Podstawowe cechy podzielności liczb.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe cechy podzielności liczb."

Transkrypt

1 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się przez, 5 itd. Reguły te azywamy cechami podzielości. Wykorzystujemy je często gdy chcemy rozstrzygąć, czy daa liczba jest podziela przez ią liczbę. Oczywiście ie chodzi o zalezieie ilorazu tylko o potwierdzeie czy taki iloraz istieje czy ie. Weźmy liczbę 08675, jeżeli zechcemy sprawdzić czy ta liczba jest podziela przez dokoując dzieleia, to bez użycia kalkulatora, jest to bardzo uciążliwe. Zając cechę podzielości przez, o której dalej, stwierdzamy atychmiast, że taki iloraz istieje. Cech podzielości moża podać bardzo wiele, ajważiejsze z ich dotyczą podzielości przez liczby,,, 5, 6, 8,, 0. Omówimy je po kolei. Twierdzeie Liczba całkowita dzieli się bez reszty, przez jeżeli ostatia jej cyfra dzieli się przez. Dowód Poieważ zak liczby ie wpływa a podzielość ograiczymy się w dowodzie do liczb dodatich. Aby zrozumieć dowód tej cechy wyobraźmy sobie jakąkolwiek liczbę przyajmiej dwucyfrową (dla liczb jedocyfrowych ie ma czego uzasadiać) zakończoą iezaa cyfrą x. Niech to będzie przykładowo 76x. Zauważmy, że liczba ta może być rozdzieloa a sumę 6x 60 x60 x pierwszy składik otrzymaej sumy dzieli się przez, poieważ jest iloczyem liczby 0. O podzielości całej liczby przez zadecyduje drugi składik, który jest liczbą utworzoą z ostatiej cyfry badaej liczby. Te dowód zapisay w sposób ścisły wygląda astępująco. Liczbę całkowitą dodatią k (przypomijmy, że zak ie wpływa a podzielość) moża w systemie dziesiętym zapisać jako sumę potęg liczby 0: () k a 0 a 0 a 0 a0 gdzie a, a, a, a są cyframi liczby k. Na przykład liczba k może być zapisaa jako suma k Przekształćmy sumę () wyciągając 0 przed awias k 0 ( a 0 a 0 a) a0 Pierwszy składik tej sumy dzieli się zawsze, przez poieważ jest iloczyem liczby 0. Suma k będzie, zatem podziela, przez jeżeli będzie podziele przez tz. gdy ostatia cyfra a 0 liczby k będzie podziela przez. c..d. O liczbie podzielej przez mówimy, że jest liczba parzystą. Ogólie liczbę parzystą moża symboliczie ozaczyć jako, liczbę ieparzystą jako gdzie w obu wypadkach może przyjmować dowole wartości całkowite.

2 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Przykład a) Zając cechę atychmiast widać, że liczba 5678 jest parzysta (podziela przez ). b) Ustalmy czy podziela przez jest liczba Zauważmy, że potęgując liczbę 7 jako ostatią cyfrę wyiku możemy otrzymać wyłączie,,, 7. Jeżeli od liczby zakończoej którąkolwiek z tych cyfr odejmiemy otrzymamy liczbę parzystą c) W podoby sposób ustalimy, że 56 jest liczbą ieparzystą. Dowola potęga liczby zakończoej cyfrą 6, rówież zakończoa jest cyfrą 6. Dowola potęga liczby zakończoej cyfrą, rówież zakończoa jest cyfrą. Różica tych liczb zakończoa jest cyfrą 5, zatem jest liczba ieparzystą. Twierdzeie Liczba całkowita dzieli się bez reszty przez lub, jeżeli suma jej cyfr dzieli się przez lub. Dowód Aby zrozumieć dobrze ścisły dowód, pokażmy ajpierw uzasadieie tej cech a kokretym przykładzie. Weźmy liczbę 6. Zapisując tę liczbę jako sumę potęg 0 otrzymamy Teraz po każdym składiku odejmijmy i dodajmy (suma ie ulegie zmiaie) odpowiedią liczbę: =6(0 ) 6(0 ) (0 ) Dzięki temu zabiegowi moża był wyciągąć odpowiedią liczbę przed awias, zmieiając porządek sumowaia otrzymamy liczbę: 6(0 ) (0 ) (0 ) 6. Suma w pierwszym awiasie kwadratowym dzieli się przez i poieważ różice w awiasach okrągłych są liczbami złożoymi z samych dziewiątek. O podzielości całej liczby przez lub decyduje zatem suma w drugim awiasie kwadratowym. To jest cecha, która chcieliśmy uzasadić. Ścisły dowód matematyczy wygląda astępująco. Sumę () dla liczby k możemy rozpisać jako: k a (0 ) a a (0 ) a (0 ) a (0 ) a a a a a (0 ) a a (0 ) a W rówaiu wyciągięto przed awias odpowiedią liczbę, jeżeli wymożymy awiasy i dokoamy redukcji, otrzymamy Sumę (). Poieważ dla każdego liczba 0 składa się z samych cyfr, więc dzieli się przez oraz. Stąd pierwszy awias kwadratowy dzieli się, przez oraz. Wobec czego o podzielości liczby k decyduje drugi awias kwadratowy. Zatem, liczba dzieli się przez lub jeżeli suma jej cyfr dzieli się przez (lub ). c..d. Zauważmy, że twierdzeia i moża połączyć i podać cechę podzielości przez 6 (przecież 6 ). Mamy więc: Twierdzeie Liczba dzieli się, przez 6 jeżeli dzieli się przez i dzieli się przez. Iymi słowy liczba dzieli się, przez 6 jeżeli ostatia jej cyfra dzieli się przez i suma jej cyfr dzieli się przez. a 0 0

3 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Przykład 0 a) Mamy liczbę z iezaą jedą cyfrą 8*. Jakie cyfry moża wstawić w miejsce gwiazdki, aby otrzymać liczbę podzielą przez 6? Wypisaa liczba jest parzysta ależy więc zadbać o to aby suma jej cyfr była podziela przez. Suma cyfr widoczych rówa jest, zatem w miejsce gwiazdki moża wstawić cyfrę ze zbioru {0,, 6, }, tylko takie cyfry dadzą am sumę podziela przez. b) Czy istieje cyfry x taka, żeby liczba 5x była podziela przez 8?. Zauważmy, że 8 zatem liczba (i zarazem cyfra x) powia być parzysta oraz spełiać cechę podzielości przez. Suma widoczych cyfr wyosi 5. Jedyą cyfrą, która zapewia podzielość przez jest ale wtedy liczba ie będzie parzysta. Nie istieje cyfra spełiająca waruki zadaia. c) Zapytajmy czy istieje cyfra, dla której liczba z poprzediego przykładu będzie podziela przez 6? Zauważmy, że podzielość przez zapewiają cztery cyfry {0,,6,}, z których parzyste są {0, 6}. Liczba jest podziela przez 6 dla dwu cyfr {0, 6}. Twierdzeie 5 Liczba całkowita dzieli się bez reszty, przez jeżeli liczba złożoa z dwóch ostatich jej cyfr dzieli się przez. Dowód jest bardzo podoby do dowodu cechy podzielości przez. Należy tak przekształcić liczbę aby dała się zapisać jako suma liczby podzielej przez 00 (a ta dzieli się przez ) i liczby złożoej z dwóch ostatich cyfr p Dowód ścisły propoujemy wykoać samodzielie, jako ćwiczeie. Przykład a) Liczba 757 dzieli się, przez poieważ zakończoa jest cyframi, które tworzą liczbę podzielą przez. b) Wypisao w rzędzie liczby parzyste od do i otrzymao liczbę 6... Czy ta liczba dzieli się przez? Wypisaa liczba musiałaby być podziela przez i (gdyż ) a ie jest poieważ ostatie dwie jej cyfry tworzą liczbę iepodzielą przez. c) Czy istieje cyfra x, dla której liczba x jest podziela przez 6? Zauważmy, że 6, ależy więc sprawdzić podzielość przez i. Suma widoczych cyfr wyosi, ajbliższą liczbę podzielą przez otrzymamy dla x 8, wtedy też dwie ostatie cyfry 8 dadzą liczbę podziela przez. Waruki zadaia spełia x 8. Twierdzeie 6 Liczba całkowita dzieli się bez reszty, przez 5 jeżeli ostatia jej cyfra dzieli się przez 5. Co ozacza, że ostatią cyfrą liczby jest 0 lub 5. Dowód tej cech jest aalogiczy do dowodu twierdzeia. Poieważ 0 5 więc aby podzielić liczbę przez 0 ależy podzieli ją przez i 5 co prowadzi do kolejej cechy. Twierdzeie 7 Liczba całkowita dzieli się bez reszty, przez 0 jeżeli ostatią jej cyfrą jest 0.

4 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Przykład a) Weźmy liczbę 5678 jest oa podziela przez 0. Pierwszy składik, kwadrat liczby zakończoej cyfrą kończy się cyfrą. Drugi składik trzecia potęga liczby zakończoej cyfrą, kończy się cyfrą (poieważ druga potęga kończy się cyfrą ). Zatem suma kończy się , czyli liczba jest podziela przez 0. 5 b) Liczba 56 jest liczbą podziela przez 0 (pierwszy składik zakończoy jest cyfrą 6) 5 c) Liczba 78 jest podziela przez 0. Nieparzyste potęgi liczby zakończoej cyfrą są zakończoe cyfrą. Twierdzeie 8 Liczba całkowita dzieli się bez reszty, przez 8 jeżeli liczba złożoa z trzech ostatich jej cyfr dzieli się przez 8. Dowodząc postępujemy podobie jak przy dowodzie cechy podzielości przez. Tym razem przekształcamy liczbę tak aby pierwszy składik sumy był iloczyem liczby Przykładowo Przykład Weźmy liczbę 576x. Jaką cyfrę ależy postawić w miejsce x aby otrzymać liczbę podzielą przez? Cecha podzielości przez 8 ( 8 ) pozwala ustalić, że w miejsce x moża postawić jedą z cyfr ze zbioru {,5,}. Cecha podzielości przez elimiuje podzbiór {, }. Pozostaje jako rozwiązaie cyfra 5. Co ależy zapamiętać? Zbierzmy pozae cechy podzielości w tabeli. podzielość przez: cecha przykład liczba kończy się cyfra parzystą 56, suma cyfr liczby jest podziela przez lub 5 68 dwie ostatie cyfry liczby tworzą liczbę podzielą przez 88 5 ostatią cyfrą liczby jest 0 lub liczba dzieli się rówocześie przez i przez 66 8 trzy ostatie cyfry liczby tworzą liczbę podzielą przez ostatia cyfrą liczby jest 0 50 Tabela Co poadto warto wiedzieć? Wielkie zasługi w rozwoju teorii liczb ma Leoard Euler. Był to człowiek iezwykły. W roku 75 stracił jedo oko, w 766 drugie. Nie przerwał pracy aukowej i jako iewidomy dyktował swoje dzieła. Jako jede z pierwszych zajmował się po mistrzowsku popularyzacją wiedzy. Wydał hit ówczesych czasów, popularoaukową książeczkę Listy do księżiczki

5 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb iemieckiej, która zawierała populary wykład ajważiejszych wtedy problemów aukowych. Leohard Euler (707 78), matematyk i fizyk szwajcarski. Większość życia spędził w Petersburgu (tam też jest pochoway) i Berliie. Jede z ajbardziej płodych matematyków w historii. Autor wielu odkryć, prekursor współczesej otacji i termiologii matematyczej. Zadaia przezaczoe do samodzielego rozwiązaia.. Zakładając parzystość lub ieparzystość k, Ustal parzystość liczb: a) k, b) ( k ), c) k, d) k k, e) k k, f) kk k, g) k h) k i) k j) k. Pokaż, że każda liczba postaci: a) jest podziela przez 6, b) jest parzysta, c) jest ieparzysta, d) jest parzysta, e) jest parzysta, f) 7 jest parzysta, g) 6 jest podziela przez 5, h) jest podziela przez 5, i) 0 jest podziela przez, j) jest podziela przez 0.. Dla jakich wartości cyfry x zajdzie podzielość? a) 56x b) 5x 7 c) 65x d) 5 876x 0 e) x f) 8 x g) 85x 5

6 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb h) 0 5x x i) 56x j) 5 57x. Dla jakich cyfr x, y zajdzie podzielość? a) x56y b) 87x5y c) 56xy d) xy e) 6 xy f) 8 857xy g) 75x8y 7 h) 0 88xy i) 65xy j) 5 6xy 5. Zajdź ostatią cyfrę liczb: a) b) c) d) 765 e) 567 f) g) 5 h) i) 5 6 j) Pokazać, że jeżeli a dzieli się przez, to rówież 7a dzieli się przez. Dodatkowe cechy podzielości liczb. Oprócz cech pozaych w poprzedim rozdziale często wykorzystuje się trzy cechy dodatkowe. Podamy je w jedym twierdzeiu, gdyż metoda ich uzasadieia jest ta sama. Twierdzeie 8 Liczba całkowita jest podziela przez 7, lub, jeśli różica między liczbą wyrażoą trzema ostatimi jej cyframi a liczbą wyrażoą pozostałymi cyframi tej liczby jest podziela przez 7, lub. Przykład a) 7 70 gdyż 7 (7 0), różica w awiasie wyosi 50 i jest podziela przez 7. b) 7 86 gdyż 7 (8 6), różica w awiasie wyosi 5, bezpośredio ie 6

7 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb widać, że liczba ta jest podziela przez 7 dlatego raz jeszcze zastosujemy opisae wyżej kryterium. 5, liczba dzieli się przez, 7 wobec czego przez 7 dzieli się, 5 co z kolei dowodzi podzielości liczby 86. c) 575 gdyż (5 75), różica w awiasie wyosi 660 i jest podziela przez. d) gdyż ( ) ostatia różica wyosi 8. e) 888 gdyż (8 88), różica w awiasie wyosi 60 i jest podziela przez. f) 600, zauważmy, że różica 600 składa się z samych. Zaim ściśle udowodimy twierdzeie 7 przeprowadźmy uzasadieie przykładu (b), co pozwoli lepiej zrozumieć metodę dowodu. Liczbę 86 przekształcimy astępująco: (000 ) (8 6) 800 (8 6) Łatwo sprawdzić, że 00 dzieli się przez 7, zatem o podzielości aszej liczby decyduje podzielość różicy w awiasie. Dowód Aby ściśle udowodić twierdzeie ozaczmy przez cyfry liczby której podzielość chcemy sprawdzić. Powtarzając rozumowaie zaprezetowae dla liczby z przykładu (b) otrzymamy: aa aaaaaa 0 aa a aa 000 aaa 0 a a a a 000 a aa aaa aa aaa aaa 0 aa aa (000 a ) ( aa a aa aaa 0) aa aa 00 ( a ) a aa aa aaa 0 a i Liczba a a a aa 00 dzieli się przez 7,, poieważ 00 dzieli się przez 7,, zatem o podzielości badaej liczby zadecyduje podzielość różicy w awiasie a to jest cecha, która chcieliśmy uzasadić. c..d. Istieje wygodiejsza w stosowaiu cecha podzielości przez. w tym momecie podamy ją bez dowodu. Dowód oparty o teorię kogruecji jest zawarty w dodatku Co poadto warto wiedzieć?, dowód oparty o rozwiięcie dwumiau Newtoa zajduje się w kolejych rozdziałach. Twierdzeie Liczba dzieli się przez jeżeli różica liczby utworzoej z sumy cyfr a pozycjach parzystych i liczby utworzoej z sumy cyfr a pozycjach ieparzystych dzieli się przez. Przykład a) gdyż suma cyfr z pozycji parzystych , suma cyfr z pozycji ieparzystych 88 0, różica 0 jest oczywiście podziela przez. b) Liczba 567x8, w której a trzeciej pozycji występuje iewiadoma ma być podziela przez, jakie cyfry mogą wystąpić w miejscu iewiadomej? Suma cyfr z miejsc parzystych daje x 6x. Suma cyfr z miejsc ieparzystych wyosi 875. Różica tych wartości ( x) x jest podziela przez wyłączie dla x 8. 7

8 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb c) Dla jakiej cyfry x liczba 56x będzie podziela przez? Badaa liczba musi spełiać cechę podzielości przez oraz cechę podzielości przez. Suma cyfr z pozycji parzystych daje x, suma cyfr z pozycji ieparzystych wyosi. Różica tych sum to x. Ta różica jest podziela przez tylko dla x, wtedy jedak ie zachodzi podzielość przez. Badaa liczba dla żadej cyfry x ie jest podziela przez. Co ależy zapamiętać? Tabela zbiera dodatkowa cechy podzielości, które często wykorzystujemy. podzielość przez: 7,, cecha różica liczby powstałej z trzech ostatich cyfr i liczby powstałej po odcięciu trzech ostatich cyfr dzieli się odpowiedio przez 7,, różica sumy cyfr z miejsc parzystych i sumy cyfr z miejsc ieparzystych jest podziela przez Tabela przykład Co poadto warto wiedzieć? Jedym z ajbardziej twórczych matematyków w dziedziie teorii liczb był wspomiay w poprzedim rozdziale Carl Friedrich Gauss. Zawdzięczamy jemu, między iymi, opisaą tam metodę kogruecji. Warto wiedzieć, że był to człowiek iezwykły. Pochodzący z biedej rodziy samouk, który do każdego działu matematyki wiósł cząstkę swojego geiuszu. Carl Friedrich Gauss ( ), matematyk i fizyk iemiecki. Człowiek iezwykle wszechstroy i utaletoway zway księciem matematyków. Nie ma takiego działu matematyki, w którym Gauss ie osiągąłby zaczących wyików, wiele działów sam zapoczątkował. Od 807 r. aż do śmierci był profesorem uiwersytetu w Getydze. Poiżej podajemy ścisły dowód cechy podzielości przez (różica sumy cyfr z miejsc parzystych i sumy cyfr z miejsc ieparzystych jest podziela przez ) w oparciu o metodę kogruecji Gaussa. Rozważmy astępujące kogruecje: 0 () 0, 0, 0, 0, 0,... Widzimy, że parzyste potęgi liczby 0 tworzą z liczbą kogruecję, potęgi ieparzyste tworzą kogruecję. Jeżeli badaą liczbę będziemy rozpatrywać w postaci sumy potęg podstawy 0, to otrzymamy: aa a aaaaa ( a 0 a 0 a0 a) Biorąc pod uwagę przedstawioe własości kogruecji oraz kogruecje (), mamy 8

9 Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb ( a a a a ) 0, 0 ( a a ) ( a a ) 0 0 To jest cecha, którą ależało udowodić. Zadaia przezaczoe do samodzielego rozwiązaia.. Pokaż ie używając kalkulatora, że zachodzi podzielość: a) 7 ( ) b) ( ) c) (6 65 ) d) e) 66 f) 7808 g) h) 667 i) 085 j) Dla jakich cyfr x, y zachodzi podzielość? a) 7 858x b) 55x c) x d) xy e) 78x55y f) 56xy g) xy h) xy i) 656xy j) 00 0xy. Pokaż, że jeżeli a oraz 5 b dzielą się przez, to rówież a b dzieli się przez.. Wiadomo, że dla pewych x, y liczba x y dzieli się przez. Pokazać, że dla tych samych x, y przez dzieli się liczba 7x y. 5. Wiadomo, że dla pewych x, y liczba x y dzieli się przez. Pokazać, że dla tych samych x, y przez dzieli się liczba x y. 6. Zaleźć 0 różych liczb aturalych o tej własości, że ich suma dzieli się przez każdy ze składików.

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków Ku chwale ierówości Sebastia Lisiewski 25 lutego 200 XXVII Ogólopolski Sejmik Matematyków VIII Liceum Ogólokształcące im. Marii Skłodowskiej- Curie w Katowicach ul. 3-go Maja 42 40-097 Katowice Opiekuowie

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

Entropia w układach dynamicznych

Entropia w układach dynamicznych Etropia w układach dyamiczych Wstęp Środowiskowe studia doktorackie Uiwersytet Jagielloński Kraków, marzec-kwiecień 203 Tomasz Dowarowicz Część II Etropia topologicza i zasada wariacyja Zaczijmy od początku.

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Wrocław, 2 lutego 205 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp 2 Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań

Bardziej szczegółowo

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki 52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Matematyka dyskretna II Zbiór zadań. Grzegorz Bobiński

Matematyka dyskretna II Zbiór zadań. Grzegorz Bobiński Matematyka dyskreta II Zbiór zadań Grzegorz Bobiński Wstęp Niiejszy zbiór zadań jest owocem prowadzoych przeze mie w latach 1999 00 ćwiczeń z przedmiotu Matematyka Dyskreta II a II roku iformatyki a Wydziale

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe.

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe. Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

WYBRANE METODY DOSTĘPU DO DANYCH

WYBRANE METODY DOSTĘPU DO DANYCH WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie... Imię i Nazwisko... Klasa... Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY...... Liczba punktów...... Wynik procentowy Informacje dla ucznia

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

O podzielności liczb

O podzielności liczb Spis treści: I. Rys historyczy... 2 II. Podzielość liczb całkowitych... 4 1. Podzielość... 4 2. Dzieleie liczb całkowitych... 5 3. Największy wspóly dzielik i ajmiejsza wspóla wielokrotość dwóch liczb

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1

Zadania z Rachunku Prawdopodobieństwa I - 1 Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Kongruencje oraz przykłady ich zastosowań

Kongruencje oraz przykłady ich zastosowań Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

5. METODY MONTE CARLO A SYMULACJA POTOKÓW RUCHU (wg Drew, 1968)

5. METODY MONTE CARLO A SYMULACJA POTOKÓW RUCHU (wg Drew, 1968) 5. MEODY MONE CARLO A SYMULACJA POOKÓW RUCHU (wg Drew, 968) 5.. Wprowadzeie Moeta jest rzucaa aż do osiągięcia orła. Jeżeli to zdarzy się w pierwszym rzucie, gracz otrzymuje zł od baku. Jeżeli poraz pierwszy

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

EURPLN. 3 opór 4,0600 2 opór 4,0200 1 opór 4,0000. 1 wsparcie 3,9600 2 wsparcie 3,9400 3 wsparcie - 3,9000

EURPLN. 3 opór 4,0600 2 opór 4,0200 1 opór 4,0000. 1 wsparcie 3,9600 2 wsparcie 3,9400 3 wsparcie - 3,9000 9:00- Rekordowo wysokie cey obligacji iemieckich, historyczie sily je, zyskujący amerykański dolar i szwajcarski frak są doskoałą ilustracją zjawiska odpływu kapitału od ryzykowych Iwestorzy ie mogą się

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 3 października 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

AUDYT SYSTEMU GRZEWCZEGO

AUDYT SYSTEMU GRZEWCZEGO Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,

Bardziej szczegółowo

MATEMATYKA cz. 5 Elementy probabilistyki i statystyki matematycznej

MATEMATYKA cz. 5 Elementy probabilistyki i statystyki matematycznej Ja Nawrocki, Adrzej Wiicki MATEMATYKA cz. 5 Elemety probabilistyki i statystyki matematyczej Politechika Warszawska 00 Politechika Warszawska Wydział Samochodów i Maszy Roboczych Kieruek "Edukacja techiczo

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia Ewelia Majka, Katarzya Kociuba-Adamczuk, Mariola Bałos Wpływ religijości a ukształtowaie postawy wobec eutaazji The impact of religiosity o the formatio of attitudes toward euthaasia Ewelia Majka 1, Katarzya

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

III Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich

III Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich III Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich Rozwiązania zadań konkursowych 01 czerwca 2014 r. Zadanie 1. Uzasadnij nierówność

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

STRATEGIA STOP-LOSS & PROFIT OPTYMALIZACJA PORTFELA INWESTYCYJNEGO

STRATEGIA STOP-LOSS & PROFIT OPTYMALIZACJA PORTFELA INWESTYCYJNEGO Studia Ekoomicze. Zeszyty Naukowe Uiwersytetu Ekoomiczego w Katowicach ISSN 2083-8611 Nr 221 2015 Współczese Fiase 1 Tadeusz Czerik Uiwersytet Ekoomiczy w Katowicach Wydział Fiasów i Ubezpieczeń Katedra

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część V: Ciągi liczbowe ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Prezentacja liczb trójkątnych i kwadratowych

Scenariusz lekcji Ozobot w klasie: Prezentacja liczb trójkątnych i kwadratowych Scenariusz lekcji Ozobot w klasie: Prezentacja liczb trójkątnych i kwadratowych Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Matematyka, Informatyka,

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA SPIS TREŚCI Rozdział I O egzamiie... Rozdział II Elemety matematyki fiasowej dr hab. Michał Szurek... 6 Rozdział III Wzory... 9 Rozdział

Bardziej szczegółowo

Jak skutecznie reklamować towary konsumpcyjne

Jak skutecznie reklamować towary konsumpcyjne K Stowarzyszeie Kosumetów Polskich Jak skuteczie reklamować towary kosumpcyje HALO, KONSUMENT! Chcesz pozać swoje praw a? Szukasz pomoc y? ZADZWOŃ DO INFOLINII KONSUMENCKIEJ BEZPŁATNY TELEFON 0 800 800

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA 1. ZAMAWIAJĄCY TALEX S.A., ul. Karpia 27 d, 61 619 Pozań, e mail: cetrumit@talex.pl 2. INFORMACJE OGÓLNE 2.1. Talex S.A. zaprasza do udziału w postępowaiu przetargowym,

Bardziej szczegółowo

profi-air 250 / 400 touch Nowoczesne centrale rekuperacyjne do wentylacji pomieszczeń mieszkalnych

profi-air 250 / 400 touch Nowoczesne centrale rekuperacyjne do wentylacji pomieszczeń mieszkalnych profi-air 250 / 400 touch Nowoczese cetrale rekuperacyje do wetylacji pomieszczeń mieszkalych SYSTEMY ODWADNIAJĄ CE SYSTEMY ELEKTRYCZNE INSTALACJE WEWNĘTRZNE PRODUKTY DLA PRZEMYSŁU Nowoczesa techologia

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo