ˆ + τ d) 0 Α( ), τ [ 0, σ ] ; σ > 0 Rozwaąc w szereg Taylora w otoczenu otrzymuemy: Dla dostateczne małego τ otrzymuemy: h ( + τd) h ( ) + τ h ( ), d + O( τ ) 0 h ( ), d 0 dla A( ) Sektor (stożek) kerunków dopuszczalnych w punkce defnuemy ako: D { d : h ( ), d 0} ; Α( ) Def7 Kerunek d est w punkce kerunkem spadku, gdy: F ( ), d < 0 Sektor (stożek) kerunków spadku w punkce defnuemy ako D { d : F ( ), d < 0} Wykorzystuąc defnce 7 7 można określć sektor (stożek) kerunków poprawy ako D D { : h ( ), d 0 ; F ( ), d < 0} D D d Wykład VII -00-

10 Wocech Grega, Metody Optymalzac Lemat Farkasa (rys77) Nech będze dany w R n zbór wektorów { b, a, I} Nerówność b, x 0 zachodz dla każdego n x R, spełnaącego x 0 a,, wtedy tylko wtedy, gdy stneą λ 0 ; I, take: b + λ a I 0 Rys 77 Ilustraca lematu Farkasa Zastosowane lematu Farkasa dla warunków Kuhna-Tuckera est bezpośredne Podstawamy: b F(), a h () Α( ) Gdy spełnone są warunk K-T, czyl stneą λ 0, to uzyskuemy: Α ( h ( ) F ( ) λ ) Wnosek 7: W punkce spełnaącym warunk K-T, wektor F( ) można przedstawć w postac neuemne kombnac lnowe gradentów ogranczeń aktywnych Wnosek 7: W punkce spełnaącym warunk Kuhna-Tuckera stożek kerunków poprawy est zborem pustym (rys78) co oznacza, że D (Rys 76) n d R, D : F( ), d 0, : h ( ), d 0 D Wykład VII -0-

11 Wocech Grega, Metody Optymalzac Rys 78 Interpretaca geometryczna warunków Kuhna-Tuckera 74 Przypadek ogranczeń równoścowych nerównoścowych Dla zboru dopuszczalnego zdefnowanego ako warunk (7)-(74) przymuą postać X 0 g( x ) : F ( ) + { x : h( x ) 0, g( x ) 0} R m n R p, ˆ h ( ) λ + h( x ) : vˆ R n R k k k p h ( ) 0, g k ( ) 0, ( ˆ λ ) ( ) 0, h ˆ λ 0, m, g k ( ) 0 gdze: K m ; k p, Kn Łatwo stwerdzć, że ogranczene równoścowe dopuszczaą uemną wartość mnożnka Lagrange a Brak ogranczeń nerównoścowych (czyl m0 ) czyn zbędnym warunek komplementarnośc, który w tym Wykład VII -0-

12 Wocech Grega, Metody Optymalzac przypadku est tożsamoścą (nezależny od wartośc λ ) Równeż w przypadku ogranczeń równoścowych mus być ednak spełnony warunek regularnośc Warunk dostateczne otrzymue sę przy założenach dentycznych ak w Tw7 (wypukłość) Bardze ogólne warunk dostateczne (gdy są spełnone w punkce warunk koneczne Kuhna-Tuckera) formułue sę ako: d T F ( ) ˆ + h ( ) + vˆ g ( ) d > 0 A( ) p λ k k, k przy ogranczena doboru kerunku d w postac: T ( h ( )) d 0, A( ), T ( gk ( )) d 0, k p Warunek ten sprowadza sę do zapewnena lokalne wypukłośc funkc Lagrange a 75 Aspekty numeryczne Rozwązane układów równań nerównośc Lagrange a, K-T, czy też wykorzystane akekolwek metody gradentowe wymaga zastosowana procedur numerycznego różnczkowana g g F( ) + λ 0 0 Gradent odpowedno regularne funkc F oblczmy według przyblżone formuły F ( ) ( x ) F( x + ε e ) F( x ), (77) ε gdze,, n, est -tym wersorem, ε 0 est dostateczne małym odchylenem > podczas gdy dokładna wartość wynos: F F( x + ε e ) F( x ( x ) ) + ε δ ε, (78) gdze: L δ ε ε, L > 0, Wykład VII -0-

13 Wocech Grega, Metody Optymalzac co wynka z rozwnęca w szereg Taylora Wylczene gradentu wymaga zatem oblczena wartośc funkc w punkce x dodatkowo wartośc odchylonych w n punktach, w sume w n+ punktach Powyższe wyrażene sugerue, że właścwym wyborem parametru ε est przyęce ego ak namnesze wartośc Ne est to prawdą, eśl weźme sę pod uwagę skończoną precyzę oblczeń numerycznych Wększość oblczeń est wykonywana w podwóne precyz (64 bty): t e d, gdze część ułamkowa est zakodowana przez cąg zero-edynkowy d,d dt t Welkość est nazywana zaokrąglenem ednostkowym oznaczana przedzału [ ] L, U t u Każda lczba rzeczywsta z, gdze L U są odpowedno górną dolną grancą e, może zostać aproksymowana ze względną dokładnoścą : fl( x ) x( + ), u Dla oblczeń w podwóne precyz typowe 5 u 0 Gdy wykonywane są operace na lczbach zmennoprzecnkowych, wynk est też zapsywany ako zmennoprzecnkowy z określonym błędem Gdy zastosuemy powyższe oszacowana dla zależnośc (77) otrzymamy: compf ( x ) F( x ) F( x ) compf( x ) F( x ) F( x ) F( x )u L u, compf( x + ε e ) F( x + ε e ) L u f f gdze L est oszacowanem F ( x ) w obszarze w którym wylczamy gradent f Gdy wykorzystamy te oszacowana w zależnośc (77) (78), otrzymamy oszacowane błędu przyblżena składnków gradentu w postac: z mnmum dla ε 4 f L ul f ε + ε L u, co często w numerycznych procedurach optymalzac est zastępowane przez: L Wykład VII -04-

14 Wocech Grega, Metody Optymalzac ε u Analogczne szacowane zastosowane dla tzw schematu centralnego: dae oszacowane optymalnego kroku F ( x ) F( x + ε e / ε u ) F( x ε e ), ε Wykład VII -05-

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Badania operacyjne w logistyce i zarządzaniu produkcją

Badania operacyjne w logistyce i zarządzaniu produkcją Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badana operacyne w logstyce zarządzanu produkcą cz. I Andrze Woźnak Nowy Sącz Komtet Redakcyny doc. dr Zdzsława Zacłona przewodncząca, prof. dr hab. nż. Jarosław

Bardziej szczegółowo

Dobór procesora sygnałowego w konstrukcji regulatora optymalnego

Dobór procesora sygnałowego w konstrukcji regulatora optymalnego Pomary Automatyka Robotyka 10/2008 Dobór procesora sygnałowego w konstrukc regulatora optymalnego Marusz Pauluk Potr Bana Darusz Marchewka Mace Rosół W pracy przedstawono przegląd dostępnych obecne procesorów

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A

P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn

Bardziej szczegółowo

OPTYMALNY SYSTEM REKRUTACJI KANDYDATÓW DO SZKÓŁ. 1. Wstęp

OPTYMALNY SYSTEM REKRUTACJI KANDYDATÓW DO SZKÓŁ. 1. Wstęp B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2005 Zbgnew ŚWITALSKI* OPTYMALNY SYSTEM REKRUTACJI KANDYDATÓW DO SZKÓŁ Przedstawono uogólnene algorytmu Gale a Shapleya, wyznaczaącego optymalny

Bardziej szczegółowo

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym.

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym. =DGDQLHSROHJDMFHQDSRV]XNLZDQLXPDNV\PDOQHMOXEPLQLPDOQHMZDUWRFLIXQNFMLZLHOX ]PLHQQ\FKSU]\MHGQRF]HVQ\PVSHáQLHQLXSHZQHMLORFLQDáR*RQ\FKZDUXQNyZ UyZQDOXE QLHUyZQRFLQRVLQD]Z]DGDQLDRSW\PDOL]DF\MQHJROXE]DGDQLDSURJUDPRZDQLD

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

Kolokwium poprawkowe z Optymalizacji II (Ściśle tajne przed godz. 16 : stycznia 2016.)

Kolokwium poprawkowe z Optymalizacji II (Ściśle tajne przed godz. 16 : stycznia 2016.) Kolokwum z Optymalzacj II Ścśle tajne przed godz 4 : 00 8 grudna 05) Proszę uważne przeczytać treść zadań Na ocenę bardzo duży wpływ będze mała czytelność rozwązań poprawność uzasadnena każdej odpowedz

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

1. Komfort cieplny pomieszczeń

1. Komfort cieplny pomieszczeń 1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

1. Wstęp. 2. Macierz admitancyjna.

1. Wstęp. 2. Macierz admitancyjna. 1. Wstęp. Znaomość stanu pracy SEE est podstawowym zagadnenem w sterowanu pracą systemu na wszystkch etapach: proektowana, rozwou, planowana stanów pracy oraz w czase beżące eksploatac. Kontrola rozpływów

Bardziej szczegółowo

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne

Bardziej szczegółowo

Algorytmy szukania równowag w grach dwumacierzowych

Algorytmy szukania równowag w grach dwumacierzowych Rozdzał 2 Algorytmy szukana równowag w grach dwumacerzowych 2. Algorytm Lemke-Howsona Dzseszy wykład pośwęcony będze temu, ak szukać równowag w grach dwumacerzowych. Poneważ temu były uż w wększośc pośwęcone

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy

Bardziej szczegółowo

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu. ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,

Bardziej szczegółowo

Optymalizacja belki wspornikowej

Optymalizacja belki wspornikowej Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Optymalizacja funkcji

Optymalizacja funkcji MARCIN BRAŚ Opymalzacja funcj ) Opymalzacja w obszarze neoranczonym WK: y. y WW: > > y y Znaleźć mnmum funcj: (, y) ( ) y ( ) y y ( ) y solve, P(, ) y y solve, y ( ) y ( ) y y y ( ) y W W W > (, y) > Op.

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE całki pojedyncze

CAŁKOWANIE NUMERYCZNE całki pojedyncze CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę

Bardziej szczegółowo

Markowa. ZałoŜenia schematu Gaussa-

Markowa. ZałoŜenia schematu Gaussa- ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego: ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1 Wykład 3 3. Otymalizacja z ograniczeniami Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia otymalizacyjnego: g i HxL 0, i = 1, 2,..., m (3.1)

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Triopol jako gra konkurencyjna i kooperacyjna

Triopol jako gra konkurencyjna i kooperacyjna Unwersytet Warszawsk Wydzał Nauk Ekonomcznych Joanna Dys Nr albumu: 996 Tropol jako gra konkurencyjna kooperacyjna Praca lcencjacka na kerunku: Ekonoma Praca wykonana pod kerunkem dra Maceja Sobolewskego

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014 EUROELEKTRA Ogólnopolska Olmpada Wedzy Elektrycznej Elektroncznej Rok szkolny 232 Zadana z elektronk na zawody III stopna (grupa elektronczna) Zadane. Oblczyć wzmocnene napęcowe, rezystancję wejścową rezystancję

Bardziej szczegółowo

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1

Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1 Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Metody oblczenowe wykład nr metody rozwązywana równań nelnowych zadane optymalzacj Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Postać równana

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH RYNEK CIEŁA 03 DIANOSYKA YMIENNIKÓ CIEŁA Z UIARYODNIENIEM YNIKÓ OMIARÓ EKLOAACYJNYCH Autorzy: rof. dr hab. nż. Henryk Rusnowsk Dr nż. Adam Mlejsk Mgr nż. Marcn ls Nałęczów, 6-8 paźdzernka 03 SĘ Elementam

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Metody numeryczne, III rok Informatyki, 2013/2014

Metody numeryczne, III rok Informatyki, 2013/2014 Metody numeryczne, III rok Informatyk, 2013/2014 1. Rozwązywane równań nelnowych 2. Arytmetyka zmennopozycyjna 3. Błędy w oblczenach. Uwarunkowane zadana. Numeryczna poprawność stablność algorytmu 4. Rozwązywane

Bardziej szczegółowo

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 1 Ćwczene 2: Perceptron WYMAGANIA 1. Sztuczne sec neuronowe budowa oraz ops matematyczny perceptronu (funkcje przejśca perceptronu), uczene perceptronu

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x f l Ry. 3. Rozpatrywany łuk parabolczny 4 f l x x 2 y x l 2 f m l 2 m y x 4 2 x x 2 2 2,86 x,43 x 2 tg y x dy 4 f l 2 x l 2 4 2 2 x 2 2,86,86 x Mechanka Budowl Projekty Zgodne ze poobem rozwązywana układów

Bardziej szczegółowo