PROGNOZOWANIE STOPY ZYSKU PORTFELA AKCJI. 1. Wstęp

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROGNOZOWANIE STOPY ZYSKU PORTFELA AKCJI. 1. Wstęp"

Transkrypt

1 B A D A N I A O P A C Y J N I D C Y Z J Nr 004 Ja MIKUŚ POGNOZOWANI SOPY ZYSKU POFLA AKCJI Oreśoo sopę zysu porfea acj zarówo w orese rerospeywym ja progozowaym. Wyorzysując aprosymację erpoacyją wyzaczoo śred błąd progozy ex ae sopy zysu porfea acj. Słowa uczowe: progozowae operaor predycj porfe. Wsęp Decyzje doyczące wesowaa w papery waroścowe są decyzjam podejmowaym w waruach epewośc. W syuacjach epewych ze wzgędu a sąpy zbór formacj probem progozowaa jes zacze rudejszy od progozowaa w syuacjach osowych. Główą cechą syuacj epewych jes bra formacj o zmeych rozładach prawdopodobeńsw órym oe podegają. Zwye zae są jedye przedzały w órych warośc zmeych mogą być zaware eweuae szacuowe prawdopodobeńswo ch wysępowaa. Sporządzee progozy dosarcza pewego rodzaju formacj co może przyczyć sę do zwęszea sueczośc podejmowaa decyzj zwłaszcza w rozważaej syuacj. Zauważmy że wesora gełdowego eresuje sopa zysu órą orzyma od zaagażowaego apału. Sopa zysu może w orese rerospeywym przyjmować róże warośc z oreśoym prawdopodobeńswam. Warośc e zaeżą od syuacj a ryu paperów waroścowych m.. od ogóej syuacj gospodarczej [5]. Użyeczą marą sopy zysu jes zw. oczewaa sopa zwrou oreśoa z defcj wzorem m p Isyu Orgazacj Zarządzaa Poecha Wrocławsa u. Smouchowsego Wrocław.

2 68 J. MIKUŚ gdze: operaor warośc oczewaej -a możwa warość sopy zysu p prawdopodobeńswo osągęca -ej możwej warośc sopy zysu. Za marę ryzya przyjmuje sę zwye warację oraz odchyee sadardowe. Waracja oreśoa wzorem m V [ ] p paperu waroścowego jes ja wdać ważoą średą wadraów odchyeń możwych sóp zysu od oczewaej sopy zysu. Przecęa weość sopy zysu w orese progozowaym może być oreśoa a podsawe aazy rerospeywej różych sóp zysu. Podsawą racjoaego wesowaa w papery waroścowe jes masymazacja sopy zysu mmazacja ryzya. Nauraa jes węc preferecja acj z wyższą oczewaą sopą zysu przy ym samym ryzyu. Przy ej samej oczewaej sope zysu wesor preferuje acje o ższym ryzyu. Przy zaupe acj w przypadu: wyższe ryzyo wyższa oczewaa sopa zysu moża posłużyć sę zaym z eoomer współczyem zmeośc C óry w oeśce rozważaego probemu oreśa ryzyo jae przypada a jedosę sopy zysu paperu waroścowego: C S gdze: S odchyee sadardowe oczewaa sopa zysu paperu waroścowego. Ławo zauważyć że weość ryzya przypadająca a jedosę sopy zysu powa być ja ajmejsza. yzyo wesowaa moża zmejszyć dooując zaupu u paperów waroścowych. Iaczej mówąc gdy wesor posada porfe paperów waroścowych órego sruura zapewa masymazację dochodu całowego wesora bezpeczeńswo wesycj oraz dużą płyość waorów w m zawarych wedy ryzyo wesowaa może sę zmejszyć. W sruurze porfea paperów waroścowych aeży uwzgędć e yo sopę zysu ryzyo ecz róweż oreację sóp zysu órej marą jes współczy oreacj. Współczy e w przypadu porfea złożoego z dwóch acj A B jes oreśoy asępująco [5]: r m p S S 3

3 Progozowae sopy zysu gdze: r współczy oreacj perwszej drugej acj p prawdopodobeńswo wysąpea możwych sóp zysu acj oczewaa sopa zysu perwszej acj oczewaa sopa zysu drugej acj możwe sopy zysu perwszej acj możwe sopy zysu drugej acj S odchyee sadardowe perwszej acj S odchyee sadardowe drugej acj. Przy osrucj porfea waroścowego orzysamy z asępującej erpreacj współczya oreacj paperów waroścowych: jeże współczy oreacj wyos co ozacza pełą pozyywą oreację sóp zysu o da uęca ryzya e aeży upować soreowaych w e sposób acj jeże współczy oreacj wyos co erpreuje sę jao pełą egaywą oreację sóp zysu pae acj jes w peł bezpeczy jeże współczy oreacj speła erówość < r < aeży zasaowć sę ad możwoścą doboru bardzej opymaego porfea. Zauważmy że w rozważaych sposobach obczaa oczewaej sopy zysu odchyea sadardowego oraz współczya oreacj sóp zysu zob. wzory 3 ezbęda jes zajomość możwych do zreazowaa sóp zysu oraz prawdopodobeńsw wysąpea różych saów gospodar. Uzysae ych formacj e zawsze jes możwe. W aej syuacj sopa zysu może być wyzaczoa za pomocą sóp zysu osągęych w orese rerospeywym. Wymaga o modyfacj wzorów służących do szacowaa oczewaej sopy zysu odchyea sadardowego sopy zysu S V oraz współczya oreacj sóp zysu 3. Przyjmują oe asępującą posać: S [ ] 4 r S S gdze: cza oresów z przeszłośc z órych pochodzą formacje sopa zysu paperu waroścowego osągęa w -ym orese

4 70 J. MIKUŚ sopa zysu perwszej acj osągęa w -ym orese sopa zysu drugej acj osągęa w -ym orese oczewaa sopa zysu perwszej acj [ ] oczewaa sopa zysu drugej acj [ ] S odchyee sadardowe perwszej acj S odchyee sadardowe drugej acj. Ja już zazaczyśmy podsawą racjoaego wesowaa w papery waroścowe jes masymazacja sopy zysu mmazacja ryzya. W ceu zwęszea sopy zysu zmejszea ryzya zwązaego z wesowaem w acje moża dooać zaupu porfea acj. W przypadu dwóch acj sopa zysu ryzyo oreśoe są asępującym wzoram [5]: p K + K 5 gdze: p S S p K + K S + K K S S r 6 sopa zysu porfea dwóch acj S p ryzyo odchyee sadardowe porfea dwóch acj K udzał waroścowy perwszej acj w porfeu K udzał waroścowy drugej acj w porfeu oczewaa sopa zysu perwszej acj oczewaa sopa zysu drugej acj S odchyee sadardowe perwszej acj S odchyee sadardowe drugej acj r współczy oreacj perwszej drugej acj. Mmaa warość ryzya porfea dwóch acj osągaa jes da asępujących udzałów acj w porfeu zob. wzór 6: K S K S SSr + S S S r S SSr 7 S + S SSr K + K Zauważmy że zob. wzór 6 ryzyo porfea dwóch acj jes ym mejsze m bardzej współczy oreacj mędzy acjam zbża sę do.

5 Progozowae sopy zysu Kosrucja operaora predycj sopy zysu porfea acj Oreśee sopy zysu porfea acj órej marą jes zw. oczewaa sopa zwrou p oraz ryzya merzoego odchyeem sadardowym S p w orese progozowaym wymaga zajomośc oczewaej sopy zysu perwszej acj oczewaej sopy zysu drugej acj udzałów waroścowych K K odpowedo perwszej drugej acj w porfeu odchyeń sadardowych perwszej acj S oraz drugej acj S ja róweż współczya oreacj ych acj r zob. wzory Iaczej mówąc wyzaczee progozy sopy zysu porfea dwóch acj p p + wymaga zajomośc asępujących progoz: + + K K + K K + Do wyzaczea progozy ryzya S p S p ezbęda jes zajomość progozy udzałów waroścowych perwszej drugej acj w porfeu K + K odchyeń sadardowych perwszej drugej acj S S + S S + oraz współczya oreacj sóp zysu r r +. Do wyzaczea progozy p p + S p S p zdeermowaej + wymeoym progozam wyorzysać aeży meody progozowaa a podsawe asępujących szeregów czasowych: K K... K K K + K K... K K K + S S... S S S + S S... S S S + r... r r r + r. Osaecze progozy p sopy zysu p oraz progoza Ŝ p ryzya S p porfea dwóch acj wyrażają sę wzoram:.

6 7 J. MIKUŚ K K p + 8 K S + K S KKSS r S p + 9 Progozy sładowych wzorów 8 9 oreśających: udzał waroścowy perwszej acj w porfeu K udzał waroścowy drugej acj w porfeu K oczewaą sopę zysu perwszej acj oczewaą sopę zysu drugej acj odchyee sadardowe perwszej acj S odchyee sadardowe drugej acj S oraz współczy oreacj perwszej drugej acj r wyzacza sę a ogół różym meodam. Meody e zdeermowae są własoścam podaych szeregów czasowych. Jeże p.: w szeregu czasowym zaobserwujemy red edecję rozwojową wahaa przypadowe do progozowaa możemy wyorzysać modee aaycze oraz modee adapacyje: mode owy Hoa mode redu pełzającego []; warośc szeregu czasowego worzą cąg geomeryczy ub szereg geeroway jes przez rzywą wyładczą do progozowaa moża wyorzysać meodę esrapoacj średego empa wzrosu oparego a cągu desów łańcuchowych; wyorzysując średą geomeryczą cągu desów łańcuchowych orzymujemy warość odpowedego predyora [3]; rozważay szereg czasowy aeży do esezoowych szeregów czasowych jes geeroway przez mode AIMA p d q o da prayczych obczeń progoz podejśce opare a wyorzysau ego modeu w posac rówaa różcowego jes ajprossze obserwację z + geerowaą przez proces ϕ βz θβa gdze ϕ β ϕβ d moża wyrazć bezpośredo za pomocą rówaa różcowego [] z + ϕ z ϕ p+ d z + p d θa +... θqa + q + a + 0 Progoza z o ajmejszym błędze średowadraowym z wyprzedzeem jes waruową waroścą oczewaą zmeej osowej z + w momece z. z + ]. Przechodząc we wzorze 0 do waruowych warośc oczewaych [ w momece wprowadzając ozaczea [a + ] [ a + ] [ z + ] [ z + ] orzymujemy ] z ϕ [ z ] ϕ [ z ] θ [ a ]... θ [ a ] [ a ] [ z + + p+ d + p d + q + q + + Aby obczyć waruowe warośc oczewae wysępujące w wyrażeu aeży zauważyć że jeże j jes czbą całową dodaą o zob. []: z z + ozacza jedą ze sładowych wzorów 8 9.

7 Progozowae sopy zysu [ z ] [ z ] z j 0... j j j [ z ] [ z ] z j... + j + j j [ a ] [ a ] j + j j [ a ] [ a ] a z z j 0... j j j j j. Sład po prawej sroe wzoru raujemy zaem zgode z asępującym regułam: z j j 0... w momece już zae pozosawamy bez zmay z +j j... jeszcze e zae zameamy ch progozam w momece z j a j j 0... już zae oreśamy jao z j z j a +j j... jeszcze e zae zasępujemy przez zera. Z podaych reguł wzoru 0 wya że jeże operaor średej ruchomej θβ jes rzędu q o rówaa progoz da z z... z q będą zaeżały bezpośredo od a aomas da progoz z węszym wyprzedzeem aej bezpośredej zaeżośc e ma. W prayce w weu przypadach ezbęde jes wyzaczee progozy da różych wyprzedzeń p. a 3... roów aprzód. Moża wówczas orzysać ze wzoru podaych reguł. Wyorzysae wzoru wymaga zajomośc wag ϕ... ϕ p+ d θ θ... θq. Wag e moża wyorzysać róweż do obczea progozy puowej warośc z + w momece + ze wzoru + z + + a + z ψ gdze: z + progoza warośc z ++ w momece a + z + z błąd progozy a jede ro aprzód ψ ψ ϕ θ ϕψ + ϕ θ ψ j ϕ ψ j ϕ p+ dψ j p d θ j gdze: ψ 0 ψ j 0 da j < 0 θ j 0 da j > q. Jeże jes węszą z czb p + d q o da j > wag ψ spełają rówae różcowe

8 74 J. MIKUŚ j j + ϕψ j + + p+ d ψ ϕ ψ... ϕ ψ. j p d Progozę przedzałową da zadaej z góry warygodośc progozy p osruuje sę w asępujący sposób []: gdze: P / ± z ± u / + + ε ψ j Sa j z < z < z + P ε z S a esymaor waracj σ a u ε / way rzędu ε/ sadardowego rozładu ormaego. ozparywae doychczas porfee zawerały jedye dwa sład. W sład porfea może wchodzć róweż wee sładowych. W daszym cągu rozważymy węc porfe acj mocy u u >>. Aby da porfea u acj orzymać progozę sopy zysu aeży posłużyć sę meodą oejego dołączaa. Ze wzoru 8 orzymujemy począowo progozy par acj asępe owe ch pary proces oyuuje sę dopóy dopó orzyma sę osaeczą progozę p sopy zysu p porfea acj. Progozę ę moża róweż orzymać orzysając z asępujących wzorów zob. [4]: 3 3 K K K K p [ ] p K K K + K + K + K p K4{ K3[ K K + K + K ] 4 } 5 + K3 + K4 gdze p progoza sopy zysu porfea acj. W prayce wygode posługwać sę wzgędym średm błędem predycj Φ óry jes rówy błędow średemu predycj podzeoemu przez warość progozy z. [var β ] Φ gdze β błąd predycj sopy zysu perwszej acj drugej acj. /

9 Progozowae sopy zysu Ławo zauważyć że Φ jes zmeą osową órej warośc zdeermowae są przez progozę oraz przez rzeczywsą reazację zmeej progozowaej w orese a óry wyzacza sę progozę. Ja wdać choć sama defcja błędu progozy z formaego puu wdzea jes oczywsa e pozwaa oa jeda a obczee błędu progozy ze wzgędu a bra warośc rzeczywsej w orese progozowaym. Błąd a moża jeda w pewych przypadach przy odpowedch założeach oszacować. Wyorzysując aazę rerospeywą a ścśej wyrye w jej race prawdłowośc doyczące oczewaej sopy zysu oejych acj rozważaego porfea progozy wygasłe moża za pośredcwem błędu progozy ex pos dooać jego oszacowaa ex ae co w osewecj umożw wyzaczee w orese progozowaym wzgędego błędu średego predycj Φ. Zajomość ego błędu będze porzeba do osrucj ryerum jaośc progozy sopy zysu porfea acj. Nech zmea progozowaa przyjmuje w przedzae obserwacj asępujące warośc: j a j ozaczają jej progozy wygasłe w chwach... j... doyczące acj. Podzemy przedzał obserwacj a podzborów < : {... } { }... { } wyzaczmy w ażdym z ch śred błąd progozy mer doładośc ex pos zdefoway jao perwase wadraowy z waracj błędu z. [4]: / ; ; / ; ; ] [var / ; ; / ; ; ] [var / ; ; / ; ; ] [var +.

10 76 J. MIKUŚ W osewecj orzymujemy cąg warośc / / [var ; ; ] [var ; ; ]... [var ; ; ] średego błędu progozy oreśoego odpowedo a podzborach.... Wyzaczee błędu progozy oczewaej sopy zysu -ej acj sprowadza sę / do zaezea średego błędu progozy [var ] w orese progozowaym { m} w puach eżących poza zborem { r... }. Iaczej mówąc wyzaczee błędu progozy w przedsawoej propozycj sprowadza sę do aprosymacj erpoacyjej. Błąd e może być wyzaczoy p. za pomocą przeszałcoego erpoacyjego wzoru Lagrage a przeszałcoego erpoacyjego wzoru Newoa. Wzgędy błąd śred predycj sopy zysu -ej acj w orese progozowaym wyraża sę wzorem zob. / Φ / [var ] 3 gdze progoza oczewaej sopy zwrou -ej acj w orese progozowaym. Wzgędy śred błąd progozy sopy zysu porfea -acj Φ P w orese progozowaym wyraża sę wzorem gdze β. P; P; [var β ] Φ P P; / Bbografa [] BOX G..P. JNKINS G.M. Aaza szeregów czasowych. Progozowae serowae PWN Warszawa 983. [] CIŚLAK M. Progozowae gospodarcze. Meody zasosowaa PWN Warszawa. [3] ČYKIN.M. Sasčesje meody progozrovaja Sasa Mosva 975. [4] GALANC. MIKUŚ J. he mehod for cosrucg a combed forecas e boc Advaces Modeg ad Aayss 99 C Vo. 35 No. 4. [5] SOBCZYK M. Maemaya fasowa Agecja Wydawcza Pace Warszawa 000.

11 Progozowae sopy zysu Forecasg of he porfoo prof rae he prof rae of he porfoo of shares rerospecve ad forecased perods s deermed. Aeo s pad o he dffere forecasg mehods ag o accou he properes of he forecasg operaor me seres compoes of he prof rae ad rs of porfoo of shares. o deerme a prof rae of some shares forecas a mehod of successve addg s proposed obag ay par shares forecas he ew pars. he process s coued u he fa forecas of he prof rae s obaed. Usg he approxmao mehod apped o dscree ses he mea reave error of ex ae forecas of he prof rae of he porfoo of shares s deermed. Key words: progosg predco operaor porfoo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu.

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu. W 1 Rachu maroeoomcze 1. Produ rajowy bruo Sprzedaż fala - sprzedaż dóbr usług osumeow lub frme, órzy osaecze je zużyują, e poddając dalszemu przeworzeu. Sprzedaż pośreda - sprzedaż dóbr usług zaupoych

Bardziej szczegółowo

Dane modelu - parametry

Dane modelu - parametry Dae modelu - paramer ˆ Ozaczea zmech a0 ax ax - osz w s. zł Budowa modelu: x - welość producj w seach o x - welość zarudea w osobach Meoda MNK Dae: x x 34 9 0 60 34 9 0 60 35 3 7 35 3 7 X T 0 9 3 4 5 3

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau

Bardziej szczegółowo

FUNKCJE ZMIENNYCH LOSOWYCH. Uwagi o rozkładzie funkcji zmiennej losowej jednowymiarowej.

FUNKCJE ZMIENNYCH LOSOWYCH. Uwagi o rozkładzie funkcji zmiennej losowej jednowymiarowej. L.Kowals Fucje zmeych losowych FUNKCJE ZMIENNYCH LOSOWYCH Uwag o rozładze fucj zmeej losowej jedowymarowej. Jeśl - soowa, o fucj prawdopodobeńswa P( x ) p, g - dowola o fucja prawdopodobeńswa zmeej losowej

Bardziej szczegółowo

NOWE MOTODY MODELOWANIA SAMOPODOBNEGO RUCHU W SIECIACH W OPARCIU O PROCESY POISSONA Z MARKOWSKĄ MODULACJĄ 1

NOWE MOTODY MODELOWANIA SAMOPODOBNEGO RUCHU W SIECIACH W OPARCIU O PROCESY POISSONA Z MARKOWSKĄ MODULACJĄ 1 STUDIA INFORMATICA 005 Voume 6 Number (63) Rober WÓJCICKI Poecha Śąsa, Isyu Iformay NOWE MOTODY MODELOWANIA SAMOPODOBNEGO RUCHU W SIECIACH W OPARCIU O PROCESY POISSONA Z MARKOWSKĄ MODULACJĄ Sreszczee.

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM

SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM Arur MACIĄG Sreszczee: W pracy przedsawoo echk aalzy szeregów czasowych w zasosowau do plaowaa progozowaa produkcj w przewórswe spożywczym.

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Wybór projektu inwestycyjnego ze zbioru wielu propozycji wymaga analizy następujących czynników:

Wybór projektu inwestycyjnego ze zbioru wielu propozycji wymaga analizy następujących czynników: Wybór projeu wesycyjego ze zboru welu propozycj wymaga aalzy asępujących czyów:. Korzyśc z przyjęca do realzacj daego projeu. 2. Ryzya z m zwązaego. 3. Czasu, óry powoduje zmaę warośc peądza. Czy czasu

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 )

R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 ) Maeayka fasowa ubezpeczeowa Ćwczea 4 IE, I rok SS Tea: achuek re oęce rey Warość począkowa końcowa rey ey o sałych raach ea o zeych raach ea uogóoa osawowe poęca rachuku re ea es o cąg płaośc okoywaych

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k Statystya Wyład Adam Ćmel A4 5 cmel@agh.edu.pl Pojęce statysty Pojęce statysty w statystyce matematyczej jest odpowedem pojęca zmeej losowej w rachuu prawdopodobeństwa. Nech X(X,...,X ) będze próbą z pewej

Bardziej szczegółowo

Reprezentacja krzywych...

Reprezentacja krzywych... Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne cał Padaows Isu Tecolog Iormacjc w Iżer Lądowej Wdał Iżer Lądowej Poleca Kraowsa Rówaa różcowe wcaje W ajprossm prpadu posuujem ucj jedej meej recwsej x w posac: ( x órej pocoda ( x ma spełać rówae dae

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Symulacyjne modelowanie jakości działania użytkownika systemu komputerowego w warunkach ograniczonego czasu na realizację zadania

Symulacyjne modelowanie jakości działania użytkownika systemu komputerowego w warunkach ograniczonego czasu na realizację zadania BIULEYN INSYUU AUOMAYKI I ROBOYKI NR 9, 003 Symuacyje modeowae jaośc dzałaa użytowa systemu omputerowego w waruach ograczoego czasu a reazację zadaa Ato M. DONIGIEWICZ Istytut eeformaty Automaty WA u.

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Niech Φ oznacza funkcję zmiennej x zależną od n + 1 parametrów a 0, a 1, K, a n, tj.

Niech Φ oznacza funkcję zmiennej x zależną od n + 1 parametrów a 0, a 1, K, a n, tj. III. INTERPOLACJA 3.. Ogóe zadae terpoac Nech Φ ozacza fucę zmee x zaeżą od + parametrów a 0, a, K, a, t. Defca 3.. Zadae terpoac poega a oreśeu parametrów a ta, żeby da + da- ych par ( x, f ( x ( 0,,...,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

Wybór najlepszych prognostycznych modeli zmienności finansowych szeregów czasowych za pomocą testów statystycznych

Wybór najlepszych prognostycznych modeli zmienności finansowych szeregów czasowych za pomocą testów statystycznych UNIWERSYTET EKONOMICZNY W POZNANIU WYDZIAŁ INFORMATYKI I GOSPODARKI ELEKTRONICZNEJ Wybór ajlepszych progosyczych model zmeośc fasowych szeregów czasowych za pomocą esów saysyczych Elza Buszkowska Promoor:

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84 Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,

Bardziej szczegółowo

i i i = (ii) TAK sprawdzamy (i) (i) NIE

i i i = (ii) TAK sprawdzamy (i) (i) NIE Egzam uaruszy z aźdzera 009 r. Maemaya Fasowa Zadae ( ) a a& a ( Da) a&& ( Ia) a a&& D I a a&& a a ( ) && ( ) 0 a a a 0 ( ) a 4 0 ( ) a () K srawdzamy () ( ) a& a ( ) a ( ) a&& a&& ( ) a&& ( ) a&& () NIE

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

(liniowy model popytu), a > 0; b < 0

(liniowy model popytu), a > 0; b < 0 MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

Identyfikacja i ocena ryzyka wykonania planu produkcji w przedsiębiorstwie górniczym

Identyfikacja i ocena ryzyka wykonania planu produkcji w przedsiębiorstwie górniczym Prof. dr hab. ż. HENRYK PRZYBYŁA, dr hab. ż. STANISŁAW KOWALIK Poltecha Śląsa, Glwce Idetyfacja ocea ryzya wyoaa plau producj w przedsęborstwe górczym Artyuł opował prof. dr hab. ż. Adrzej Karbow. Wprowadzee

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

VI. TWIERDZENIA GRANICZNE

VI. TWIERDZENIA GRANICZNE VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) Praca Domowa:.. ( α β ( α β α β ( ( α Γ( β α,,..., ~ B, Γ + f Γ ( α + α ( α + β + ( α + β Γ α + β Γ α + Γ α + β Γ α + + β E Γ α Γ β Γ α Γ α + + β Γ α + Γ β α α + β β α β Γ α + β Γ α + Γ α + β Γ α + + β

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

Immunizacja portfela

Immunizacja portfela Immuzaja porfela Sraega mmuzaj porfelowej [Redgo 9] polega a sworzeu porfela srumeów sało upoowh spełająego dwa waru: - spade e srumeów fasowh wwoła wzrosem sóp spo jes w peł reompesowa przez wzros dohodów

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jacka wykład II, 3.05.016 PORÓWNANIE WIĘCEJ NIŻ DWÓCH POPULACJI TESTY NIEPARAMETRYCZNE Pla a dzsaj 1. Porówywae węcej ż dwóch populacj test jedoczykowej aalzy waracj (ANOVA).

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

SYNTEZA MODELI I ALGORYTMÓW IDENTYFIKACJI SYTUACJI W ZARZĄDZANIU POTOKAMI TRANSPORTOWYMI

SYNTEZA MODELI I ALGORYTMÓW IDENTYFIKACJI SYTUACJI W ZARZĄDZANIU POTOKAMI TRANSPORTOWYMI Tadeusz Csows Łuasz Wojcechows YNTEZA MODELI I ALGORYTMÓW IDENTYFIKACJI YTUACJI W ZARZĄDZANIU OTOKAMI TRANORTOWYMI reszczee. W ejszej pracy dooao syezy mode agorymów deyfacj syuacj przy orogoaej sruurze

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

STATYSTYKA OPISOWA. Statystyka. Losowanie (pomiar)

STATYSTYKA OPISOWA. Statystyka. Losowanie (pomiar) STATYSTYKA OPISOWA Statytyka Statytyka opowa Statytyka matematycza Loowae (pomar) Popuacja geeraa (rezutaty potecjaych pomarów) Próbka (rezutaty pomarów) Statytyka opowa zajmuje ę wtępym opracowaem wyków

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji. eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau

Bardziej szczegółowo

Matematyka II. x 3 jest funkcja

Matematyka II. x 3 jest funkcja Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

MODELE FUNKCJONALNE WYRÓWNANIA POMIARÓW OKRESOWYCH PRZY WYZNACZANIU PRZEMIESZCZEŃ POWIERZCHNI TERENU

MODELE FUNKCJONALNE WYRÓWNANIA POMIARÓW OKRESOWYCH PRZY WYZNACZANIU PRZEMIESZCZEŃ POWIERZCHNI TERENU NFRSRUKUR EKG ERENÓW WEJSKCH NFRSRUCURE ND ECGY F RUR RES Nr 6/, SK KDE NUK, ddzał w Kraowe, s. 77 86 Komsja echczej rasruury Ws odee ucjoae... adeusz Gargua DEE FUNKCJNNE WYRÓWNN RÓW KRESWYCH RZY WYZNCZNU

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

SPOŁECZNA AKDAEMIA NAUK W ŁODZI

SPOŁECZNA AKDAEMIA NAUK W ŁODZI SPOŁECZNA AKDAEMIA NAUK W ŁODZI KIERUNEK STUDIÓW: ZARZĄDZANIE PRZEDMIOT: METODY ILOŚCIOWE W ZARZĄDZANIU (MATERIAŁ POMOCNICZY PRZEDMIOT PODSTAWOWY ) Łódź Sps treśc Moduł Wprowadzee do metod loścowych w

Bardziej szczegółowo

Podstawy matematyki finansowej i ubezpieczeniowej

Podstawy matematyki finansowej i ubezpieczeniowej Podstawy matematy fasowej ubezpeczeowej oreślea, wzory, przyłady, zadaa z rozwązaam KIELCE 2 SPIS TREŚCI WSTEP... 7 STOPA ZWROTU...... 9 2 RACHUNEK CZASU W MATEMATYCE FINANSOWEJ. 0 2. DOKŁADNA LICZBA DNI

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

8.1 Zbieżność ciągu i szeregu funkcyjnego

8.1 Zbieżność ciągu i szeregu funkcyjnego Rozdzał 8 Cąg szereg fukcyje 8.1 Zbeżość cągu szeregu fukcyjego Dla skrócea zapsu przyjmjmy pewe ozaczee. Defcja. Nech X, Y. Przez Y X ozaczamy zbór wszystkch fukcj określoych a zborze X o wartoścach w

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Równania dynamiki maszyn prądu stałego w jednostkach względnych Jako podstawę analizy przyjmijmy równania obwodu twornika:

Równania dynamiki maszyn prądu stałego w jednostkach względnych Jako podstawę analizy przyjmijmy równania obwodu twornika: óaa ya aszy pą sałego jeosach zgęych Jao posaę aazy pzyjjy óaa obo oa: obo zbzea: ( ) e ( ) aość sły eeoooyczej yającej z oboó a: e oe yozoy aszye: M e Bazo ygoy jes zaps óań jeosach zgęych. Jao eośc oesea

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

IV. ZMIENNE LOSOWE DWUWYMIAROWE

IV. ZMIENNE LOSOWE DWUWYMIAROWE IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona: Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t

Bardziej szczegółowo

R k Punkty stanowiące granice poszczególnych klas ustala się z dokładnością do /2, gdzie jest

R k Punkty stanowiące granice poszczególnych klas ustala się z dokładnością do /2, gdzie jest Nech Elemey Saysy Opsowej Szereg rozdzelczy hsogram łamaa częsośc ędze -elemeową próą Rozsępem z pró azywamy R ma m rzy węszej lczośc pró ( 30) w celu uławea aalzy daych warośc lczowe pró grupuje sę w

Bardziej szczegółowo