STATYSTYKA OPISOWA WYKŁAD 3,4

Wielkość: px
Rozpocząć pokaz od strony:

Download "STATYSTYKA OPISOWA WYKŁAD 3,4"

Transkrypt

1 STATYSTYKA OPISOWA WYKŁAD 3,4 5

2 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s (w ; w 2 ) x& s = (w 2 ; w 3 ) x& 2 2 s 2 = (w r ; w r+ ) x& r r s r = razem

3 X badaa cecha, lczba daych statystyczych, r lczba przedzałów (klas), (w ; w + ) przedzały (klasy), x& środk przedzałów (klas), lczba daych ależących do przedzału (w ; w + ), s lczebośc skumulowae (s = ). b długość klasy 7

4 Lczbę klas r moża ustalć oretacyje wg astępującej tabel: Lczba daych Lczba klas r >

5 Będzemy przyjmować, że klasy są jedakowej długośc. 9

6 Długość klas b b = rozstęp = r x max r x m (wyk dzelea zawsze ależy zaokrąglć w górę do klasy dokładośc daych statystyczych). 20

7 Jeśl stosujemy przedzały otwarte to lewy koec perwszej klasy w wyzaczamy ze wzoru w = x m α - klasa dokładośc daych. Koleje końce klas wyzaczamy dodając do poprzedego końca długość klasy b tz. w = 2 w + b, w3 = w2 + b, td. α 2 2

8 Średa (arytmetycza) x = r o = x 22

9 23 Domata ( ) ( ) b w d d d d d d d d + + = + w d lewy koec klasy zawerającej domatę, d umer klasy zawerającej domatę, d lczebość klasy zawerającej domatę, b długość klas,

10 Uwaga Wzoru e moża stosować gdy klasa ajlczejsza jest perwsza lub ostata. 24

11 Medaa m e b = wm + sm 2 w m lewy koec klasy zawerającej medaę m umer klasy zawerającej medaę m lczebość klasy zawerającej medaę s m- lczebość skumulowaa klasy m m 25

12 Kwartyle perwszy kwartyl: q drug kwartyl: trzec kwartyl: q b = wq + s q 4 q q 2 = m e b = wq + 3 s 3 q ozaczea aalogcze jak przy medae. q 3 26

13 Uogóleam meday kwartyl są decyle (podzał a 0 rówych częśc) percetyle (podzał a 00 rówych częśc). 27

14 Waracja s r 2 o = = x 2 x 28

15 Współczyk asymetr a = r = o x x 3 s 3 29

16 lub x d a = s (wskaźk asymetr) 30

17 q3 2me + q a2 = lub 2q (pozycyjy wskaźk asymetr) q 3 q gdze q = 2 (odchylee ćwartkowe) 3

18 lub a 3 = d 9 2me + d d d (decylowy wskaźk asymetr) gdze d perwszy decyl d 9 dzewąty decyl 9 32

19 Pozycyje odpowedk współczyka zmeośc: v = p q m obszaru typowych wartośc: [ m q, m q] e e e + 33

20 Współczyk skupea (kurtoza) k = r = o x x 4 s 4 34

21 k = q lub 2( d d ) 3 9 q (pozycyjy wskaźk skupea) gdze d perwszy decyl d 9 dzewąty decyl q perwszy kwartyl q 3 trzec kwartyl 35

22 POMIAR KONCENTRACJI Krzywa Loreza. Współczyk Gego. Najperw wykreślamy tzw. krzywą Loreza. W tym celu a os pozomej odkładamy skumulowae częstośc w = (wskaźk struktury) a a os poowej skumulowae udzały wartośc z = r = x& x& (są to udzały tego przedzału w wartośc globalej). Welkośc te wyzaczają cąg puktów, które łączymy łamaą przedłużamy ją do początku układu współrzędych, otrzymaa łamaa to krzywa Loreza. 36

23 Odcek o końcach (0, 0) (, ) przedstawa lę rówomerego rozkładu. krzywa Loreza la rozkładu krzywa Loreza la rozkładu P 0 P P P 0 Słaba kocetracja kocetracja Sla Współczyk Gego defujemy jako stosuek pola P do 0,5 (pole trójkąta pod lą rówomerego rozkładu) co jest rówe podwojoemu polu P, tz. 37

24 K G bo = P 0,5 = 2P 2 = 2 P + 2 P2 = gdze P 2 jest polem obszaru pod krzywą Loreza, jest to suma pól trapezów, które łatwo oblczyć. Zauważmy, że 2*Pole trapezu = P = (suma podstaw)*wysokość = S S w ( ) z z + * + (perwszy trapez jest trójkątem). 2 K G [0,] 38

25 Przykład x& w Sw x& z = r x& = x& S ( Sz Sz ) w z + * ,5 0,5 50 0,009 0,009 0, ,25 0, ,009 0,08 0, , 0, ,08 0,036 0, , 0, ,063 0,099 0, , ,9009 0, , W ostatej kolume są wylczoe podwojoe pola trapezów pod krzywą Loreza, zatem P 2 = 0, Stąd K G = 2P2 0,085 = 0,95, 39

26 co śwadczy o bardzo dużej kocetracj (ajwyższą wartość osągają elcze elemety próby. krzywa Loreza la rozkładu rówomerego 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, 0 0 0,5 40

27 Przykład x& w Sw x& z = r x & = x & S ( Sz Sz )* w z ,05 0, ,0 0,0 0, ,2 0, ,2 0,3 0, ,5 0, ,5 0,63 0, ,2 0, ,28 0,9 0, , ,09 0, ,82 W ostatej kolume są wylczoe podwojoe pola trapezów pod krzywą Loreza, zatem P 2 = 0,82 Stąd K G = 2P2 0,82 = 0,88, co śwadczy o słabej kocetracj. 4

28 krzywa Loreza la rozkładu rówomereg 0,9 0,8 0,7 0,6 0,5 0,4 42

29 Przykład Dwa zakłady A B wykoują te sam detal. Średa dzea wydajość pracy a jedego pracowka w obu zakładach jest taka sama wyos x A = x B = 40 szt. Wadomo też, że m 45, d = 49 m 36, d = 34 e A = A e B = B Chcemy porówać wydajość w obu zakładach. 43

30 Rozwązae Wydajość w zakładze A ma rozkład o asymetr ujemej (bo x A d A < 0 ) zatem poad połowa pracowków ma wydajość powyżej średej 40 szt. Wydajość w zakładze B ma rozkład o asymetr dodatej ( bo x B d B > 0) zatem mej ż połowa pracowków ma wydajość powyżej średej 40 szt. 44

31 Wosek Chocaż średa wydajość w obu zakładach jest taka sama to bardzej korzysty rozkład wydajośc jest w zakładze A. 45

32 Charakterystyk połączoych populacj. Nekedy obserwujemy wartośc badaej cechy lczymy charakterystyk w populacj podzeloej a podzbory a astępe chcemy wyzaczyć wartośc tych charakterystyk w całej populacj. 46

33 Przyjmjmy, że populacja jest podzeloa a k podzborów o lczebośc rówych odpowedo N =, 2,..., k; tz. k = N = N. 47

34 48 Jeśl x są średm w poszczególych podzborach to średa dla całej populacj jest rówa k k k x N N x N N x N N x N N x = = = Jest to tzw. średa ważoa.

35 2 Jeśl s są waracjam w poszczególych podzborach to waracja dla całej populacj jest rówa s 2 N k k 2 = s + = N = N N ( x x) 2 Perwszy składk to tzw. waracja wewątrzgrupowa, drug składk to tzw. waracja mędzygrupowa. 49

36 DODATEK-RODZAJE ŚREDNICH Jedą z welkośc charakteryzujących dae lczbowe jest wartość średa. Rodzaje średch: Arytmetycza Geometrycza Harmocza Potęgowa 50

37 Wybór średej zależy od rodzaju badaych welkośc potrzeb aalzy daych. Najczęścej stosowaą średą jest średa arytmetycza. 5

38 Średą arytmetyczą lczb rzeczywstych x, x 2, x 3,..., x azywamy lczbę: x = ( x + x + + x ) = 2... x = 52

39 Przykład. Pęcu studetów otrzymało a egzame z matematyk ocey: 3, 2, 5, 2, 3. Ile wyos średa ocea tych studetów? (odp. 3) Jeżel wśród daych występują wartośc powtarzające sę: x występuje razy, =, 2,,r k = = k = to 53

40 x = ( x + 2x k xk ) = x = k = k = x Te sposób lczea średej arytmetyczej azywamy średą arytmetyczą ważoą. 54

41 Przykład. Dwudzestu pęcu studetów otrzymało a egzame z matematyk ocey: dzesęć oce 3, dzesęć oce 2, pęć oce 5. Ile wyos średa ocea tych studetów? x = ( ) = =

42 Średą geometryczą lczb rzeczywstych dodatch x, x 2, x 3,..., x azywamy perwastek tego stopa z ch loczyu, tz. x g = x x2... x = = x Średa geometrycza zajduje ajczęścej zastosowae przecętego tempa zma w czase, p. do uśredaa deksów gełdowych. 56

43 Przykład. Rocza stopa procetowa w czterech kolejych latach wyosła: 0%, 20%, 5%, 5%. Jaka była średa stopa w tym okrese? x g 4 = 4 0, 0,2 0,05 0,5 = 0,0005 0,07,07% Zauważmy, że średa arytmetycza tych daych wyos 2,5% 57

44 Średą harmoczą lczb x, x 2, x 3,..., x różych od zera azywamy odwrotość średej arytmetyczej odwrotośc lczb, tz. x h = = x x x x 2 = Średą harmoczą stosuje sę przy uśredau welkośc względych, p. przy oblczau przecętej prędkośc lub średej gęstośc zaludea. 58

45 Przykład. Pa Kowalsk codzee dojeżdża do pracy samochodem z prędkoścą 40km/h. Pewego da zaspał wyjechał późej ż zwykle. W połowe trasy zoretował sę, że e zdąży zwększył prędkość o 20km/h, dzęk czemu e spóźł sę do pracy. Z jaką średą prędkoścą jechał tego da pa Kowalsk? x h = = = 48 Zauważmy, że średa arytmetycza tych daych wyos 50km/h

46 Średą potęgową rzędu k lczb rzeczywstych dodatch x, x 2, x 3,..., x azywamy lczbę. x p( k) = k x k + x k x k = k = x k Uwaga: Dla k = jest to średa arytmetycza, Dla k = - jest to średa harmocza, Dla k = 2 jest to średa kwadratowa, 60

47 Przykład. Mamy 3 pojemk sześcee o krawędzach odpowedo, 2 3. Chcemy zaleźć taką krawędź sześceego pojemka, aby trzy pojemk o tej krawędz zastąpły dotychczas używae, to zaczy, aby łącza objętość poprzedch owych była taka sama. x p ( 3) = = 2 2,29 3 Zauważmy, że średa arytmetycza tych daych wyos 2. 6

48 Twerdzee Dla dowolych lczb rzeczywstych dodatch x, x 2, x 3,..., x zachodzą erówośc x h przy czym rówość zachodz wtedy tylko wtedy, gdy x = x 2 = x 3 =... = x. x g x 62

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystyczne) MIARY POŁOśENIA

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystyczne) MIARY POŁOśENIA D. Mszczyńsa, M.Mszczyńs, Materały do wyładu ze Statysty, 009/0 [] CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystycze) PARAMETRY STATYSTYCZNE - lczby słuŝące do sytetyczego opsu strutury

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =? Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jacka wykład II, 9.0.06 STATYSTYKA OPISOWA, cz. II WSTĘP DO STATYSTYKI MATEMATYCZNEJ Pla a dzsaj. Statystyka opsowa, cz. II: mary położea dokończee mary zróżcowaa mary asymetr

Bardziej szczegółowo

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version WIII/1

PDF created with FinePrint pdffactory Pro trial version  WIII/1 Statystyka opsowa Statystyka zajmuje sę zasadam metodam uogólaa wyków otrzymaych z próby losowej a całą populację (czyl zborowość, z której została pobraa próba). Take postępowae azywamy woskowaem statystyczym.

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

Miary średnie. Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek badanej zbiorowości podzieloną przez liczbę tych jednostek.

Miary średnie. Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek badanej zbiorowości podzieloną przez liczbę tych jednostek. Węcej doumetów a troe: www.rawczy.hotl.pl Aalza trutury zmerza do wydobyca a jaw charaterytyczych właścwośc zborowośc porówaa ch z ą zborowoścą. Każde badae, tóre w efece ma dać wzechtroą oceę zjawa doprowadzć

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA I SPOŁECZNA

STATYSTYKA EKONOMICZNA I SPOŁECZNA PROWADZĄCY Dwczea laboratoryje Rok akademck 0/0, semestr let mgr Emla Modraka, Katedra Ekoometr Przestrzeej UŁ emodraka@u.lodz.pl www.em.kep.prv.pl KONSULTACJE Poedzałek: 9.45-.0 Środa: 6.40-7.40 Pokój

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

Statystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary.

Statystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary. Statystyka opsowa Roma Syak Statystyka opsowa Stawa sę pytaa: pytae co? poprzedza pytae jak?. Najperw potrzeba jest mara, potem moża badać zmay tej mary. Potrzebe są mary zborcze, charakteryzujące zborowośc

Bardziej szczegółowo

Materiały wspomagające wykład ze statystyki. Maciej Wolny

Materiały wspomagające wykład ze statystyki. Maciej Wolny Materały wspomagające wykład ze statystyk Macej Woly T: Zajęca orgazacyje Ageda. Program wykładu. Cel zajęć 3. Nabyte umejętośc 4. Lteratura 5. Waruk zalczea Program wykładu T: Zajęca orgazacyje [h] T:

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyk Macej Woly T: Zajęca orgazacyje Ageda. Program wykładu. Cel zajęć 3. Nabyte umejętośc 4. Lteratura 5. Waruk zalczea Program wykładu T: Zajęca orgazacyje [h] T: Przedmot zadaa statystyk

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

O testowaniu jednorodności współczynników zmienności

O testowaniu jednorodności współczynników zmienności NR 6/7/ BIULETYN INSTYTUTU HODOWLI I AKLIMATYZACJI ROŚLIN 003 STANISŁAW CZAJKA ZYGMUNT KACZMAREK Katedra Metod Matematyczych Statystyczych Akadem Rolczej, Pozań Istytut Geetyk Rośl PAN, Pozań O testowau

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY Państwowa Wższa Szkoła Zawodowa w Koe Materał ddaktcze 17 ARTUR ZIMNY STATYSTYKA OPISOWA Materał pomoccze do ćwczeń wdae druge zmeoe Ko 010 Ttuł Statstka opsowa Materał pomoccze do ćwczeń wdae druge zmeoe

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Statystyka powtórzenie (I semestr) Rafał M. Frąk

Statystyka powtórzenie (I semestr) Rafał M. Frąk Statystyka powtórzeie (I semestr) Rafał M. Frąk TEORIA Statystyka Statystyka zajmuje się badaiem procesu zbieraia oraz iterpretacji daych liczbowych lub jakościowych. Przedmiotem statystyki są metody badaia

Bardziej szczegółowo

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach dr ż. Jolata Wojar Zakład Metod Iloścowych, Wydzał Ekoom Uwersytet Rzeszowsk Przestrzeo-czasowe zróżcowae stopa wykorzystaa techolog formacyjo- -telekomukacyjych w przedsęborstwach WPROWADZENIE W czasach,

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

Instrukcja do wykonania zadania. Masa ciała. Wys. Ciała

Instrukcja do wykonania zadania. Masa ciała. Wys. Ciała Itrukcja do wykoaa zadaa W perwzej kolejośc ależy przygotowad tabelę z daym. W ejzej trukcj przyjęto, że do każdego wyku z tabel perwotej dodao wartośd 6. Zatem tabela wygląda atępująco: Icjały Grupa Płeć

Bardziej szczegółowo

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i.

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i. c 27 Rafał Kucharsk Rety Wartość beżącą cągu kaptałów: {R t R 2 t 2 R t } gdze R jest kwotą omalą płacoą w chwl t = oblczamy jako sumę zdyskotowaych płatośc: przy czym = + R j tj j= jest czykem dyskotującym

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Zmienna losowa X ma taki rozkład, jeśli przyjmuje wartości k=0,1,2,...,n z prawdopodobieństwami określonymi wzorem:

Zmienna losowa X ma taki rozkład, jeśli przyjmuje wartości k=0,1,2,...,n z prawdopodobieństwami określonymi wzorem: . Jaka jest różca mędzy cechą skokową cągłą? podać przykłady każdej z ch. Cecha loścowa : skokowa przyjmująca pewe wartośc lczbowe e przyjmująca wartośc pośredch cecha ta też jest azywaa dyskretą, przykład:

Bardziej szczegółowo

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu Wykład r 2 Statystyka opisowa część 2 Pla wykładu 1. Uwagi wstępe 2. Miary tedecji cetralej 2.1. Wartości średie 2.2. Miary pozycyje 2.3. Domiata 3. Miary rozproszeia 4. Miary asymetrii 5. Miary kocetracji

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

ANALIZA KORELACJI DEFINICJA ZALEŻNOŚCI KORELACYJNEJ, RODZAJE ZALEŻNOŚCI KORELACYJNYCH KLASYFIKACJA METOD ANALIZY ZALEŻNOŚCI STATYSTYCZNYCH

ANALIZA KORELACJI DEFINICJA ZALEŻNOŚCI KORELACYJNEJ, RODZAJE ZALEŻNOŚCI KORELACYJNYCH KLASYFIKACJA METOD ANALIZY ZALEŻNOŚCI STATYSTYCZNYCH AALIZA KORELACJI DEFIICJA ZALEŻOŚCI KORELACYJEJ, Zależośd korelacyja (statystycza) występuje wtedy, gdy określoym wartoścom jedej zmeej są przyporządkowae pewe średe wartośc drugej zmeej e moża wyzaczyd

Bardziej szczegółowo

METODY ANALIZY DANYCH DOŚWIADCZALNYCH

METODY ANALIZY DANYCH DOŚWIADCZALNYCH POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych

Bardziej szczegółowo

Metoda Monte-Carlo i inne zagadnienia 1

Metoda Monte-Carlo i inne zagadnienia 1 Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

STATYSTYKA I stopień ZESTAW ZADAŃ

STATYSTYKA I stopień ZESTAW ZADAŃ Stattka ZADAIA STATYSTYKA I topeń ZESTAW ZADAŃ dr Adam Sojda. Aalza truktur jedowmarowego rozkładu emprczego..... Badae wpółzależośc w dwuwmarowm rozkładze emprczm. 8 3. Aalza zeregów czaowch.... 4. Aalza

Bardziej szczegółowo

... MATHCAD - PRACA 1/A

... MATHCAD - PRACA 1/A Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne. Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g.

Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g. Zadaia przykładowe z rozwiązaiami Zadaie Dokoao pomiaru masy ciała 8 szczurów laboratoryjych. Uzyskao astępujące wyiki w gramach: 70, 80, 60, 90, 0, 00, 85, 95. Wyzaczyć przeciętą masę ciała wśród zbadaych

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

Modele wartości pieniądza w czasie

Modele wartości pieniądza w czasie Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku

Bardziej szczegółowo

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

METODY OPISU STRUKTURY ZBIOROWOŚCI

METODY OPISU STRUKTURY ZBIOROWOŚCI METODY OPISU STRUKTURY ZBIOROWOŚCI Wkaźk atężea WSKAŹIK STRUKTURY I ATĘŻEIA Iloraz lczby jedotek jedej zborowośc ( ) do lczby jedotek drugej zborowośc (m ). Wyraża ę wzorem: W m Gdze: W wkaźk atężee; lczebośd

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Podstawy matematyki finansowej i ubezpieczeniowej

Podstawy matematyki finansowej i ubezpieczeniowej Podstawy matematy fasowej ubezpeczeowej oreślea, wzory, przyłady, zadaa z rozwązaam KIELCE 2 SPIS TREŚCI WSTEP... 7 STOPA ZWROTU...... 9 2 RACHUNEK CZASU W MATEMATYCE FINANSOWEJ. 0 2. DOKŁADNA LICZBA DNI

Bardziej szczegółowo

Opracowanie wyników pomiarów

Opracowanie wyników pomiarów Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

ZAJĘCIA 2. Metody opisu struktury i natężenia, metody opisu tendencji centralnej, klasyczne metody opisu dyspersji. i n

ZAJĘCIA 2. Metody opisu struktury i natężenia, metody opisu tendencji centralnej, klasyczne metody opisu dyspersji. i n ZAJĘCIA Metody opu truktury atężea, metody opu tedecj cetralej, klaycze metody opu dyperj. WSKAŹIK STRUKTURY I ATĘŻEIA METODY OPISU STRUKTURY I ATĘŻEIA Wkaźk atężea Iloraz lczby jedotek jedej zborowośc

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo