Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i ="

Transkrypt

1 Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka litera sigma, symbol k to tzw. wskaźik sumowaia, liczba to doly wskaźik sumowaia, a liczba to góry wskaźik sumowaia. Prawdziwe są p. rówości: a k 5 k , k Wskaźik sumowaia moża ozaczać dowolą literą. Mamy p. a k a i a j a r. r Poadto wskaźiki sumowaia doly m i góry mogą być dowolymi liczbami całkowitymi takimi, że m. Mamy p. oraz 8 (2k + ) k k ( 2) + ( ) k 2 Przekształcając wyrażeia zawierające sumy o dowolej liczbie składików, korzysta się z ważych własości takich sum. Przedstawimy tu ajważiejsze z ich. Własość. Dla dowolych liczb a,..., a, c zachodzi rówość c a k ca k. Powyższa własość wyika z rozdzielości możeia względem dodawaia liczb. Własość 2. Dla dowolych liczb całkowitych r, s, t spełiających waruek r s < t zachodzi rówość t a k kr s a k + kr t a k. () ks+

2 Przy powyższych ozaczeiach zachodzą bowiem rówości: t a k (a r a s ) + (a s a t ) kr s t a k + a k. kr ks+ Własość. Dla dowolych liczb m,, r Z takich, że m zachodzi rówość a k km +r km+r a k r. (2) Przy powyższych ozaczeiach zachodzą bowiem rówości: +r km+r a k r a (m+r) r + a (m+r+) r a (+r) r a m + a m a a k. Rozpatrzmy astępującą prostokątą tablicę liczb czyli tzw. macierz a a 2... a a 2 a a a m a m2... a m Liczby tworzące tę macierz azywamy jej elemetami. Rzędy poziome tej macierzy azywamy wierszami, a rzędy pioowe azywamy kolumami. Każdy elemet tej macierzy ma dwa ideksy. Pierwszy jest umerem wiersza, w którym zajduje się te elemet, a drugi jest umerem kolumy. Dla każdego i {,..., m} suma elemetów stojących w i-tym wierszu jest rówa a ij. Wobec tego suma wszystkich elemetów macierzy jest rówa m ( ) a ij. Podobie dla każdego j {,..., } suma elemetów stojących w j-tej kolumie jest rówa m a ij, a suma wszystkich elemetów aszej macierzy jest rówa ( m ) a ij. 2 km

3 Porówując otrzymae sumy i opuszczając awiasy, otrzymujemy poiższą Własość. Dla dowolych liczb aturalych m i oraz liczb a ij, gdzie i {,..., m}, j {,..., } zachodzi rówość m a ij m a ij. () Powyższy związek moża wyrazić astępująco: w sumach podwójych moża zmieiać kolejość sumowaia. Własość tę mają rówież sumy potróje i ogólie l-krote, gdzie l N \ {}. Iloczy a a 2... a zapisujemy w postaci (czytaj: iloczy od k do a k ). Zak Π to duża grecka litera pi, symbol k to tzw. wskaźik iloczyu, liczba to doly wskaźik iloczyu, a liczba to góry wskaźik iloczyu. Mamy p. 7 (k + ) Prawdziwe są odpowiediki iloczyowe podaych wyżej własości, 2, i. Zadaie. Obliczyć: a) 5 2 k ; b) 6 j j. a k Zadaia a zajęcia Zadaie 2. Za pomocą zaku Σ zapisać astępującą sumę: a) ; b) 5! + 6! + 7! + 8! + 9!. Zadaie. Daa jest macierz i Π: a) a ij ; b) a a 2 a a 2 a 22 a 2 a a 2 a a ij ; c). Zapisać dae wyrażeie bez użycia symboli Σ a ij. i j Zadaia domowe Zadaie. Obliczyć:

4 7 a) (2k ); b) 5 i 8 i + ; c) ( ) k k 2. i2 i2 Zadaie 5. Za pomocą zaku Σ zapisać astępującą sumę: a) si x + si 2x si x; b) a + (a + ) 2 + (a + 2) (a + 2) 2+. Zadaie 6. Za pomocą zaku Π zapisać astępujący iloczy Zadaie 7. Sformułować i uzasadić iloczyowe odpowiediki własości, 2, i. Zadaie 8. Daa jest macierz i Π: a) a ij ; b) a a 2 a a 2 a 22 a 2 a a 2 a a ij ; c). Zapisać dae wyrażeie bez użycia symboli Σ i a ij ; d) a ij ; ij e) a ij ; f) ji j a ij ; g) i a ij ; h) i a ij ; i) a ij ; j) j i i a ij ; k) a ij ; l) ij a ij ; j i ł) j a ij ; m) a ij ; ) ji j a ij ; o) i a ij. Zadaie 9. Daa jest macierz. Dae wyrażeie zapisać za pomocą sym- boli Σ i Π: a a 2 a a a 2 a 22 a 2 a 2 a a 2 a a a) (a + a 2 + a + a )(a 2 + a 22 + a 2 + a 2 )(a + a 2 + a + a ); b) (a + a 2 + a )(a 2 + a 22 + a 2 )(a + a 2 + a )(a + a 2 + a ); c) a a 2 a a + a 2 a 22 a 2 a 2 + a a 2 a a ; d) a a 2 a + a 2 a 22 a 2 + a a 2 a + a a 2 a. Zadaie 0. Daa jest astępująca trójkąta tablica liczb: a a 2 a 22 a a 2 a a a 2 a... a

5 Sumując dwoma sposobami elemety tej tablicy, wykazać rówość i a ij ij a ij Zadaie. Daa jest astępująca tablica liczb: a 2, a a 2 a, 2 a, a a... a, 2 a, a Sumując dwoma sposobami elemety tej tablicy, wykazać odpowiedią rówość. Idukcja matematycza Zasadę idukcji matematyczej (lub też idukcji zupełej) stosuje się w dowodach liczych twierdzeń. Twierdzeie (Zasada idukcji matematyczej). Niech każdej liczbie aturalej przyporządkowae będzie zdaie T() i iech spełioe będą waruki: o. zdaie T() jest prawdziwe, 2 o. dla każdej liczby aturalej ze zdaia T() wyika zdaie T( + ). Wówczas zdaie T() jest prawdziwe dla każdej liczby aturalej. Zasadę idukcji matematyczej moża sugestywie zilustrować za pomocą odpowiedio ustawioych tabliczek domia. Zadaia a zajęcia Zadaie 2. Stosując zasadę idukcji matematyczej, wykazać, że dla każdej liczby aturalej zachodzi rówość k ( + ). () 2 Zadaie. Za pomocą idukcji matematyczej wykazać, że dla każdego N zachodzi rówość 2 ( ) k+ (2k ) 2(6 2 ). (5) Zadaie. Wykazać, że dla dowolych N i x R \ {} zachodzi rówość + x + x x x+ x. (6) 5

6 Zadaie 5. Wykazać, że dla każdego zachodzi ierówość > 5. (7) Zadaie 6. Wykazać, że dla każdej liczby aturalej prawdziwy jest związek ( ). Zadaie 7. Wykazać, że dla każdego liczba P wszystkich przekątych -kąta wypukłego jest rówa ( )/2. Zadaie 8. Stosując zasadę idukcji matematyczej, udowodić, że dla każdej liczby aturalej zachodzi rówość k 2 ( + )(2 + ). (8) 6 Zadaie 9. Stosując zasadę idukcji matematyczej, udowodić, że dla każdej liczby aturalej zachodzi rówość (7k )(7k + ) (7 + ). (9) Zadaie 20. Metodą idukcji zupełej wykazać, że dla każdego N zachodzi rówość si kx si + 2 x si 2 x si x 2, (x 2kπ). (0) Uwaga. Tego typu zadaia moża przerabiać w ramach kursu trygoometrii. Zadaie 2. Wykazać, że jeśli x, to dla każdej liczby aturalej zachodzi poiższa ierówość, zwaa ierówością Beroulliego ( + x) + x. () Zadaie 22. Metodą idukcji zupełej wykazać, że dla każdego N {0} prawdziwy jest związek (X 2 + X + ) [(X + ) 2+ + X +2 ]. (2) 6

7 Zadaie 2. Poiższą rówość zapisać za pomocą zaków Σ i udowodić ją przez idukcję: Zadaia domowe Zadaie 2. Wykazać, że dla każdej liczby aturalej zachodzi rówość: a) (0k ) (5 + 2); b) c) d) e) f) g) k(k + ) ( + )( + 2); (k + 2)(k + ) ( + 2)( + ); [ ] 2 k 2 ( + ) ; 2 (5k )(5k + ) 5 + ; k 2 ( + ) (2k )(2k + ) 2(2 + ). ( ) k+ k 2 ( + ); Zadaie 25. Metodą idukcji matematyczej wykazać rówość: a) ( ) +, ( 2). k 2 2 k2 Zadaie 26. Wykazać rówość: ( a) x 2 ( + x x) 2 ) x 2 b) k0 cos kx si( + )x cos k x cos x si x, ( x x ) 2 (x 2 kπ). ( x 2+2 ) 2 ; x 2 x 2 Zadaie 27. Metodą idukcji matematyczej wykazać ierówość: >. Zadaie 28. Udowodić związek 25 ( ). 7

8 0.. Zasada miimum (adprogramowe!) Poiższe twierdzeie jest rówoważe z zasadą idukcji matematyczej. Twierdzeie 2 (Zasada miimum.). W każdym iepustym podzbiorze zbioru N liczb aturalych istieje liczba ajmiejsza. Zadaie 29. Stosując zasadę miimum, wykazać, że każda liczba aturala > jest iloczyem liczb pierwszych. (Pojedyczą liczbę pierwszą traktujemy tu jako jedoczyikowy iloczy liczb pierwszych.) Zadaie 0. Udowodić astępujące twierdzeie : każda liczba aturala jest ciekawa. Uwaga. Poiżej dla każdej spośród liczb aturalych od do 8 wskazujemy własość świadczącą o tym, że daa liczba aturala jest ciekawa: ajmiejsza liczba aturala, jedya liczba aturala, która ie jest ai liczbą pierwszą, ai liczbą złożoą, 2 ajmiejsza liczba pierwsza, ajmiejsza liczba pierwsza ieparzysta; ajmiejsza liczba aturala, która ie jest sumą dwóch kwadratów liczb całkowitych, ajmiejsza liczba złożoa, 5 ajmiejsza liczba aturala będąca sumą kwadratów dwóch różych liczb aturalych, 6 ajmiejsza liczba aturala będąca iloczyem dwóch różych liczb pierwszych, 7 ajmiejsza liczba aturala iebędąca sumą kwadratów trzech liczb całkowitych, 8 ajmiejsza liczba aturala będąca sześciaem liczby pierwszej Symbol Newtoa Dla każdej liczby aturalej liczbę! (czytaj: silia) określamy wzorem! Przyjmujemy poadto umowę, że 0!. W szczególości mamy!, 2! 2,! 6,! 2, 5! 20, 6! 720, 7! 500. Dla każdej liczby aturalej i dowolej liczby całkowitej k takiej, że 0 k wartość ( ) k (czytaj: po k) symbolu Newtoa określamy wzorem! k k! ( k)!. Przyjmujemy poadto umowę, że jeśli N i k jest liczbą całkowitą ujemą, to ( k) 0. Dla dowolych N i k {0,,..., } liczba ( k) jest rówa liczbie wszystkich k-elemetowych podzbiorów zbioru -elemetowego. Poieważ liczba wszystkich podzbiorów zbioru -elemetowego jest rówa 2, więc zachodzi rówość k0 k 2. () Zadaia a zajęcia 8

9 Zadaie. Sprawdzić, że jeśli 0 k, to zachodzi rówość k ( ) k (symetria). () Zadaie 2. Obliczyć: 6 a) ; b) ; c) 28 ; d) Zadaie. Wykazać, że jeśli k, N i k, to zachodzi rówość + k k +. (5) k 0.. Wzór dwumiaowy Newtoa Dobrze zamy poiższe wzory a kwadrat sumy i sześcia sumy: (a + b) 2 a 2 + 2ab + b 2, (a + b) a + a 2 b + ab 2 + b. Ich uogólieiem jest poiższy tzw. wzór dwumiaowy Newtoa zachodzący dla dowolych liczb a, b R i N : (a + b) Rówość (6) moża też zapisać astępująco (a + b) a + a b + k0 a k b k. (6) k ( a 2 b ) ab + b. (7) Zadaia a zajęcia Zadaie. Metodą idukcji matematyczej udowodić wzór (6). Uwaga. Nie wyprowadza się oddzielego wzoru dla (a b), gdyż różica a b też jest sumą. Miaowicie a b a + ( b). Zadaie 5. Rozpatrując wyrażeie ( + ), wykazać w sposób algebraiczy rówość (). 9

10 0.. Trójkąt Pascala Współczyiki występujące w rozwiięciach kolejych potęg dwumiau moża ustawić w formie poiższej tablicy zwaej trójkątem Pascala Trójkąt Pascala jest więc astępujący Na początku i końcu każdego wiersza stoi liczba. Każdy iy współczyik jest a mocy rówości (5) rówy sumie dwóch współczyików stojących tuż ad im. Zadaia a zajęcia Zadaie 6. Korzystając z trójkąta Pascala, rozwiąć wyrażeie: a) (a + b) ; b) (a + b) 5. Zadaia domowe Zadaie 7. Korzystając z trójkąta Pascala, rozwiąć wyrażeie (a + b) 6. 0

11 0.5. Pewe wzory skrócoego możeia Kolejymi zaymi am tożsamościami algebraiczymi są rówości: a 2 b 2 (a b)(a + b), a b (a b)(a 2 + ab + b 2 ). Ich uogólieiem jest zachodząca dla każdego N \ {} rówość Mamy p. a b (a b)(a + a 2 b + a b ab 2 + b ). a 5 b 5 (a b)(a + a b + a 2 b ab + b ). Zauważmy, że jeśli liczba aturala > jest ieparzysta, to z powyższej tożsamości oraz ze związku a + b a ( b) otrzymujemy rówość Mamy p. a + b (a + b)(a a 2 b + a b 2... ab 2 + b ). a + b (a + b)(a 2 ab + b 2 ), a 5 + b 5 (a + b)(a a b + a 2 b 2 ab + b 2 ). Literatura Jeśmiaowicz L. i Łoś J. Zbiór zadań z algebry, Warszawa, PWN Musielak J. Wstęp do matematyki, Warszawa, PWN. a) 62; b) a) Na przykład 8 przykład si kx; b) p. 2 k0 k2 b) (a + a 2 + a )(a 2 + a 22 + a 2 )(a + a 2 + a ); c) a + a 2 a 22 + a a 2 a ; d) (a + a 2 + a )(a 22 + a 2 )a ; e) a a 2 a + a 22 a 2 + a ; f) a (a 2 + a 22 )(a + a 2 + a ); g) a a 2 a + a 2 a 22 + a ; h) (a + a 2 + a )(a 2 + a 22 )a ; i) a + a 22 a 2 + a a 2 a ; j) a (a 2 + a 22 )(a + a 2 + a ); k) a a 2 a + a 22 a 2 + a ; l) a (a 22 + a 2 )(a + a 2 + a ); ł) a + a 2 a 22 + a a 2 a ; m) (a + a 2 + a )(a 22 + a 2 )a ; ) a a 2 a + a 2 a 22 + a ; Odpowiedzi k k; b) p. 9 k5 00 k!.. a) 9; b) 6 20 c) a) Na (a + k) k+. 6. Na przyklad k. 8. a) a a 2 a + a 2 a 22 a 2 + a a 2 a ; k

12 o) (a + a 2 + a )(a 2 + a 22 )a. 9. a) a ij ; d) a ij ; b) a ij.. j i+ a ij a ij ; c) i j+ a ij. 2. a) 560; b) 0; c) ; d) a) (a + b) a + a b + 6a 2 b 2 + ab + b ; b) (a+b) 5 a 5 +5a b+0a b 2 +0a 2 b +5ab +b (a+b) 6 a 6 +6a 5 b+5a b 2 +20a b +5a 2 b +6ab 5 +b 6. 2

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

KOMBINATORYKA 1 WYK LAD 11 Kombinatoryczna teoria zbiorów

KOMBINATORYKA 1 WYK LAD 11 Kombinatoryczna teoria zbiorów KOMBINATORYKA 1 WYK LAD 11 Kombiatorycza teoria zbiorów 23 maja 2012 Wyk lad poświe coy jest w lasościom rodzi podzbiorów skończoego zbioru. Rozpoczya go poje cie systemu różych reprezetatów wraz ze s

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków Ku chwale ierówości Sebastia Lisiewski 25 lutego 200 XXVII Ogólopolski Sejmik Matematyków VIII Liceum Ogólokształcące im. Marii Skłodowskiej- Curie w Katowicach ul. 3-go Maja 42 40-097 Katowice Opiekuowie

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Wrocław, 2 lutego 205 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp 2 Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Klasa II technikum Egzamin poprawkowy z matematyki sierpień 2013

Klasa II technikum Egzamin poprawkowy z matematyki sierpień 2013 /7 I. FUNKCJA KWADRATOWA. Fukcja kwadratowa w postaci kaoiczej i ogólej. Napisz wzór fukcji kwadratowej wiedząc, że wierzchołkiem paraboli będącej jej wykresem jest początek układu współrzędych oraz, że

Bardziej szczegółowo

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony Przykładowy arkusz z rozwiązaiai Arkusz II pozio rozszerzoy ( pkt) Pukt A( -, -) jest wierzchołkie robu, którego jede z boków zawiera się w prostej k o rówaiu x - y - 0 Środkie syetrii tego robu jest pukt

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń

Bardziej szczegółowo

Wyk lad 1 Podstawowe techniki zliczania

Wyk lad 1 Podstawowe techniki zliczania Wy lad 1 Podstawowe techii zliczaia Wariacje bez powtórzeń Defiicja 1. Niech i bed a liczbami aturalymi taimi, że. Niech A bedzie dowolym zbiorem elemetowym. Każdy ciag różowartościowy a 1,..., a d lugości

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony). Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

WSTĘP DO ANALIZY MATEMATYCZNEJ

WSTĘP DO ANALIZY MATEMATYCZNEJ WSTĘP DO ANALIZY MATEMATYCZNEJ Liliaa Jaicka WSTĘP DO ANALIZY MATEMATYCZNEJ Wydaie trzecie poprawioe GiS Oficya Wydawicza GiS Wrocław 2004 Projekt okładki IMPRESJA Studio Grafiki Reklamowej Copyright c

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

Technologie Informacyjne lista nr 4.

Technologie Informacyjne lista nr 4. dr iż. Roma Ptak roma.ptak.staff.iiar.pwr.wroc.pl Techologie Iformacyje lista r 4. Ver.. Zadaie. Proszę w edytorze tekstu zredagować dokumet z zastosowaiem korespodecji seryjej. Zadaie to proszę wykoać

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki 52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Matematyka dyskretna II Zbiór zadań. Grzegorz Bobiński

Matematyka dyskretna II Zbiór zadań. Grzegorz Bobiński Matematyka dyskreta II Zbiór zadań Grzegorz Bobiński Wstęp Niiejszy zbiór zadań jest owocem prowadzoych przeze mie w latach 1999 00 ćwiczeń z przedmiotu Matematyka Dyskreta II a II roku iformatyki a Wydziale

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Entropia w układach dynamicznych

Entropia w układach dynamicznych Etropia w układach dyamiczych Wstęp Środowiskowe studia doktorackie Uiwersytet Jagielloński Kraków, marzec-kwiecień 203 Tomasz Dowarowicz Część II Etropia topologicza i zasada wariacyja Zaczijmy od początku.

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1

Zadania z Rachunku Prawdopodobieństwa I - 1 Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Przeczytaj, zanim zaczniesz rozwiązywać

Przeczytaj, zanim zaczniesz rozwiązywać Przeczytaj, zaim zacziesz rozwiązywać Maturzysto! Zaim rozpocziesz rozwiązywaie zadań z aszych arkuszy: Przygotuj: u Arkusz I 5 kartek papieru podaiowego w kratkę a czystopis i a brudopis; Arkusz II 5

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

I siłą, i sposobem. Wojciech Guzicki. Ameliówka, października 2014 r.

I siłą, i sposobem. Wojciech Guzicki. Ameliówka, października 2014 r. I siłą, i sposobem Wojciech Guzicki Ameliówka, paździerika r Zadaia matematycze moża rozwiązywać a siłę lub sposobem Co to zaczy? Spróbuję przyjąć astępujące zaczeia tych słów: Na siłę: za pomocą rutyowych

Bardziej szczegółowo

Spis treści. I. Wiadomości wstępne... 3

Spis treści. I. Wiadomości wstępne... 3 Spis treści I. Wiadomości wstępe... 3 II. Pojęcia ogóle wraz z twierdzeiami... 4 1. Jedostka urojoa... 4. Liczba zespoloa... 4 3. Iterpretacja geometrycza... 7 4. Moduł liczby zespoloej... 8 5. Liczba

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Poradnik maturzysty matematyka

Poradnik maturzysty matematyka Barbara Kaim-Gwier, Zdzisława Hojacka Poradik maturzysty matematyka stara matura Umiejętości wymagae a pisemym egzamiie dojrzałości z matematyki dla wszystkich profili poza matematyczo-fizyczym (zestawy

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

O podzielności liczb

O podzielności liczb Spis treści: I. Rys historyczy... 2 II. Podzielość liczb całkowitych... 4 1. Podzielość... 4 2. Dzieleie liczb całkowitych... 5 3. Największy wspóly dzielik i ajmiejsza wspóla wielokrotość dwóch liczb

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo