Algorytmy i struktury danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy i struktury danych"

Transkrypt

1 Algorytmy i struktury daych Wykład 6 Rekurecja Jausz Szwabiński Pla wykładu: Co to jest rekurecja? Przykład silia Rekurecja a idukcja matematycza Rekurecja kotra iteracja Ie przykłady Symbol Newtoa Cecha podzielości przez 3 dla liczby w zapisie dziesiętym Kowersja liczby całkowitej do łańcucha zaków w dowolej bazie Wielomiay Hermite'a Wieża Haoi Typowe błędy Badaie złożoości asymptotyczej Fraktale Trójkąt Sierpińskiego Zbiór Madelbrota

2 Co to jest rekurecja? rekurecja polega a rozwiązywaiu problemu w oparciu o rozwiązaia tego samego problemu dla daych o miejszych rozmiarach w logice opiera się a założeiu istieia pewego stau początkowego oraz reguły staowiącej podstawę wioskowaia: reguła: każdy ojciec jest starszy od swojego sya; każdy ojciec jest czyimś syem sta początkowy: jestem 20 letim mężczyzą teza: ojciec ojca mojego ojca jest starszy ode mie dowód: 1. mój ojciec jest starszy ode mie 2. mój ojciec jest czyimś syem 3. ojciec mojego ojca jest starszy od mojego ojca 4. ojciec mojego ojca jest czyimś syem 5. ojciec ojca mojego ojca jest starszy od ojca mojego ojca. w iformatyce jest techiką programistyczą polegającą a wywołaiu fukcji wewątrz iej samej w wielu przypadkach techika bardzo efektywa: pozwala a zwięzły opis algorytmu łatwa w implemetacji wymaga określeia przypadku bazowego, tz. wartości argumetu, przy której fukcja kończy działaie bez wywołaia samej siebie Silia

3 Silia liczby aturalej to iloczy wszystkich liczb aturalych ie większych iż. Formalie defiiuje się ją w astępujący sposób: Wartość 0! określa się osobo: Zwróćmy uwagę, że powyższa defiicja może zostać przepisaa w postaci rekurecyjej: Implemetacja fukcji a podstawie tej defiicji jest bardzo prosta: I [1]: def fac(): if >=1: retur *fac(-1) else: retur 1! = k, 1 k=1 0! = 1! ={ 1, ( 1)!, = 0 1 I [2]: fac(0) Out[2]: 1 I [3]: fac(1) Out[3]: 1 I [4]: fac(2) Out[4]: 2 I [5]: fac(5) Out[5]: 120

4 I [6]: fac(100) Out[6]: Warto wspomieć, że w bibliotece mathzajdziemy gotową implemetację sili: I [7]: import math I [8]: math.factorial(100) Out[8]:

5 Rekurecja a idukcja matematycza Zasada idukcji matematyczej W wersji iezupełej Niech p będzie stwierdzeiem zawierającym liczbę aturalą. Moża dowieść stwierdzeia: dla każdego N jest p zapewiając, że p1 1. jest prawdziwe, 2. dla wszystkich, jeśli jest prawdziwe, to jest prawdziwe. k N p k p k+1 W wersji zupełej Niech q będzie stwierdzeiem zawierającym liczbę aturalą. Moża dowieść stwierdzeia: dla każdego N jest q zapewiając, że q1 1. jest prawdziwe, 2. dla wszystkich, jeśli,,, są prawdziwe, to jest prawdziwe. k N q1 q2 q k q k+1 Przykład suma początkowych liczb aturalych Chcemy dowieść, że Sprawdzamy prawdziwość dla : Zakładamy(hipoteza idukcyja), że prawdziwy jest wzór Sprawdzamy jego prawdziwość dla : ( + 1) = 2 = 1 ( + 1) 1(1 + 1) 2 = = = k = = k + 1 k(k + 1) 2 k(k + 1) k + (k + 1) = + (k + 1) =( + 1) (k + 1) = k 2 (k + 1)(k + 2) 2 W zasady idukcji matematyczej wyika, że wzór jest prawdziwy dla wszystkich. Twierdzeie o defiowaiu rekurecyjym Niech będzie zbiorem wszystkich ciągów skończoych o wyrazach z iepustego zbioru, a N < = {m N: m < } ozacza zbiór liczb aturalych miejszych od wybraej liczby N. Dla daej fukcji f: U X istieje jeda i tylko jeda fukcja g:n X, która dla każdej liczby aturalej spełia k N gdzie U ozacza zawężeie fukcji. g(k) = f (g N<k ) X

6 Rekurecja kotra iteracja Niewątpliwą zaletą rekurecji jest przejrzystość programów, które z iej korzystają. Rekurecja jest podstawową techiką wykorzystywaą w fukcyjych językach programowaia (p. Haskell, Lisp). Chociaż dla pewych problemów staowi oa aturaly wybór, powio stosować się ją z umiarem. Dla ilustracji rozważmy iteracyją wersję fukcji silia: I [9]: def fac_iter(): sil = 1 if >1: for i i rage(2,+1): sil = sil*i retur sil I [10]: fac_iter(0) Out[10]: 1 I [11]: fac_iter(2) Out[11]: 2 I [12]: fac_iter(5) Out[12]: 120 I [13]: fac_iter(100) Out[13]: Porówajmy teraz czasy wykoaia obu wersji fukcji silia:

7 I [14]: %%timeit fac(120) loops, best of 3: 33.1 µs per loop I [15]: %%timeit fac_iter(120) loops, best of 3: 15 µs per loop Wprawdzie w tym kokretym przykładzie ie staowi to dla as jakiegoś większego problemu, ale metoda rekurecyja jest woliejsza od iteracyjej. Rekurecja potrafi dramatyczie zwiększyć złożoość obliczeiową wykoywaego programu, jeżeli rozwiązyway problem ie ma rekurecyjego charakteru. Ie wady: rekurecja zwiększa zapotrzebowaie programu a pamięć operacyją kompletie iezależe rozwiązywaie problemów (iektóre wartości wyliczae są wielokrotie) Ie przykłady Symbol Newtoa Mimo wspomiaych wad stosowaie rekurecji jest czasami kuszące ze względu a dużą przejrzystość kodu. Poiżej omówioych zostaie kilka przykładów, w których moża zastosować rekurecję. ( ) = Jedym z takich przykładów jest symbol Newtoa: k! k!( k)! Symbol te pojawia się we wzorze dwumieym Netwoa jako współczyik w tym wyrazie rozwiięcia tej potęgi sumy dwóch składików: x k y k (x + y ) = ( ) k=0 Stąd jego druga azwa: współczyik dwumiey Newtoa. Podaa powyżej defiicja jest rówoważa wzorowi rekurecyjemu: ( ) ={ k k 1, ( 1) + ( 1), k 1 k k {0, } 0 < k < k

8 I [16]: def biom(,k): if k==0: retur 1 if ==k: retur 1 else: retur biom(-1,k-1) + biom(-1,k) I [17]: biom(7,2) #powio być 21 Out[17]: 21 I [18]: biom(9,3) #84 Out[18]: 84 Sprawdźmy wyik: I [19]: fac(9)/(fac(3)*fac(9-3)) Out[19]: 84.0 Cecha podzielości przez 3 dla liczby w zapisie dziesiętym Cecha podzielości pozwala a stwierdzeie, czy daa liczba jest podziela bez reszty przez ią bez uciekaia się do dzieleia. W przypadku podzielości przez 3 cecha ma astępującą postać: liczba jest podziela przez 3, jeśli suma cyfr tej liczby jest podziela przez 3 Zauważmy, że regułę tę moża stosować rekurecyjie aż do osiągięcia liczby jedocyfrowej, której podzielość moża określić bardzo prosto, p.: = = 3 Aby zaimplemetować sprawdzaie podzielości przez 3 metodą rekursywą, musimy ajpierw umieć rozbić dowolą liczbę a jej cyfry i zsumować je. W tym celu przekształcamy liczbę a łańcuch zaków:

9 I [20]: umber = 2456 s = str(umber) prit(s) 2456 Następie z łańcucha tworzymy listę: I [21]: l = list(s) prit(l) ['2', '4', '5', '6'] Listę zaków kowertujemy a listę liczb całkowitych: I [22]: figs = [it(i) for i i l] prit(figs) [2, 4, 5, 6] I w ostatim kroku sumujemy elemety tej listy: I [23]: sum(figs) Out[23]: 17 Korzystając z poleceia mapw Pythoie możemy powyższe kroki zapisać jedym poleceiem: I [24]: sum(map(it, str(umber))) Out[24]: 17 Możemy teraz zaimplemetować aszą fukcję:

10 I [25]: def divisible_by_3(umber): ret = False if umber i (3,6,9): ret = True if umber > 9: ret = divisible_by_3(sum(map(it, str(umber)))) retur ret I [26]: divisible_by_3(3) Out[26]: True I [27]: divisible_by_3(4) Out[27]: False I [28]: divisible_by_3(10) Out[28]: False I [29]: divisible_by_3(12) Out[29]: True I [30]: divisible_by_3(104628) Out[30]: True Kowersja liczby całkowitej do łańcucha zaków w dowolej reprezetacji Załóżmy teraz, że aszym zadaiem jest kowersja liczby całkowitej do łańcucha zaków w dowolej reprezetacji (od biarej do szesastkowej). Dla przykładu możemy chcieć zaprezetować liczbę 10 jako apis "10" w reprezetacji dziesiętej, lub jako "1010" w reprezetacji dwójkowej. Dla ustaleia uwagi załóżmy, że iteresuje as reprezetacja dziesięta. Jeśli zdefiiujemy łańcuch zaków odpowiadający wszystkim cyfrom w tej reprezetacji,

11 I [31]: covstrig = " " to bardzo łatwo będzie am przekowertować dowolą liczbę miejszą od 10. Jeśli aszą liczbą będzie p. 9, to odpowiadający jej zak otrzymamy po prostu jako I [32]: covstrig[9] Out[32]: '9' Aby przekowertować większą liczbę, p. 769, musimy ją zatem rozbić ajpierw a trzy cyfry a astępie każdą z cyfr zamieić a odpowiedi zak i połączyć zaki ze sobą. Wykorzystamy w tym celu dzieleie całkowite. Zauważmy, że dzieląc całkowicie 769 przez 10, otrzymamy 76 i resztę z dzieleia 9 dzieląc całkowicie 76 przez 10, otrzymamy 7 i resztę z dzieleia 6 dzieląc całkowicie 7 przez 10, otrzymamy 0 i resztę z dzieleia 7 Zauważmy, że reszty z dzieleia to są cyfry składające się a rozważaą liczbę. Każdą z ich możemy zamieić a zak jak w powyższym przykładzie. Rekurecyja wersja tego algorytmu będzie miała astępującą implemetację: I [33]: def tostr(,base): covertstrig = " ABCDEF" if < base: retur covertstrig[] else: retur tostr(//base,base) + covertstrig[%base]

12 I [34]: prit(tostr(1453,10)) 1453 I [35]: prit(tostr(1453,2)) I [36]: prit(tostr(1453,8)) 2655 I [37]: prit(tostr(1453,16)) 5AD Wielomiay Hermite'a Wielomiay Hermite'a to przykład wielomiaów ortogoalych, używaych między iymi w mechaice kwatowej. Są oe rozwiązaiem rówaia rekurecyjego: (x) = 2x (x) 2 (x) H +1 H H 1 przy warukach początkowych: (x) = 1 H0 (x) = 2x H1 Kilka pierwszych wielomiaów powyższego ciągu ma postać: Poiżej "aiwa" implemetacja: H2(x) = 4x 2 2 H3(x) = 8x 3 12x (x) = H4 x 4 x 2 I [38]: def hermite(,x): if(==0): f = 1e0 elif(==1): f = 2*x else: f = 2*x*hermite(-1,x)-2*(-1)*hermite(-2,x) retur f

13 I [39]: x = 10 for i i rage(0,5): prit(hermite(i,x)) I [40]: def h2(x): retur 4*x**2-2 def h3(x): retur 8*x**3-12*x def h4(x): retur 16*x**4-48*x**2 +12 I [41]: prit(h2(x)) prit(h3(x)) prit(h4(x))

14 Wieża Haoi W prezetowaych do tej pory przykładach mieliśmy do czyieia z zagadieiami, które były zdefiiowae w sposób rekurecyjy. Dlatego zastosowaie rekurecji do ich implemetacji było bardzo aturale. Metoda ta sprawdza się jedak rówież w bardziej skomplikowaych problemach, które a pierwszy rzut oka ie zawsze wydają się rekurecyje. Przykładem takiego zagadieia może być wieża Haoi, zagadka wymyśloa w Azji i sprowadzoa do Europy przez fracuskiego matematyka Edouarda Lucasa w 1883 roku. Rozwiązaie zagadki polega a przeiesieiu wieży z jedego słupa a drugi krążek po krążku. Podczas przekładaia moża posługiwać się trzecim słupem (buforem), jedak przy założeiu, że ie wolo kłaść krążka o większej średicy a miejszy ai przekładać kilku krążków jedocześie. Jest to przykład zadaia, którego złożoość obliczeiowa wzrasta iezwykle szybko w miarę zwiększaia parametru wejściowego. Rozwiązaie dla 4 krążków zilustrowae jest a poiższym rysuku: Ogólie dla Dla = 64 krążków ajmiejsza liczba wymagaych ruchów wyosi L() = 2 1 daje to a przykład = Zakładając, że ręczie moża wykoać 1 ruch a sekudę, przeiesieie wieży zajęłoby lat. Oczywiście komputery wykoują dużo więcej operacji w ciągu sekudy. Chcąc rozwiązać zagadkę a komputerze, zauważmy, że problem da się zapisać w postaci stosukowo prostego algorytmu rekurecyjego. Niech będzie liczbą krążków, atomiast koleje słupy ozaczoe są literami A, B i C. Wówczas: 1 A B C 1. przeieś (rekurecyjie) krążków ze słupka a słupek posługując się słupkiem, 2. przeieś jede krążek ze słupka A a słupek C, 3. przeieś (rekurecyjie) krążków ze słupka a słupek posługując się słupkiem. 1 B C A

15 Przykładowa implemetacja w Pythoie mogłaby wyglądać tak: I [42]: def movetower(,a, C, B): if >= 1: movetower(-1,a,b,c) movedisk(a,c) movetower(-1,b,c,a) I [43]: def movedisk(fp,tp): prit("movig disk from",fp,"to",tp) I [44]: movetower(3,"a","b","c") movig disk from A to B movig disk from A to C movig disk from B to C movig disk from A to B movig disk from C to A movig disk from C to B movig disk from A to B I [45]: movetower(4,"a","b","c") movig disk from A to C movig disk from A to B movig disk from C to B movig disk from A to C movig disk from B to A movig disk from B to C movig disk from A to C movig disk from A to B movig disk from C to B movig disk from C to A movig disk from B to A movig disk from C to B movig disk from A to C movig disk from A to B movig disk from C to B

16 Typowe błędy Brak przypadku bazowego Załóżmy, że aszym celem jest obliczeie liczby harmoiczej H, Defiicję tę da się zapisać w postaci rekurecyjej: I [1]: def H(): retur H(-1) + 1/ 1 1 = = 2 3 H 1 ={ H 1, H = 1 > 1 1 k=1 k Błędem tutaj jest ieuwzględieie przypadku bazowego. Defiicja fukcji jest formalie poprawa, ale będzie oa wykoywać się w ieskończoość: H4 H3 H2 H1 H0 H 1 Brak gwaracji kowergecji I [3]: def F(): if ==1: retur 1.0 retur F() + 1/ Błąd w rekurecyjym wywołaiu fukcji powoduje, że waruek bazowy osiągięty zostaie tylko w przypadku, gdy. W pozostałych przypadkach = 1 F6 F6 F6 Wadliwy waruek bazowy I [2]: def G(): if ==1: retur 1 elif %2==0: #parzyste retur G(-2)* else: retur G(-1)*

17 Podobie jak poprzedio, istieje tylko jeda możliwość trafieia w waruek brzegowy przypadkach ślad wywołań fukcji jest astępujący: = 1. W iych dla dla parzystych ieparzystych G6 G4 G2 G0 G 2 G5 G4 G2 G0 G 2 Nadmiere wymagaia pamięciowe Wróćmy do przykładu z liczbą harmoiczą. Poprawie zdefiiowaa fukcja ma postać: I [4]: def H(): if ==0: retur 0.0 retur H(-1) + 1/ I [5]: H(2) Out[5]: 1.5 I [6]: H(10) Out[6]: poprawie oblicza tą liczbę harmoiczą głębokość rekurecji jest proporcjoala do dla dużych może astąpić przepełieie stosu

18 I [7]: H(300000) RutimeError Traceback (most recet ca ll last) <ipytho-iput-7-a505d7cbfcd5> i <module>() ----> 1 H(300000) <ipytho-iput-4-e9d88043c7dc> i H() 2 if ==0: 3 retur > 4 retur H(-1) + 1/... last 1 frames repeated, from the frame below... <ipytho-iput-4-e9d88043c7dc> i H() 2 if ==0: 3 retur > 4 retur H(-1) + 1/ RutimeError: maximum recursio depth exceeded i compariso I [8]: import sys sys.setrecursiolimit(300000) I [ ]: H(300000) Wyik działaia tego poleceia (a moim komputerze) będzie taki:

19 W takich sytuacjach z reguły lepiej sprawdza się algorytm iteracyjy: I [2]: def H_iter(): suma = 0 while >0: suma = suma + 1/ = - 1 retur suma I [3]: H_iter(2) Out[3]: 1.5 I [4]: H_iter(10) Out[4]: I [5]: H_iter(300000) Out[5]: Badaie złożoości asymptotyczej Wróćmy do defiicji fukcji silia, I [ ]: def fac(): if >=1: retur *fac(-1) else: retur 1

20 T() T(0) = 1 rówy 1) czas potrzeby do wykoaia fukcji rekurecyjej, p. silia, dla dowolego jedostkowy czas pracy (zakładamy, że dla wejścia o rozmiarze 1 czas pracy jest T() = T( 1) + 1, > 0 Rozwijając ostati wzór, otrzymamy: Zatem T(0) T(1) T(2) T(3) T() = = = = = 1 T(0) + 1 = 2 T(1) + 1 = = 3 T(2) + 1 = = T() = O()

21 Fraktale potoczie obiekt samopodoby albo "ieskończeie subtely" (tz. ukazujący subtele detale awet w wielokrotym powiększeiu) ze względu a olbrzymią różorodość uika się formalych defiicji z reguły za fraktal uzaje się zbiór, który posiada wszystkie poiższe charakterystyki albo przyajmiej ich większość: ma ietrywialą strukturę w każdej skali, struktura ta ie daje się łatwo opisać w języku tradycyjej geometrii euklidesowej, jest samopodoby, jeśli ie w sesie dokładym, to przybliżoym lub stochastyczym, jego wymiar Hausdorffa jest większy iż jego wymiar topologiczy, ma względie prostą defiicję rekurecyją, ma aturaly ( poszarpay, kłębiasty itp.) wygląd ajstarsze fraktale pojawiły się a początku XX w

22 Trójkąt Sierpińskiego Trójkąt Sierpińskiego to jede z ajprostszych fraktali (zaych długo przed powstaiem tego pojęcia). Kostrukcja tego zbioru podaa była w 1915 przez polskiego matematyka Wacława Sierpińskiego: 1. W trójkącie rówoboczym połącz środki boków, dzieląc go a cztery miejsze trójkąty. 2. Usuń środkowy z powstałych trójkątów. 3. Powtórz kroki 1 3 dla pozostałych trójkątów. Tym razem ie tylko będziemy chcieli zaimplemetować rekurecyją metodę tworzeia trójkąta Sierpińskiego, ale zilustrować cały proces a ekraie. W tym celu użyjemy prostego modułu turtle, który udostępia arzędzia do rysowaia i przesuwaia obiektu zwaego żółwiem a ekraie. Dokumetację do modułu moża zaleźć pod adresem ( Jego użycie jest dość proste: I [46]: import turtle w = turtle.scree() alex = turtle.turtle() alex.forward(50) alex.left(90) alex.forward(30) w.exitoclick() # Allows us to use turtles # Creates a playgroud for turtles # Create a turtle, assig to alex # Tell alex to move forward by 50 uits # Tell alex to tur by 90 degrees # Complete the secod side of a rectagle # Wait for user to close widow Wiele cech żółwia i plaszy, a której się porusza, możemy zmieiać, p.:

23 I [47]: import turtle w = turtle.scree() w.bgcolor("lightgree") w.title("hello, Tess!") tess = turtle.turtle() tess.color("blue") tess.pesize(3) # Set the widow backgroud color # Set the widow title # Tell tess to chage her color # Tell tess to set her pe width tess.forward(50) tess.left(120) tess.forward(50) w.exitoclick() Możemy przejść teraz do implemetacji właściwego algorytmu:

24 I [48]: import turtle def drawtriagle(poits,color,myturtle): """ Draw triagle give by poits (helper fuctio)""" myturtle.fillcolor(color) myturtle.up() myturtle.goto(poits[0][0],poits[0][1]) myturtle.dow() myturtle.begi_fill() myturtle.goto(poits[1][0],poits[1][1]) myturtle.goto(poits[2][0],poits[2][1]) myturtle.goto(poits[0][0],poits[0][1]) myturtle.ed_fill() def getmid(p1,p2): """Fid midpoit of triagle's edge (helper fuctio)""" retur ( (p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2) def sierpiski(poits,degree,myturtle): """Geerate Sierpiski Triagle with recursio""" colormap = ['blue','red','gree','white','yellow','violet','orage'] drawtriagle(poits,colormap[degree],myturtle) if degree > 0: sierpiski([poits[0], getmid(poits[0], poits[1]), getmid(poits[0], poits[2])], degree-1, myturtle) sierpiski([poits[1], getmid(poits[0], poits[1]), getmid(poits[1], poits[2])], degree-1, myturtle) sierpiski([poits[2], getmid(poits[2], poits[1]), getmid(poits[0], poits[2])], degree-1, myturtle) def mai(): myturtle = turtle.turtle() mywi = turtle.scree() mypoits = [[-100,-50],[0,100],[100,-50]] sierpiski(mypoits,4,myturtle) mywi.exitoclick() mai()

25 Zbiór Madelbrota podzbiór płaszczyzy zespoloej, którego brzeg jest fraktalem kostrukcja: zbiór tworzą te pukty, dla których ciąg opisay rówaiem rekurecyjym: p C { z 0 z +1 = = 0 z 2 + p ie dąży do ieskończoości: Moża wykazać, że jest to rówoważe z: lim z N z < 2

26 I [8]: from pylab import * from umpy import NaN def m(a): z = 0 for i rage(1, 100): z = z**2 + a if abs(z) > 2: retur retur NaN X = arage(-2,.5,.002) Y = arage(-1, 1,.002) Z = zeros((le(y), le(x))) for iy, y i eumerate(y): for ix, x i eumerate(x): Z[iy,ix] = m(x + 1j * y) imshow(z, cmap = plt.cm.prism, iterpolatio = 'oe', extet = (X.mi(), X.max(), Y.mi(), Y.max())) xlabel("re(c)") ylabel("im(c)") show()

27

Wstęp do programowania

Wstęp do programowania Wstęp do programowaia Wykład 8 Podstawowe techiki programowaia w przykładach rekurecja Jausz Szwabiński Pla wykładu: Wprowadzeie Silia Rekurecja kotra iteracja Symbol Newtoa Cecha podzielości przez 3 dla

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Fraktale - ciąg g dalszy

Fraktale - ciąg g dalszy Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

Egzamin maturalny z informatyki Poziom rozszerzony część I

Egzamin maturalny z informatyki Poziom rozszerzony część I Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowaia Wykład 13 Algorytmy i ich aaliza Jausz Szwabiński Pla wykładu: Co to jest algorytm? Aaliza algorytmów Notacja dużego O Przykład: aagramy Struktury daych w Pythoie i ich wydajość Literatura

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333)) 46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.

Bardziej szczegółowo

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767 Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym

Bardziej szczegółowo

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE. ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( ) Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Szeregi liczbowe. 15 stycznia 2012

Szeregi liczbowe. 15 stycznia 2012 Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x

ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x Iformatyka 05/06 Kazimierz Jezuita ZADANIA - Seria. Relacja rekurecyja kowecja sumacyja suma ciągu geometryczego. Zaleźć wzór a ogóly wyraz ciągu opisaego relacją rekurecyją: x sprowadzając problem do

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02.

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02. Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 1 Algorytmy sortowaia (27.2.12)

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Zajęcia nr. 2 notatki

Zajęcia nr. 2 notatki Zajęcia r otati wietia 5 Wzory srócoego możeia W rozdziale tym podamy ila wzorów tóre ułatwiają obliczaie wielu zadań rachuowych Fat (wzory srócoego możeia) Dla dowolych liczb rzeczywistych a, b zachodzi:

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

Opowieści o indukcji

Opowieści o indukcji Obóz Naukowy Olimpiady Matematyczej Gimazjalistów Liga zadaiowa 0/03 Materiały dodatkowe 30 listopada 0 Opowieści o idukcji Wzoreczki w kropeczki I silia Liczbę! defiiujemy jako iloczy liczb aturalych

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

x R, (1) Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci

x R, (1) Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci Metody rozwiązywaia rówań ieliiowyc i ic układów Rozwiązywaie rówań ieliiowyc Ogólie rówaie o jedej iewiadomej moża przedstawić w postaci 0 R gdzie jest wystarczająco regularą ukcją. Naszym celem ie jest

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Wstęp Rekurencja jest to wywołanie podprogramu (procedury) samej przez siebie. W logo zapis rekurencji będzie wyglądał następująco: oto nazwa_funkcji czynności_wykonywane_przez_procedurę nazwa_funkcji

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

W. Guzicki Zadanie o sumach cyfr poziom rozszerzony 1

W. Guzicki Zadanie o sumach cyfr poziom rozszerzony 1 W. Guzicki Zadaie o sumach cyfr poziom rozszerzoy 1 Popatrzmy a astępujące trzy zadaia: Zadaie 1. Ile jest liczb dwudziestocyfrowych o sumie cyfr rówej 5? Zadaie. Oblicz, ile jest liczb dwudziestocyfrowych

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo