Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi."

Transkrypt

1 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia : zad Kolokwium r 5, : materiał z zad Ćwiczeia : zad : zajęcia czwartkowe Trochę teorii Uwaga: Umieszczaie zmieej pod kwatyfikatorem ie jest zgode z obowiązującymi kowecjami, ale jest bardziej czytele iż umieszczeie obok - dlatego pozwalam sobie a odstępstwo od paujących reguł. Defiicja: Ciąg a jest zbieży do graicy g wtedy i tylko wtedy, gdy a g < ε. ε>0n N Piszemy a = g. Ciąg a jest rozbieży do + wtedy i tylko wtedy, gdy M N N a > M. Piszemy a = +. Ciąg a jest rozbieży do wtedy i tylko wtedy, gdy Piszemy a =. Twierdzeia: M N N a < M. 1. Ciąg zbieży ma tylko jedą graicę. 2. Graica sumy jest sumą graic. Dokładiej, jeśli ciągi a i b są zbieże, to ciąg a +b jest zbieży i a +b = a + b. 3. Graica różicy jest różicą graic. Dokładiej, jeśli ciągi a i b są zbieże, to ciąg a b jest zbieży i a b = a b. 4. Graica iloczyu jest iloczyem graic. Dokładiej, jeśli ciągi a i b są zbieże, to ciąg a b jest zbieży i a b = a b. 5. Graica ilorazu jest ilorazem graic. Dokładiej, jeśli ciągi a i b są zbieże, przy czym b 0 oraz b 0, to ciąg a b jest zbieży i a = a. b b 6. Zbieżość i graica ie zależą od pomiięcia lub zmiay skończeie wielu początkowych wyrazów ciągu. Lista Stroy 18-41

2 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 7. Słabe ierówości zachowują się przy przejściu do graicy. Dokładiej, jeśli ciągi a i b są zbieże, przy czym a b odpowiedio a b, to a b odpowiedio a b. 8. Kilka podstawowych graic. = + 1 = 0 a = a a = + dla a > 1 a = 0 dla a < 1 1 ie istieje awet w sesie graicy iewłaściwej a = 1 dla a > 0 = 1 9. Z graicą moża wchodzić pod pierwiastek. Dokładiej, jeśli ciąg a jest zbieży, przy czym a 0, to dla k N k a = k a. 10. Twierdzeie o trzech ciągach. Jeżeli ciągi a, b, c spełiają waruek a b c oraz ciągi a i c są zbieże do tej samej graicy g, to ciąg b też jest zbieży i jego graicą jest g. 11. Kryterium d Alemberta. Jeżeli a jest ciągiem o wyrazach iezerowych oraz istieje graica a +1 a = g < 1, to ciąg a jest zbieży do zera. Jeżeli istieje graica a +1 a = g > 1, to ciąg a jest rozbieży, a ciąg a jest rozbieży do +. Uwaga: Podstawowym zastosowaiem kryterium d Alemberta jest badaie zbieżości szeregów, ale podaa wyżej wersja stosuje się do badaia zbieżości ciągów. O szeregach będzie mowa za kilka tygodi. Powyższe własości zachowują się w przypadku ciągów mających graice iewłaściwe tz. rozbieżych do ±, o ile ie prowadzi to do wyrażeń ieozaczoych. 12. Sztuczki oparte a wzorach skrócoego możeia. x y = x y x+ y Lista Stroy 18-41

3 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 3 x 3 y = x y 3 x2 + 3 xy + 3 y 2 Zadaia Wyjaśić, dlaczego poiżej są same BZDURY: = = 0 = = +1 = = = k 143. = k k { 1 dla ieparzystych 1 dla parzystych 1 k Zbadać zbieżość ciągu a określoego podaym wzorem; obliczyć graice ciągów zbieżych, rozstrzygąć czy ciągi rozbieże mają graicę iewłaściwą { 1! dla a = 2 dla > ! ! Obliczyć wartość graicy lub uzasadić, że graica ie istieje Obliczyć graicę k k k. 2 Lista Stroy 18-41

4 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ Obliczyć wartość graicy lub uzasadić, że graica ie istieje Obliczyć graicę 180. Obliczyć graicę PRAWDA CZY FAŁSZ? 181. Jeżeli ciągi a i b są rozbieże, to ciąg a +b jest rozbieży Jeżeli ciąg a jest zbieży, a ciąg b rozbieży, to ciąg a +b jest rozbieży Jeżeli ciąg a jest zbieży, a ciąg b rozbieży, to ciąg a b jest rozbieży Jeżeli ciąg a jest zbieży, ciąg b rozbieży, a poadto obydwa ciągi mają tylko wyrazy dodatie, to ciąg a b jest rozbieży Jeżeli a jest ciągiem zbieżym o wyrazach dodatich, to jego graica jest liczbą dodatią Jeżeli a +1 a 1 2, to a Jeżeli ciąg a +1 a jest zbieży, to ciąg a jest zbieży Jeżeli ciąg a 2 jest zbieży, to ciąg a jest zbieży Jeżeli wśród wyrazów ciągu a występują zarówo wyrazy dodaie jak i ujeme, to ciąg a jest rozbieży Jeżeli wśród wyrazów ciągu a występują zarówo wyrazy miejsze od 1 jak i większe od 3, to ciąg a jest rozbieży Obliczyć graicę Rozwiązaie: Twierdzeie o trzech ciągach. Przykłady z rozwiązaiami k 2 +k k 3 +k Lista Stroy

5 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Daa pod zakiem graicy suma ma 2 składików i zapisuje się wzorem Szacowaie od góry daje 2 b = k 2 +k k 3 +k k 2 +k k 3 +k = = c Szacując od dołu otrzymujemy k 2 +k k 3 +k = = a Poieważ dla dowolego zachodzą ierówości a poadto a b c, a = c = 6/5, a mocy twierdzeia o trzech ciągach otrzymujemy 192. Obliczyć graicę b = 6/ Rozwiązaie: Daa pod zakiem graicy suma ma 2 2 składików i zapisuje się wzorem Szacowaie od góry daje k k Szacując od dołu otrzymujemy k b = 10 +3k = = c k k = = a 2. Poieważ dla dowolego zachodzą ierówości a poadto oraz a b c, a 10 = = 10 = c = = = 10, Lista Stroy 18-41

6 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 a mocy twierdzeia o trzech ciągach otrzymujemy b = Wskazać liczbę aturalą k, dla której graica k istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Dzieląc liczik i miaowik daego wyrażeia przez 5/2 otrzymujemy k = 3 1/ k /2 1/2 15/2 5 Miaowik ostatiego wyrażeia dąży do 7 przy, atomiast liczik ma graicę skończoą dodatią dla k = 15 i graica liczika jest wtedy rówa 2. Odpowiedź: Przy k = 15 graica jest rówa 2/7. Uwaga: Liczba k = 15 jest jedyą liczbą spełiającą waruki zadaia. Jedak zgodie z poleceiem wystarczyło wskazać k, bez koieczości uzasadieia, że takie k jest tylko jedo Obliczyć graicę Rozwiązaie: Daa pod zakiem graicy suma ma 6 składików i zapisuje się wzorem Szacowaie od góry daje 6 b = k k k k = = c 2 3. Szacując od dołu otrzymujemy k k = = a. Poieważ dla dowolego zachodzą ierówości a poadto oraz a b c, a 24 3 = = = c = = = 12, Lista Stroy 18-41

7 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 a mocy twierdzeia o trzech ciągach otrzymujemy b = 12. Odpowiedź: Daa w zadaiu graica istieje i jest rówa 12. Kowersatorium 195. Ciąg a spełia waruek a 100 < 10. >1000 Czy stąd wyika, że a ciąg a jest zbieży, b ciąg a jest rozbieży, c każdy wyraz ciągu a jest dodati, d ciąg a ma co ajmiej jede wyraz dodati, e od pewego miejsca wszystkie wyrazy ciągu są dodatie, f a 666 < , g a 1111 > 88, h a 100 < 1, >1729 i a 100 < 17, >345 j a 99 < 13, >5555 k ciąg a jest ograiczoy, l a 95 < 37, >444 m a 80 < 37, >4444 a 95 < 37, <444 o a 80 < 37, <4444 p m a > 0, >m q a 66 > 12, >1331 a a m < 7, >5678 a a m < 17, >5678 a a m < 27, >45678 a a m < 37, >5678 a a m < 3, <456 a +a m < 210, >67890 a +a m < 222, >7776 a +a m > 128, >8192 r m>1234 s m>1234 t m>123 u m>1234 v m<123 w m>12345 x m>1296 y m>1024 z a < 92, ż a > 91. Lista Stroy 18-41

8 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ Day jest taki ciąg a, że ε>0 a 7 < ε. 5/ε Podać graicę ciągu a. Wskazać taką liczbę M, że a < M. Wskazać taką liczbę N, że a > 6. N Wskazać taką liczbę N, że a < 7,01. N Wskazać taką liczbę N, że a 8 > 1/3. N 197. Day jest taki ciąg b, że ε>0 Podać graicę ciągu b. Wskazać taką liczbę M, że b < M. Wskazać taką liczbę N, że b < 0. N Wskazać taką liczbę N, że b > 3. N Wskazać taką liczbę N, że b 2 > 1/10. N b +2 < ε. 10/ε 198. Niech c = a +b, gdzie a i b są ciągami z poprzedich dwóch zadań. Dowieść, że wówczas ciąg c jest zbieży, gdyż c 5 < ε. ε>0.../ε W miejscu kropek powia się zaleźć odpowiedio dobraa liczba Niech d = a b, gdzie a i b są jak poprzedio. Dowieść, że wówczas ciąg d jest zbieży, gdyż d +14 < ε. ε>0... W miejscu kropek powio się zaleźć odpowiedio dobrae wyrażeie zależe od ε Niech e = 2a +3b. Dowieść, że wówczas ciąg e jest zbieży, gdyż e... < ε. ε>0.../ε W miejscu kropek powiy się zaleźć odpowiedio dobrae liczby. Kresy zbiorów. Ćwiczeia : zad Kolokwium r 6, : materiał z zad Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą waruek x Z x M Lista Stroy 18-41

9 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 azywamy ograiczeiem górym zbioru Z. Defiicja: Zbiór Z R azywamy ograiczoym z dołu, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą waruek x Z x M azywamy ograiczeiem dolym zbioru Z. Defiicja: Zbiór Z R azywamy ograiczoym, jeżeli jest jedocześie ograiczoy z dołu i z góry. Defiicja: Jeżeli iepusty zbiór Z R jest ograiczoy z góry, to kresem górym zbioru Z azywamy jego ajmiejsze ograiczeie góre i stosujemy ozaczeie supz. Istieie takiego ajmiejszego ograiczeia wyika z zasady ciągłości Dedekida. Jeżeli zbiór Z jest ieograiczoy z góry, przyjmujemy supz = +. Poadto przyjmujemy sup =. Aalogiczie określamy kres doly zbioru, ozaczay przez if Z. Wiosek: Jeżeli iepusty zbiór Z R jest ograiczoy z góry, to liczba G jest jego kresem górym wtedy i tylko wtedy, gdy oraz ε>0 x Z x Z x G x > G ε. Zadaia. Wyzaczyć kres góry i doly astępujących zbiorów. Zbadać, czy podae zbiory zawierają swoje kresy: 201. { x R : x 2 < 2 { : N! { m +1 : m, N 204. { x R : x 4 5 { m { m : m, N, m < mk 206. m k : m,,k 3 N Niech A i B będą iepustymi ograiczoymi zbiorami liczb rzeczywistych. Niech a 1 = ifa, a 2 = supa, b 1 = ifb, b 2 = supb. Co moża powiedzieć o astępujących kresach: 207. if{ a : a A 208. sup{a 2 : a A 209. if{a 2 : a A 210. sup{a b : a A, b B 211. sup{ab : a A, b B 212. if{ab : a A, b B Lista Stroy 18-41

10 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ Zbiory A i B są iepuste i ograiczoe. Zbiór B jest skończoy i wszystkie jego elemety są róże od 0. Czy zbiór { a : a A, b B musi być ograiczoy? Odpowiedź b uzasadić A jest takim iepustym zbiorem ograiczoym liczb rzeczywistych, że ifa = 3, supa = 2. Jakie wartości mogą przyjmować kresy zbioru { a : a A? Odpowiedź uzasadić przykładem lub dowodem Podać przykład takich zbiorów A, B, że ifa = 2, supa = 7, ifb = 3, supb = 10, ifa B = 4, supa B = 6, A N = B N =. Niepotrzebe skreślić. W każdej parze ramek tylko jeda zawiera sesowe uzupełieie tekstu matematyczego. Twierdzeie 216. Niech A i B będą iepustymi zbiorami ograiczoymi. Niech C = {a b : a A b B. Wtedy ifc = ifa supb supb ifa. Dowód: Niech d = ifa i g = supb. Wtedy z waruku d = ifa wyika, że 1 oraz 2 ε>0 ε>0 a d a d a < d+ε a > d ε. Podobie z waruku g = supb wyika 3 oraz b B b B b g b g 4 b < g +ε b > g ε. ε>0 ε>0 b B b B Chcemy wykazać, że ifc = e, gdzie e = d g g d, czyli, że 5 oraz c C c C c e c e 6 c < e+ε c > e ε. ε>0 ε>0 c C c C W dowodzie waruku 5 skorzystamy z 1 i 3. Zakładając 5 wykażemy prawdziwość waruków 1 i 3. Dowola Istieje liczba c C jest będąca postaci c = a b, gdzie a A i b B. Z ierówości a d a d i b g b g otrzymujemy a b e a b e, co dowodzi 5. Załóżmy Wykażemy teraz prawdziwość waruku 6. Niech ε będzie dowolą liczbą dodatią. Wtedy Zajdziemy taką liczbę dodatią ε, dla której Lista Stroy 18-41

11 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 istieje a A takie, że a > d ε a < d+ ε oraz b B takie, że 2 b < g +ε b > g ε. Zatem liczba c = a b spełia ierówość 2 c < e+ε c > e ε, co kończy dowód waruku 6. Wyzaczyć kres góry i doly astępujących zbiorów. Zbadać, czy podae zbiory zawierają swoje kresy: 217. { x 2 : x 4, 9 { : N { {! : N 220. : N 2009 { { m : m, N : N { 2 + : N 224. { 3 m 2 : m, N { { 7 m m : m, N : m, N m { m { 3m : m, N 228. : m, N m m 229. { 37 5 : N 230. { 37 6 : N 231. { 37 7 : N { m 233. m : m, N Kowersatorium 232. { 37 8 : N Przeczytaj poiższe waruki. Które z ich są rówoważe temu, że g = supa? 234. a < g +ε ε>0 ε>0 ε>0 ε>0 a g < ε a > g 2ε a > g ε 2 > g Na 1 Lista Stroy 18-41

12 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ a < g a 2 0 N 2 g a < 1 a g 2 < ε ε>0 ε>0 ε<g ε<g a g 2 < ε a > ε a > g ε a > g ε 0<ε<1 a g ε ε>0 a g ε ε 0 a > g ε ε 0 b g+a 2 b A a g a > g ε ε>0 b A b A b g+a 2 b g+a 2 Zadaia do samodzielego rozwiązaia. Jeśli uda się wygospodarować trochę czasu, wątpliwości związae z tymi zadaiami mogą być wyjaśioe a kowersatorium lub ćwiczeiach. Zawsze moża też skorzystać z kosultacji W każdym z zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru. Kres może być liczbą rzeczywistą lub może być rówy albo A = {x 2 : x 3, 2 ifa =... supa =... Lista Stroy 18-41

13 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Czy kres doly ależy do zbioru A... Czy kres góry ależy do zbioru A B = {x 3 : x 3, 2 ifb =... supb =... Czy kres doly ależy do zbioru B... Czy kres góry ależy do zbioru B... { C = 5 13 : N N = {1,2,3,4,5,... ifc =... supc =... Czy kres doly ależy do zbioru C... Czy kres góry ależy do zbioru C... { D = : N ifd =... supd =... Czy kres doly ależy do zbioru D... Czy kres góry ależy do zbioru D E = { 2 5 : N ife =... supe =... Czy kres doly ależy do zbioru E... Czy kres góry ależy do zbioru E... { F = : N! iff =... supf =... Czy kres doly ależy do zbioru F... Czy kres góry ależy do zbioru F... { G = 2 1 : N ifg =... supg =... Czy kres doly ależy do zbioru G... Czy kres góry ależy do zbioru G... { H = +1 1 m+2 : m, N ifh =... suph =... Czy kres doly{ ależy do zbioru H... Czy kres góry ależy do zbioru H... m I = : m, N 2m2 < 3 2 ifi =... supi =... Czy kres doly ależy { do zbioru I... Czy kres góry ależy do zbioru I... m J = : m, N 2m > 3 ifj =... supj =... Czy kres doly ależy { do zbioru J... Czy kres góry ależy do zbioru J... m K = m 2 +9 : m, 2 N ifk =... supk =... Czy kres doly ależy { do zbioru K... Czy kres góry ależy do zbioru K L = 7+! ! : N ifl =... supl =... Czy kres doly ależy do zbioru L... Czy kres góry ależy do zbioru L... Lista Stroy 18-41

14 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 { m M = : m,,p N m 2 > 2p 2 2 > 3p 2 p ifm =... supm =... Czy kres doly ależy do zbioru M... Czy kres góry ależy do zbioru M W każdym z zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru. Kres może być{ liczbą rzeczywistą lub może być rówy albo A = 5 m : m, 2 N N = {1,2,3,4,5,... ifa =... supa =... Czy kres doly{ ależy do zbioru A... Czy kres góry ależy do zbioru A B = 2 7 : N ifb =... supb =... Czy kres doly{ ależy do zbioru B... Czy kres góry ależy do zbioru B C = x : x 1 2, 1 N 5 ifc =... supc =... Czy kres doly ależy do zbioru C... Czy kres góry ależy do zbioru C D = { 2 +3 : N ifd =... supd =... Czy kres doly ależy do zbioru D... Czy kres góry ależy do zbioru D E = {log log 2 : N ife =... supe =... Czy kres doly{ ależy do zbioru E... Czy kres góry ależy do zbioru E F = 3+7 : N iff =... supf =... Czy kres doly{ ależy do zbioru F... Czy kres góry ależy do zbioru F G = 3 7 : N ifg =... supg =... Czy kres doly{ ależy do zbioru G... Czy kres góry ależy do zbioru G H = : N! ifh =... suph =... Czy kres doly{ ależy do zbioru H... Czy kres góry ależy do zbioru H I = 2! : N ifi =... supi =... Czy kres doly ależy { do zbioru I... Czy kres góry ależy do zbioru I... m J = m 2 + : m, 4 N Lista Stroy 18-41

15 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 ifj =... supj =... Czy kres doly ależy do zbioru J... Czy kres góry ależy do zbioru J K = { x+y x y : x,y R ifk =... supk =... Czy kres doly ależy do zbioru K... Czy kres góry ależy do zbioru K... { L = 5 3 : m, m N ifl =... supl =... Czy kres doly ależy do zbioru L... Czy kres góry ależy do zbioru L... { M = 1+ 1 : N ifm =... supm =... Czy kres doly ależy do zbioru M... Czy kres góry ależy do zbioru M... Szeregi liczbowe. Ćwiczeia : zad Kolokwium r 7, : materiał z zad Ćwiczeia : zad Kolokwium r 8, : materiał z zad Obliczyć S = a k, a astępie zaleźć S : 254. a k = 1 7 k 255. a k = 2k +5 k 10 k Dowieść, że 4 < < Dowieść, że szereg jest zbieży, a jego suma jest miejsza od Rozstrzygąć, czy astępujące szeregi są zbieże = !! ! 3 3! = ! Lista Stroy 18-41

16 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ ! π π +e Które z astępujących szeregów są bezwzględie zbieże, które warukowo zbieże, a które rozbieże: k 1 k k razy k k 1 k 1 2 k k razy 2 k = ! ! 299.!+1! / / Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że Uzasadić poprawość podaego przykładu. a = a Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że a = 5 Uzasadić poprawość podaego przykładu. oraz a 2 = Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że Lista Stroy 18-41

17 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 dla dowolej liczby aturalej k zachodzi rówość a k = 2 a. Uzasadić poprawość podaego przykładu. =k Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że a = 1 oraz a 2 = 1 4. Uzasadić poprawość podaego przykładu Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że a = 1, a 2 = 1 2 Uzasadić poprawość podaego przykładu. oraz a 4 = 1 5. Kryteria zbieżości szeregów - co każdy studet wiedzieć powiie. 1. Waruek koieczy zbieżości. Jeżeli szereg a jest zbieży, to a = 0. Iymi słowy, jeżeli ciąg a jest rozbieży lub zbieży do graicy różej od zera, to szereg a jest rozbieży. 2. Zbieżość szeregu ie zależy od pomiięcia lub zmiay skończeie wielu początkowych wyrazów. Oczywiście zmiaa lub pomiięcie tych wyrazów ma wpływ a sumę szeregu zbieżego. 3. Kryterium porówawcze. Niech a i b będą szeregami o wyrazach ieujemych, przy czym dla każdego N zachodzi ierówość a b. Jeżeli a =, to b =. Jeżeli b <, to a <. 4. Kilka szeregów. q jest zbieży dla q < 1, rozbieży dla pozostałych q. a jest zbieży dla a < 1, rozbieży dla pozostałych a. Lista Stroy 18-41

18 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 1 log =2 a podstawę większą od 1. jest zbieży dla a > 1, rozbieży dla pozostałych a. Logarytm ma dowolą 5. Kryterium d Alemberta. Jeżeli a jest ciągiem o wyrazach iezerowych oraz istieje graica a +1 = g < 1, a to szereg a jest zbieży. Jeżeli istieje graica to szereg a jest rozbieży. a +1 a = g > 1, 6. Zbieżość bezwzględa. Jeżeli a <, to szereg a jest zbieży. 7. Szeregi aprzemiee. Jeżeli a jest ciągiem ierosącym zbieżym do 0, to szereg a 1 +1 jest zbieży. Kowersatorium Czy istieje ciąg a taki, że podać przykład lub dowieść, że ie istieje : 306. a > 1 dla ieskończeie wielu, N a > 0, szereg 307. a = 1 2 dla ieskończeie wielu, a = a 2 = 1 N, a = 0. a jest zbieży a Z, a = dla 100, szereg a jest zbieży. N 310. a = 1 dla ieskończeie wielu, szereg a jest zbieży Szereg a jest zbieży, szeregi a 2 1 i a 2 są rozbieże Szereg a jest rozbieży, szereg a 2 1 +a 2 jest zbieży. Lista Stroy 18-41

19 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ Szereg a jest rozbieży, szereg a 2 1 +a 2 jest zbieży, a = Szereg a jest rozbieży, szereg a 2 +a a a jest zbieży, a = 0. = Szeregi a 2 1 +a 2 i a 1 + a 2 +a 2+1 są zbieże, ale mają róże sumy Szereg a jest zbieży, szereg a 2 jest rozbieży Szereg a jest rozbieży, szereg a 2 jest zbieży Szereg a jest zbieży, a jego suma jest rówa S. Czy stąd wyika, że zbieży jest ciąg a, jeżeli a S = 0 b 0 < S < 1 c S = 1 d S > Czy możemy stwierdzić, że szereg a jest rozbieży, jeżeli wiemy, że a a = 3 4 b a = 7 4 a +1 c = 1 a Podać sumę szeregu, jeżeli szereg jest zbieży a b c d Zbadać zbieżość szeregu 2! a a +1 d = 5 a 4 1 w zależości od parametru rzeczywistego dodatiego a. Dla jedej wartości a moża ie udzielić odpowiedzi Zbadać zbieżość szeregu Zbadać zbieżość szeregu Obliczyć sumę szeregu ! Lista Stroy 18-41

20 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Wyzaczyć kresy zbiorów { N : N N { =M 2 1 : M N 327. { N =M 1 : M,N N M < N 2 Zadaia do samodzielej powtórki. Jeśli uda się wygospodarować trochę czasu, wątpliwości związae z tymi zadaiami mogą być wyjaśioe a kowersatorium lub ćwiczeiach. Zawsze moża też skorzystać z kosultacji Rozstrzygąć zbieżość szeregu Rozstrzygąć zbieżość szeregu Rozstrzygąć zbieżość szeregu Rozstrzygąć zbieżość szeregu 3! a w zależości od parametru rzeczywistego dodatiego a. Dla jedej wartości a moża ie udzielić odpowiedzi a Udowodić zbieżość szeregu 1. 2 b Obliczyć jego sumę Obliczyć graicę 2 +k. k 335. Rozstrzygąć zbieżość szeregu! Lista Stroy 18-41

21 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ a Rozstrzygąć zbieżość szeregu w zależości od parametru rzeczywistego dodatiego p. p b Obliczyć sumę szeregu w podpukcie a dla jedej spośród tych wartości parametru p, dla których szereg jest zbieży W każdym z poiższych zdań w miejscu kropek postaw jedą z liter Z, R, N: Z - jest Zbieży tz. musi być zbieży R - jest Rozbieży tz. musi być rozbieży N - może być zbieży lub rozbieży tz. Nie wiadomo, czasem jest zbieży, a czasem rozbieży a Jeżeli szereg a jest zbieży, to szereg a... b Jeżeli szereg a jest rozbieży, to szereg a... c Jeżeli szereg a jest zbieży, to szereg 1 a... d Jeżeli szereg a jest rozbieży, to szereg 1 a... e Jeżeli szereg a jest zbieży, to szereg a 2... f Jeżeli szereg a jest rozbieży, to szereg a 2... g Jeżeli szereg a jest zbieży, to szereg 1 a 2... h Jeżeli szereg a jest rozbieży, to szereg 1 a 2... i Jeżeli szereg a jest zbieży, to szereg 1+a 2... j Jeżeli szereg a jest rozbieży, to szereg 1+a Dae są takie ciągi a i b, że a +5 < ε oraz b +3 < ε. ε>0 20/ε ε>0 30/ε Niech c = a 2b. Wskazać odpowiedią liczbę rzeczywistą r oraz liczbę aturalą P i udowodić, że ε>0 c +r < ε. P/ε 339. Obliczyć graicę Lista Stroy 18-41

22 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ W każdym z zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru.. Kres może być liczbą rzeczywistą lub może być rówy albo +. { A = m 3 : m, N N = {1,2,3,4,5,... ifa =... supa =... Czy kres doly ależy do zbioru A... Czy kres góry ależy do zbioru A B = {log 2 +7 log 2 : N ifb =... supb =... Czy kres doly ależy do zbioru B... Czy kres góry ależy do zbioru B... {! C = 2 : 5 N ifc =... supc =... Czy kres doly ależy do zbioru C... Czy kres góry ależy do zbioru C... { m D = : m, N m ifd =... supd =... Czy kres doly ależy do zbioru D... Czy kres góry ależy do zbioru D... { E = 2 +1 : N ife =... supe =... Czy kres doly ależy do zbioru E... Czy kres góry ależy do zbioru E W każdym z zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru. Kres może być liczbą rzeczywistą lub może być rówy albo +. { A = 2 22 : N N = {1,2,3,4,5,... ifa =... supa =... Czy kres doly ależy do zbioru A... Czy kres góry ależy do zbioru A... { B = 3+1 : N ifb =... supb =... Czy kres doly ależy do zbioru B... Czy kres góry ależy do zbioru B... Lista Stroy 18-41

23 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 { C = 3+2 : N ifc =... supc =... Czy kres doly ależy do zbioru C... Czy kres góry ależy do zbioru C D = {x 2y : x,y R 16 < x 28 3 < y 4 ifd =... supd =... Czy kres doly ależy do zbioru D... Czy kres góry ależy do zbioru D E = { x y : x,y R 16 < x 28 3 < y 4 ife =... supe =... Czy kres doly ależy do zbioru E... Czy kres góry ależy do zbioru E Podaj wartości graic. a = b =... c = d = e = f = g = h = /2010 i = j = Lista Stroy 18-41

24 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ W każdym z 5 poiższych zadań udziel czterech iezależych odpowiedzi: Z - jest Zbieży tz. musi być zbieży R - jest Rozbieży tz. musi być rozbieży N - może być zbieży lub rozbieży tz. Nie wiadomo, czasem jest zbieży, a czasem rozbieży Ciąg a liczb rzeczywistych dodatich jest zbieży do liczby rzeczywistej g. Co moża wywioskować o zbieżości szeregu a, jeżeli wiadomo, że a g = 0 b 0 < g < 1 c g = 1 d 1 < g a O ciągu a liczb rzeczywistych dodatich wiadomo, że ciąg jest zbieży do liczby rzeczywistej g. Co moża wywioskować o zbieżości szeregu jeżeli wiadomo, że a a, a g = 0 b 0 < g < 1 c g = 1 d 1 < g a O ciągu a liczb rzeczywistych dodatich wiadomo, że ciąg jest a +1 zbieży do liczby rzeczywistej g. Co moża wywioskować o zbieżości szeregu a, jeżeli wiadomo, że a g = 0 b 0 < g < 1 c g = 1 d 1 < g Ciąg a liczb rzeczywistych dodatich jest zbieży do liczby rzeczywistej g. a+1 Co moża wywioskować o zbieżości ciągu, jeżeli wiadomo, że a g = 0 b 0 < g < 1 c g = 1 d 1 < g O ciągu a liczb rzeczywistych wiadomo, że szereg a jest zbieży i jego sumą jest liczba rzeczywista g. Co moża wywioskować o zbieżości ciągu a, jeżeli wiadomo, że a g = 0 b 0 < g < 1 c g = 1 d 1 < g a Lista Stroy 18-41

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Wrocław, 2 lutego 205 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp 2 Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1

Zadania z Rachunku Prawdopodobieństwa I - 1 Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Entropia w układach dynamicznych

Entropia w układach dynamicznych Etropia w układach dyamiczych Wstęp Środowiskowe studia doktorackie Uiwersytet Jagielloński Kraków, marzec-kwiecień 203 Tomasz Dowarowicz Część II Etropia topologicza i zasada wariacyja Zaczijmy od początku.

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków Ku chwale ierówości Sebastia Lisiewski 25 lutego 200 XXVII Ogólopolski Sejmik Matematyków VIII Liceum Ogólokształcące im. Marii Skłodowskiej- Curie w Katowicach ul. 3-go Maja 42 40-097 Katowice Opiekuowie

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr II

Materiały dydaktyczne. Matematyka. Semestr II Projekt współfiasowa ze środków Uii Europejskiej w ramach Europejskiego Fuduszu Społeczego Materiał ddaktcze Matematka Semestr II Ćwiczeia Projekt Rozwój i promocja kieruków techiczch w Akademii Morskiej

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe.

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe. Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

LOGIKA Semiotyka. Robert Trypuz. 8 października 2013. Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) Semiotyka 8 października 2013 1 / 42

LOGIKA Semiotyka. Robert Trypuz. 8 października 2013. Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) Semiotyka 8 października 2013 1 / 42 LOGIKA Semiotyka Robert Trypuz Katedra Logiki KUL 8 paździerika 2013 Robert Trypuz (Katedra Logiki) Semiotyka 8 paździerika 2013 1 / 42 Pla wykładu 1 Semiotyka jako auka 2 Zak 3 Język (w semiotyce) 4 Semiotycze

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Ćwiczeie 5 OKREŚLENIE CARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Wykaz ważiejszych ozaczeń c 1 rędkość bezwzględa cieczy a wlocie do wirika, m/s c rędkość bezwzględa cieczy a wylocie

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

Ekonometria Mirosław Wójciak

Ekonometria Mirosław Wójciak Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Przeczytaj, zanim zaczniesz rozwiązywać

Przeczytaj, zanim zaczniesz rozwiązywać Przeczytaj, zaim zacziesz rozwiązywać Maturzysto! Zaim rozpocziesz rozwiązywaie zadań z aszych arkuszy: Przygotuj: u Arkusz I 5 kartek papieru podaiowego w kratkę a czystopis i a brudopis; Arkusz II 5

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne - powtórzenie Tożsamości trygonometry czne

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne - powtórzenie Tożsamości trygonometry czne Fukcje trygoometrycze Fukcje trygoometry cze - powtórzeie Tożsamości trygoometry cze 3 podstawowe tożsamości trygoometrycze metoda uzasadiaia tożsamości trygoometryczych Fukcje trygoometry cze sumy i różicy

Bardziej szczegółowo

Analiza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych

Analiza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych a prawach rękopisu Istytut Iżyierii Lądowej Politechiki Wrocławskiej Aaliza drgań wybraych dźwigarów powierzchiowych metodą elemetów brzegowych Raport serii PRE r 5/ Praca doktorska autor mgr iż. Jacek

Bardziej szczegółowo

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2.

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2. Katarzya JARZYŃSKA ABB Sp. z o.o. PRODUKTY NISKONAPIĘCIOWE W INSTALACJI PV Streszczeie: W ormalych warukach pracy każdy moduł geeruje prąd o wartości zbliżoej do prądu zwarciowego I sc, który powiększa

Bardziej szczegółowo

Wykład 4 Soczewki. Przyrządy optyczne

Wykład 4 Soczewki. Przyrządy optyczne Wykład 4 Soczewki. Przyrządy optycze Soczewka cieka - rówaie zlifierzy oczewek Rozważyy teraz dwie powierzchi ferycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny odstawy iforatyki Wykład r 9 /44 odstawy iforatyki olitechika Białostocka - Wydział Elektryczy Elektrotechika, seestr II, studia stacjoare Rok akadeicki 006/007 la wykładu r 9 Obliczaie liczby π etodą

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013

Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013 Twoja firma Podręczik użytkowika Aplikacja Grupa V edycja, kwiecień 2013 Spis treści I. INFORMACJE WSTĘPNE I LOGOWANIE...3 I.1. Wstęp i defiicje...3 I.2. Iformacja o możliwości korzystaia z systemu Aplikacja

Bardziej szczegółowo

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki 52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W

Bardziej szczegółowo

STRATEGIA STOP-LOSS & PROFIT OPTYMALIZACJA PORTFELA INWESTYCYJNEGO

STRATEGIA STOP-LOSS & PROFIT OPTYMALIZACJA PORTFELA INWESTYCYJNEGO Studia Ekoomicze. Zeszyty Naukowe Uiwersytetu Ekoomiczego w Katowicach ISSN 2083-8611 Nr 221 2015 Współczese Fiase 1 Tadeusz Czerik Uiwersytet Ekoomiczy w Katowicach Wydział Fiasów i Ubezpieczeń Katedra

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTT EKSPLOATACJI MASZYN I TRANSPORT ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E13 BADANIE ELEMENTÓW

Bardziej szczegółowo

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska Prace domowe z matematyki Semestr zimowy 2010/2011 Zoa Zieli«ska-Kolasi«ska 5 pa¹dzierika 2010 Rozdziaª 0 Uwagi Prace domowe ie s obowi zkowe aczkolwiek zach cam gor co do ich robieia i oddawaia mi a kartkach.

Bardziej szczegółowo

Akustyka. Fale akustyczne = fale dźwiękowe = fale mechaniczne, polegające na drganiach cząstek ośrodka.

Akustyka. Fale akustyczne = fale dźwiękowe = fale mechaniczne, polegające na drganiach cząstek ośrodka. Akustyka Fale akustycze ale dźwiękowe ale mechaicze, polegające a drgaiach cząstek ośrodka. Cząstka mała, myślowo wyodrębioa część ośrodka, p. w gazie prostopadłościa o ustaloych wymiarach w pręcie prostopadłościa

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

WYBRANE METODY DOSTĘPU DO DANYCH

WYBRANE METODY DOSTĘPU DO DANYCH WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Matematyka dyskretna II Zbiór zadań. Grzegorz Bobiński

Matematyka dyskretna II Zbiór zadań. Grzegorz Bobiński Matematyka dyskreta II Zbiór zadań Grzegorz Bobiński Wstęp Niiejszy zbiór zadań jest owocem prowadzoych przeze mie w latach 1999 00 ćwiczeń z przedmiotu Matematyka Dyskreta II a II roku iformatyki a Wydziale

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

ĆWICZENIE 1 Symulacja doświadczeń losowych Statystyka opisowa Estymacja parametryczna i nieparametryczna T E O R I A

ĆWICZENIE 1 Symulacja doświadczeń losowych Statystyka opisowa Estymacja parametryczna i nieparametryczna T E O R I A ĆWICZENIE Symulacja doświadczeń losowych Statystya opisowa Estymacja parametrycza i ieparametrycza T E O R I A Opracowała: Katarzya Stąpor Opis programu MS EXCEL. Iformacje ogóle Program Microsoft Excel

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo