Podstawowe cechy podzielności liczb.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe cechy podzielności liczb."

Transkrypt

1 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się przez, 5 itd. Reguły te azywamy cechami podzielości. Wykorzystujemy je często gdy chcemy rozstrzygąć, czy daa liczba jest podziela przez ią liczbę. Oczywiście ie chodzi o zalezieie ilorazu tylko o potwierdzeie czy taki iloraz istieje czy ie. Weźmy liczbę 08675, jeżeli zechcemy sprawdzić czy ta liczba jest podziela przez dokoując dzieleia, to bez użycia kalkulatora, jest to bardzo uciążliwe. Zając cechę podzielości przez, o której dalej, stwierdzamy atychmiast, że taki iloraz istieje. Cech podzielości moża podać bardzo wiele, ajważiejsze z ich dotyczą podzielości przez liczby,,, 5, 6, 8,, 0. Omówimy je po kolei. Twierdzeie Liczba całkowita dzieli się bez reszty, przez jeżeli ostatia jej cyfra dzieli się przez. Dowód Poieważ zak liczby ie wpływa a podzielość ograiczymy się w dowodzie do liczb dodatich. Aby zrozumieć dowód tej cechy wyobraźmy sobie jakąkolwiek liczbę przyajmiej dwucyfrową (dla liczb jedocyfrowych ie ma czego uzasadiać) zakończoą iezaa cyfrą x. Niech to będzie przykładowo 76x. Zauważmy, że liczba ta może być rozdzieloa a sumę 6x 60 x60 x pierwszy składik otrzymaej sumy dzieli się przez, poieważ jest iloczyem liczby 0. O podzielości całej liczby przez zadecyduje drugi składik, który jest liczbą utworzoą z ostatiej cyfry badaej liczby. Te dowód zapisay w sposób ścisły wygląda astępująco. Liczbę całkowitą dodatią k (przypomijmy, że zak ie wpływa a podzielość) moża w systemie dziesiętym zapisać jako sumę potęg liczby 0: () k a 0 a 0 a 0 a0 gdzie a, a, a, a są cyframi liczby k. Na przykład liczba k może być zapisaa jako suma k Przekształćmy sumę () wyciągając 0 przed awias k 0 ( a 0 a 0 a) a0 Pierwszy składik tej sumy dzieli się zawsze, przez poieważ jest iloczyem liczby 0. Suma k będzie, zatem podziela, przez jeżeli będzie podziele przez tz. gdy ostatia cyfra a 0 liczby k będzie podziela przez. c..d. O liczbie podzielej przez mówimy, że jest liczba parzystą. Ogólie liczbę parzystą moża symboliczie ozaczyć jako, liczbę ieparzystą jako gdzie w obu wypadkach może przyjmować dowole wartości całkowite.

2 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Przykład a) Zając cechę atychmiast widać, że liczba 5678 jest parzysta (podziela przez ). b) Ustalmy czy podziela przez jest liczba Zauważmy, że potęgując liczbę 7 jako ostatią cyfrę wyiku możemy otrzymać wyłączie,,, 7. Jeżeli od liczby zakończoej którąkolwiek z tych cyfr odejmiemy otrzymamy liczbę parzystą c) W podoby sposób ustalimy, że 56 jest liczbą ieparzystą. Dowola potęga liczby zakończoej cyfrą 6, rówież zakończoa jest cyfrą 6. Dowola potęga liczby zakończoej cyfrą, rówież zakończoa jest cyfrą. Różica tych liczb zakończoa jest cyfrą 5, zatem jest liczba ieparzystą. Twierdzeie Liczba całkowita dzieli się bez reszty przez lub, jeżeli suma jej cyfr dzieli się przez lub. Dowód Aby zrozumieć dobrze ścisły dowód, pokażmy ajpierw uzasadieie tej cech a kokretym przykładzie. Weźmy liczbę 6. Zapisując tę liczbę jako sumę potęg 0 otrzymamy Teraz po każdym składiku odejmijmy i dodajmy (suma ie ulegie zmiaie) odpowiedią liczbę: =6(0 ) 6(0 ) (0 ) Dzięki temu zabiegowi moża był wyciągąć odpowiedią liczbę przed awias, zmieiając porządek sumowaia otrzymamy liczbę: 6(0 ) (0 ) (0 ) 6. Suma w pierwszym awiasie kwadratowym dzieli się przez i poieważ różice w awiasach okrągłych są liczbami złożoymi z samych dziewiątek. O podzielości całej liczby przez lub decyduje zatem suma w drugim awiasie kwadratowym. To jest cecha, która chcieliśmy uzasadić. Ścisły dowód matematyczy wygląda astępująco. Sumę () dla liczby k możemy rozpisać jako: k a (0 ) a a (0 ) a (0 ) a (0 ) a a a a a (0 ) a a (0 ) a W rówaiu wyciągięto przed awias odpowiedią liczbę, jeżeli wymożymy awiasy i dokoamy redukcji, otrzymamy Sumę (). Poieważ dla każdego liczba 0 składa się z samych cyfr, więc dzieli się przez oraz. Stąd pierwszy awias kwadratowy dzieli się, przez oraz. Wobec czego o podzielości liczby k decyduje drugi awias kwadratowy. Zatem, liczba dzieli się przez lub jeżeli suma jej cyfr dzieli się przez (lub ). c..d. Zauważmy, że twierdzeia i moża połączyć i podać cechę podzielości przez 6 (przecież 6 ). Mamy więc: Twierdzeie Liczba dzieli się, przez 6 jeżeli dzieli się przez i dzieli się przez. Iymi słowy liczba dzieli się, przez 6 jeżeli ostatia jej cyfra dzieli się przez i suma jej cyfr dzieli się przez. a 0 0

3 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Przykład 0 a) Mamy liczbę z iezaą jedą cyfrą 8*. Jakie cyfry moża wstawić w miejsce gwiazdki, aby otrzymać liczbę podzielą przez 6? Wypisaa liczba jest parzysta ależy więc zadbać o to aby suma jej cyfr była podziela przez. Suma cyfr widoczych rówa jest, zatem w miejsce gwiazdki moża wstawić cyfrę ze zbioru {0,, 6, }, tylko takie cyfry dadzą am sumę podziela przez. b) Czy istieje cyfry x taka, żeby liczba 5x była podziela przez 8?. Zauważmy, że 8 zatem liczba (i zarazem cyfra x) powia być parzysta oraz spełiać cechę podzielości przez. Suma widoczych cyfr wyosi 5. Jedyą cyfrą, która zapewia podzielość przez jest ale wtedy liczba ie będzie parzysta. Nie istieje cyfra spełiająca waruki zadaia. c) Zapytajmy czy istieje cyfra, dla której liczba z poprzediego przykładu będzie podziela przez 6? Zauważmy, że podzielość przez zapewiają cztery cyfry {0,,6,}, z których parzyste są {0, 6}. Liczba jest podziela przez 6 dla dwu cyfr {0, 6}. Twierdzeie 5 Liczba całkowita dzieli się bez reszty, przez jeżeli liczba złożoa z dwóch ostatich jej cyfr dzieli się przez. Dowód jest bardzo podoby do dowodu cechy podzielości przez. Należy tak przekształcić liczbę aby dała się zapisać jako suma liczby podzielej przez 00 (a ta dzieli się przez ) i liczby złożoej z dwóch ostatich cyfr p Dowód ścisły propoujemy wykoać samodzielie, jako ćwiczeie. Przykład a) Liczba 757 dzieli się, przez poieważ zakończoa jest cyframi, które tworzą liczbę podzielą przez. b) Wypisao w rzędzie liczby parzyste od do i otrzymao liczbę 6... Czy ta liczba dzieli się przez? Wypisaa liczba musiałaby być podziela przez i (gdyż ) a ie jest poieważ ostatie dwie jej cyfry tworzą liczbę iepodzielą przez. c) Czy istieje cyfra x, dla której liczba x jest podziela przez 6? Zauważmy, że 6, ależy więc sprawdzić podzielość przez i. Suma widoczych cyfr wyosi, ajbliższą liczbę podzielą przez otrzymamy dla x 8, wtedy też dwie ostatie cyfry 8 dadzą liczbę podziela przez. Waruki zadaia spełia x 8. Twierdzeie 6 Liczba całkowita dzieli się bez reszty, przez 5 jeżeli ostatia jej cyfra dzieli się przez 5. Co ozacza, że ostatią cyfrą liczby jest 0 lub 5. Dowód tej cech jest aalogiczy do dowodu twierdzeia. Poieważ 0 5 więc aby podzielić liczbę przez 0 ależy podzieli ją przez i 5 co prowadzi do kolejej cechy. Twierdzeie 7 Liczba całkowita dzieli się bez reszty, przez 0 jeżeli ostatią jej cyfrą jest 0.

4 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Przykład a) Weźmy liczbę 5678 jest oa podziela przez 0. Pierwszy składik, kwadrat liczby zakończoej cyfrą kończy się cyfrą. Drugi składik trzecia potęga liczby zakończoej cyfrą, kończy się cyfrą (poieważ druga potęga kończy się cyfrą ). Zatem suma kończy się , czyli liczba jest podziela przez 0. 5 b) Liczba 56 jest liczbą podziela przez 0 (pierwszy składik zakończoy jest cyfrą 6) 5 c) Liczba 78 jest podziela przez 0. Nieparzyste potęgi liczby zakończoej cyfrą są zakończoe cyfrą. Twierdzeie 8 Liczba całkowita dzieli się bez reszty, przez 8 jeżeli liczba złożoa z trzech ostatich jej cyfr dzieli się przez 8. Dowodząc postępujemy podobie jak przy dowodzie cechy podzielości przez. Tym razem przekształcamy liczbę tak aby pierwszy składik sumy był iloczyem liczby Przykładowo Przykład Weźmy liczbę 576x. Jaką cyfrę ależy postawić w miejsce x aby otrzymać liczbę podzielą przez? Cecha podzielości przez 8 ( 8 ) pozwala ustalić, że w miejsce x moża postawić jedą z cyfr ze zbioru {,5,}. Cecha podzielości przez elimiuje podzbiór {, }. Pozostaje jako rozwiązaie cyfra 5. Co ależy zapamiętać? Zbierzmy pozae cechy podzielości w tabeli. podzielość przez: cecha przykład liczba kończy się cyfra parzystą 56, suma cyfr liczby jest podziela przez lub 5 68 dwie ostatie cyfry liczby tworzą liczbę podzielą przez 88 5 ostatią cyfrą liczby jest 0 lub liczba dzieli się rówocześie przez i przez 66 8 trzy ostatie cyfry liczby tworzą liczbę podzielą przez ostatia cyfrą liczby jest 0 50 Tabela Co poadto warto wiedzieć? Wielkie zasługi w rozwoju teorii liczb ma Leoard Euler. Był to człowiek iezwykły. W roku 75 stracił jedo oko, w 766 drugie. Nie przerwał pracy aukowej i jako iewidomy dyktował swoje dzieła. Jako jede z pierwszych zajmował się po mistrzowsku popularyzacją wiedzy. Wydał hit ówczesych czasów, popularoaukową książeczkę Listy do księżiczki

5 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb iemieckiej, która zawierała populary wykład ajważiejszych wtedy problemów aukowych. Leohard Euler (707 78), matematyk i fizyk szwajcarski. Większość życia spędził w Petersburgu (tam też jest pochoway) i Berliie. Jede z ajbardziej płodych matematyków w historii. Autor wielu odkryć, prekursor współczesej otacji i termiologii matematyczej. Zadaia przezaczoe do samodzielego rozwiązaia.. Zakładając parzystość lub ieparzystość k, Ustal parzystość liczb: a) k, b) ( k ), c) k, d) k k, e) k k, f) kk k, g) k h) k i) k j) k. Pokaż, że każda liczba postaci: a) jest podziela przez 6, b) jest parzysta, c) jest ieparzysta, d) jest parzysta, e) jest parzysta, f) 7 jest parzysta, g) 6 jest podziela przez 5, h) jest podziela przez 5, i) 0 jest podziela przez, j) jest podziela przez 0.. Dla jakich wartości cyfry x zajdzie podzielość? a) 56x b) 5x 7 c) 65x d) 5 876x 0 e) x f) 8 x g) 85x 5

6 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb h) 0 5x x i) 56x j) 5 57x. Dla jakich cyfr x, y zajdzie podzielość? a) x56y b) 87x5y c) 56xy d) xy e) 6 xy f) 8 857xy g) 75x8y 7 h) 0 88xy i) 65xy j) 5 6xy 5. Zajdź ostatią cyfrę liczb: a) b) c) d) 765 e) 567 f) g) 5 h) i) 5 6 j) Pokazać, że jeżeli a dzieli się przez, to rówież 7a dzieli się przez. Dodatkowe cechy podzielości liczb. Oprócz cech pozaych w poprzedim rozdziale często wykorzystuje się trzy cechy dodatkowe. Podamy je w jedym twierdzeiu, gdyż metoda ich uzasadieia jest ta sama. Twierdzeie 8 Liczba całkowita jest podziela przez 7, lub, jeśli różica między liczbą wyrażoą trzema ostatimi jej cyframi a liczbą wyrażoą pozostałymi cyframi tej liczby jest podziela przez 7, lub. Przykład a) 7 70 gdyż 7 (7 0), różica w awiasie wyosi 50 i jest podziela przez 7. b) 7 86 gdyż 7 (8 6), różica w awiasie wyosi 5, bezpośredio ie 6

7 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb widać, że liczba ta jest podziela przez 7 dlatego raz jeszcze zastosujemy opisae wyżej kryterium. 5, liczba dzieli się przez, 7 wobec czego przez 7 dzieli się, 5 co z kolei dowodzi podzielości liczby 86. c) 575 gdyż (5 75), różica w awiasie wyosi 660 i jest podziela przez. d) gdyż ( ) ostatia różica wyosi 8. e) 888 gdyż (8 88), różica w awiasie wyosi 60 i jest podziela przez. f) 600, zauważmy, że różica 600 składa się z samych. Zaim ściśle udowodimy twierdzeie 7 przeprowadźmy uzasadieie przykładu (b), co pozwoli lepiej zrozumieć metodę dowodu. Liczbę 86 przekształcimy astępująco: (000 ) (8 6) 800 (8 6) Łatwo sprawdzić, że 00 dzieli się przez 7, zatem o podzielości aszej liczby decyduje podzielość różicy w awiasie. Dowód Aby ściśle udowodić twierdzeie ozaczmy przez cyfry liczby której podzielość chcemy sprawdzić. Powtarzając rozumowaie zaprezetowae dla liczby z przykładu (b) otrzymamy: aa aaaaaa 0 aa a aa 000 aaa 0 a a a a 000 a aa aaa aa aaa aaa 0 aa aa (000 a ) ( aa a aa aaa 0) aa aa 00 ( a ) a aa aa aaa 0 a i Liczba a a a aa 00 dzieli się przez 7,, poieważ 00 dzieli się przez 7,, zatem o podzielości badaej liczby zadecyduje podzielość różicy w awiasie a to jest cecha, która chcieliśmy uzasadić. c..d. Istieje wygodiejsza w stosowaiu cecha podzielości przez. w tym momecie podamy ją bez dowodu. Dowód oparty o teorię kogruecji jest zawarty w dodatku Co poadto warto wiedzieć?, dowód oparty o rozwiięcie dwumiau Newtoa zajduje się w kolejych rozdziałach. Twierdzeie Liczba dzieli się przez jeżeli różica liczby utworzoej z sumy cyfr a pozycjach parzystych i liczby utworzoej z sumy cyfr a pozycjach ieparzystych dzieli się przez. Przykład a) gdyż suma cyfr z pozycji parzystych , suma cyfr z pozycji ieparzystych 88 0, różica 0 jest oczywiście podziela przez. b) Liczba 567x8, w której a trzeciej pozycji występuje iewiadoma ma być podziela przez, jakie cyfry mogą wystąpić w miejscu iewiadomej? Suma cyfr z miejsc parzystych daje x 6x. Suma cyfr z miejsc ieparzystych wyosi 875. Różica tych wartości ( x) x jest podziela przez wyłączie dla x 8. 7

8 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb c) Dla jakiej cyfry x liczba 56x będzie podziela przez? Badaa liczba musi spełiać cechę podzielości przez oraz cechę podzielości przez. Suma cyfr z pozycji parzystych daje x, suma cyfr z pozycji ieparzystych wyosi. Różica tych sum to x. Ta różica jest podziela przez tylko dla x, wtedy jedak ie zachodzi podzielość przez. Badaa liczba dla żadej cyfry x ie jest podziela przez. Co ależy zapamiętać? Tabela zbiera dodatkowa cechy podzielości, które często wykorzystujemy. podzielość przez: 7,, cecha różica liczby powstałej z trzech ostatich cyfr i liczby powstałej po odcięciu trzech ostatich cyfr dzieli się odpowiedio przez 7,, różica sumy cyfr z miejsc parzystych i sumy cyfr z miejsc ieparzystych jest podziela przez Tabela przykład Co poadto warto wiedzieć? Jedym z ajbardziej twórczych matematyków w dziedziie teorii liczb był wspomiay w poprzedim rozdziale Carl Friedrich Gauss. Zawdzięczamy jemu, między iymi, opisaą tam metodę kogruecji. Warto wiedzieć, że był to człowiek iezwykły. Pochodzący z biedej rodziy samouk, który do każdego działu matematyki wiósł cząstkę swojego geiuszu. Carl Friedrich Gauss ( ), matematyk i fizyk iemiecki. Człowiek iezwykle wszechstroy i utaletoway zway księciem matematyków. Nie ma takiego działu matematyki, w którym Gauss ie osiągąłby zaczących wyików, wiele działów sam zapoczątkował. Od 807 r. aż do śmierci był profesorem uiwersytetu w Getydze. Poiżej podajemy ścisły dowód cechy podzielości przez (różica sumy cyfr z miejsc parzystych i sumy cyfr z miejsc ieparzystych jest podziela przez ) w oparciu o metodę kogruecji Gaussa. Rozważmy astępujące kogruecje: 0 () 0, 0, 0, 0, 0,... Widzimy, że parzyste potęgi liczby 0 tworzą z liczbą kogruecję, potęgi ieparzyste tworzą kogruecję. Jeżeli badaą liczbę będziemy rozpatrywać w postaci sumy potęg podstawy 0, to otrzymamy: aa a aaaaa ( a 0 a 0 a0 a) Biorąc pod uwagę przedstawioe własości kogruecji oraz kogruecje (), mamy 8

9 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb ( a a a a ) 0, 0 ( a a ) ( a a ) 0 0 To jest cecha, którą ależało udowodić. Zadaia przezaczoe do samodzielego rozwiązaia.. Pokaż ie używając kalkulatora, że zachodzi podzielość: a) 7 ( ) b) ( ) c) (6 65 ) d) e) 66 f) 7808 g) h) 667 i) 085 j) Dla jakich cyfr x, y zachodzi podzielość? a) 7 858x b) 55x c) x d) xy e) 78x55y f) 56xy g) xy h) xy i) 656xy j) 00 0xy. Pokaż, że jeżeli a oraz 5 b dzielą się przez, to rówież a b dzieli się przez.. Wiadomo, że dla pewych x, y liczba x y dzieli się przez. Pokazać, że dla tych samych x, y przez dzieli się liczba 7x y. 5. Wiadomo, że dla pewych x, y liczba x y dzieli się przez. Pokazać, że dla tych samych x, y przez dzieli się liczba x y. 6. Zaleźć 0 różych liczb aturalych o tej własości, że ich suma dzieli się przez każdy ze składików.

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 04. Liczby Pierwsze Rozdział 1 1. Cyfry liczb pierwszych Adrzej Nowicki 19 marca 2012, http://www.mat.ui.toru.pl/~aow Spis treści 1 Cyfry liczb pierwszych 5 1.1 Początkowe

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Materiał powtarzany w II etapie. II 4. Ciągi

Materiał powtarzany w II etapie. II 4. Ciągi Materiał powtarzay w II etapie II. Ciągi 3 1, dla parzystych 1. Wyzacz sześć początkowych wyrazów ciągu a = { +1, dla ieparzystych. Które wyrazy ciągu a = są rówe 1? 3. Pomiędzy liczby 7 i 5 wstaw 5 liczb

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochode wyższych rzędów 1.1 Defiicja i przykłady Def. Drugą pochodą fukcji f azywamy pochodą pochodej tej fukcji. Trzecia pochoda jest pochodą drugiej pochodej; itd. Ogólie, -ta pochoda fukcji jest pochodą

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

I Wielkopolska Liga Matematyczna

I Wielkopolska Liga Matematyczna Wielkopolska Liga Matematycza Z A D A N I A I Wielkopolska Liga Matematycza A1. Ciąg (a) liczb całkowitych dodatich spełia dla każdego całkowitego dodatiego waruki Wykazać, że ciąg te jest ściśle rosący.

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków Ku chwale ierówości Sebastia Lisiewski 25 lutego 200 XXVII Ogólopolski Sejmik Matematyków VIII Liceum Ogólokształcące im. Marii Skłodowskiej- Curie w Katowicach ul. 3-go Maja 42 40-097 Katowice Opiekuowie

Bardziej szczegółowo

Opowieści o indukcji

Opowieści o indukcji Obóz Naukowy Olimpiady Matematyczej Gimazjalistów Liga zadaiowa 0/03 Materiały dodatkowe 30 listopada 0 Opowieści o idukcji Wzoreczki w kropeczki I silia Liczbę! defiiujemy jako iloczy liczb aturalych

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Jarosław Wróblewski Matematyka dla Myślących 008/09 3. Wzory skrócoego możeia działaia a wielomiaach. Procety. Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala. 5 paździerika 008 r. 35. Uprościć wyrażeie

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Ciąg geometryczny i jego własności

Ciąg geometryczny i jego własności Ciąg geometryczy Def: Ciągiem geometryczym (a) azywamy ciąg liczbowy co ajmiej trzywyrazowy, w którym każdy wyraz, począwszy od drugiego, powstaje z pomożeia wyrazu poprzediego przez stałą liczbę q, zwaą

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

O kilku zastosowaniach grup i pierścieni grupowych

O kilku zastosowaniach grup i pierścieni grupowych O kilku zastosowaiach grup i pierściei grupowych Czesław BAGIŃSKI, Edmud R. PUCZYŁOWSKI, Białystok Warszawa Nierzadko zdarza się, że rozwiązaie elemetarie brzmiącego zadaia, wymaga iestadardowych pomysłów.

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

Entropia w układach dynamicznych

Entropia w układach dynamicznych Etropia w układach dyamiczych Wstęp Środowiskowe studia doktorackie Uiwersytet Jagielloński Kraków, marzec-kwiecień 203 Tomasz Dowarowicz Część II Etropia topologicza i zasada wariacyja Zaczijmy od początku.

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.

Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek. FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Matematyka dyskretna II Zbiór zadań. Grzegorz Bobiński

Matematyka dyskretna II Zbiór zadań. Grzegorz Bobiński Matematyka dyskreta II Zbiór zadań Grzegorz Bobiński Wstęp Niiejszy zbiór zadań jest owocem prowadzoych przeze mie w latach 1999 00 ćwiczeń z przedmiotu Matematyka Dyskreta II a II roku iformatyki a Wydziale

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Wrocław, 2 lutego 205 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp 2 Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań

Bardziej szczegółowo

Silnie i symbole Newtona

Silnie i symbole Newtona Podróże po Imperium Liczb Część Silie i symbole Newtoa Adrzej Nowici Wydaie drugie, uzupełioe i rozszerzoe Olszty, Toruń, 202 SSN - 33(080-2.05.202 Spis treści Wstęp Silie 5. Iformacje o cyfrach................................

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki 52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo