Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi."

Transkrypt

1 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia : zad Kolokwium r 5, : materiał z zad Ćwiczeia : zad : zajęcia czwartkowe Trochę teorii Uwaga: Umieszczaie zmieej pod kwatyfikatorem ie jest zgode z obowiązującymi kowecjami, ale jest bardziej czytele iż umieszczeie obok - dlatego pozwalam sobie a odstępstwo od paujących reguł. Defiicja: Ciąg a jest zbieży do graicy g wtedy i tylko wtedy, gdy a g < ε. ε>0n N Piszemy a = g. Ciąg a jest rozbieży do + wtedy i tylko wtedy, gdy M N N a > M. Piszemy a = +. Ciąg a jest rozbieży do wtedy i tylko wtedy, gdy Piszemy a =. Twierdzeia: M N N a < M. 1. Ciąg zbieży ma tylko jedą graicę. 2. Graica sumy jest sumą graic. Dokładiej, jeśli ciągi a i b są zbieże, to ciąg a +b jest zbieży i a +b = a + b. 3. Graica różicy jest różicą graic. Dokładiej, jeśli ciągi a i b są zbieże, to ciąg a b jest zbieży i a b = a b. 4. Graica iloczyu jest iloczyem graic. Dokładiej, jeśli ciągi a i b są zbieże, to ciąg a b jest zbieży i a b = a b. 5. Graica ilorazu jest ilorazem graic. Dokładiej, jeśli ciągi a i b są zbieże, przy czym b 0 oraz b 0, to ciąg a b jest zbieży i a = a. b b 6. Zbieżość i graica ie zależą od pomiięcia lub zmiay skończeie wielu początkowych wyrazów ciągu. Lista Stroy 18-41

2 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 7. Słabe ierówości zachowują się przy przejściu do graicy. Dokładiej, jeśli ciągi a i b są zbieże, przy czym a b odpowiedio a b, to a b odpowiedio a b. 8. Kilka podstawowych graic. = + 1 = 0 a = a a = + dla a > 1 a = 0 dla a < 1 1 ie istieje awet w sesie graicy iewłaściwej a = 1 dla a > 0 = 1 9. Z graicą moża wchodzić pod pierwiastek. Dokładiej, jeśli ciąg a jest zbieży, przy czym a 0, to dla k N k a = k a. 10. Twierdzeie o trzech ciągach. Jeżeli ciągi a, b, c spełiają waruek a b c oraz ciągi a i c są zbieże do tej samej graicy g, to ciąg b też jest zbieży i jego graicą jest g. 11. Kryterium d Alemberta. Jeżeli a jest ciągiem o wyrazach iezerowych oraz istieje graica a +1 a = g < 1, to ciąg a jest zbieży do zera. Jeżeli istieje graica a +1 a = g > 1, to ciąg a jest rozbieży, a ciąg a jest rozbieży do +. Uwaga: Podstawowym zastosowaiem kryterium d Alemberta jest badaie zbieżości szeregów, ale podaa wyżej wersja stosuje się do badaia zbieżości ciągów. O szeregach będzie mowa za kilka tygodi. Powyższe własości zachowują się w przypadku ciągów mających graice iewłaściwe tz. rozbieżych do ±, o ile ie prowadzi to do wyrażeń ieozaczoych. 12. Sztuczki oparte a wzorach skrócoego możeia. x y = x y x+ y Lista Stroy 18-41

3 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 3 x 3 y = x y 3 x2 + 3 xy + 3 y 2 Zadaia Wyjaśić, dlaczego poiżej są same BZDURY: = = 0 = = +1 = = = k 143. = k k { 1 dla ieparzystych 1 dla parzystych 1 k Zbadać zbieżość ciągu a określoego podaym wzorem; obliczyć graice ciągów zbieżych, rozstrzygąć czy ciągi rozbieże mają graicę iewłaściwą { 1! dla a = 2 dla > ! ! Obliczyć wartość graicy lub uzasadić, że graica ie istieje Obliczyć graicę k k k. 2 Lista Stroy 18-41

4 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ Obliczyć wartość graicy lub uzasadić, że graica ie istieje Obliczyć graicę 180. Obliczyć graicę PRAWDA CZY FAŁSZ? 181. Jeżeli ciągi a i b są rozbieże, to ciąg a +b jest rozbieży Jeżeli ciąg a jest zbieży, a ciąg b rozbieży, to ciąg a +b jest rozbieży Jeżeli ciąg a jest zbieży, a ciąg b rozbieży, to ciąg a b jest rozbieży Jeżeli ciąg a jest zbieży, ciąg b rozbieży, a poadto obydwa ciągi mają tylko wyrazy dodatie, to ciąg a b jest rozbieży Jeżeli a jest ciągiem zbieżym o wyrazach dodatich, to jego graica jest liczbą dodatią Jeżeli a +1 a 1 2, to a Jeżeli ciąg a +1 a jest zbieży, to ciąg a jest zbieży Jeżeli ciąg a 2 jest zbieży, to ciąg a jest zbieży Jeżeli wśród wyrazów ciągu a występują zarówo wyrazy dodaie jak i ujeme, to ciąg a jest rozbieży Jeżeli wśród wyrazów ciągu a występują zarówo wyrazy miejsze od 1 jak i większe od 3, to ciąg a jest rozbieży Obliczyć graicę Rozwiązaie: Twierdzeie o trzech ciągach. Przykłady z rozwiązaiami k 2 +k k 3 +k Lista Stroy

5 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Daa pod zakiem graicy suma ma 2 składików i zapisuje się wzorem Szacowaie od góry daje 2 b = k 2 +k k 3 +k k 2 +k k 3 +k = = c Szacując od dołu otrzymujemy k 2 +k k 3 +k = = a Poieważ dla dowolego zachodzą ierówości a poadto a b c, a = c = 6/5, a mocy twierdzeia o trzech ciągach otrzymujemy 192. Obliczyć graicę b = 6/ Rozwiązaie: Daa pod zakiem graicy suma ma 2 2 składików i zapisuje się wzorem Szacowaie od góry daje k k Szacując od dołu otrzymujemy k b = 10 +3k = = c k k = = a 2. Poieważ dla dowolego zachodzą ierówości a poadto oraz a b c, a 10 = = 10 = c = = = 10, Lista Stroy 18-41

6 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 a mocy twierdzeia o trzech ciągach otrzymujemy b = Wskazać liczbę aturalą k, dla której graica k istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Dzieląc liczik i miaowik daego wyrażeia przez 5/2 otrzymujemy k = 3 1/ k /2 1/2 15/2 5 Miaowik ostatiego wyrażeia dąży do 7 przy, atomiast liczik ma graicę skończoą dodatią dla k = 15 i graica liczika jest wtedy rówa 2. Odpowiedź: Przy k = 15 graica jest rówa 2/7. Uwaga: Liczba k = 15 jest jedyą liczbą spełiającą waruki zadaia. Jedak zgodie z poleceiem wystarczyło wskazać k, bez koieczości uzasadieia, że takie k jest tylko jedo Obliczyć graicę Rozwiązaie: Daa pod zakiem graicy suma ma 6 składików i zapisuje się wzorem Szacowaie od góry daje 6 b = k k k k = = c 2 3. Szacując od dołu otrzymujemy k k = = a. Poieważ dla dowolego zachodzą ierówości a poadto oraz a b c, a 24 3 = = = c = = = 12, Lista Stroy 18-41

7 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 a mocy twierdzeia o trzech ciągach otrzymujemy b = 12. Odpowiedź: Daa w zadaiu graica istieje i jest rówa 12. Kowersatorium 195. Ciąg a spełia waruek a 100 < 10. >1000 Czy stąd wyika, że a ciąg a jest zbieży, b ciąg a jest rozbieży, c każdy wyraz ciągu a jest dodati, d ciąg a ma co ajmiej jede wyraz dodati, e od pewego miejsca wszystkie wyrazy ciągu są dodatie, f a 666 < , g a 1111 > 88, h a 100 < 1, >1729 i a 100 < 17, >345 j a 99 < 13, >5555 k ciąg a jest ograiczoy, l a 95 < 37, >444 m a 80 < 37, >4444 a 95 < 37, <444 o a 80 < 37, <4444 p m a > 0, >m q a 66 > 12, >1331 a a m < 7, >5678 a a m < 17, >5678 a a m < 27, >45678 a a m < 37, >5678 a a m < 3, <456 a +a m < 210, >67890 a +a m < 222, >7776 a +a m > 128, >8192 r m>1234 s m>1234 t m>123 u m>1234 v m<123 w m>12345 x m>1296 y m>1024 z a < 92, ż a > 91. Lista Stroy 18-41

8 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ Day jest taki ciąg a, że ε>0 a 7 < ε. 5/ε Podać graicę ciągu a. Wskazać taką liczbę M, że a < M. Wskazać taką liczbę N, że a > 6. N Wskazać taką liczbę N, że a < 7,01. N Wskazać taką liczbę N, że a 8 > 1/3. N 197. Day jest taki ciąg b, że ε>0 Podać graicę ciągu b. Wskazać taką liczbę M, że b < M. Wskazać taką liczbę N, że b < 0. N Wskazać taką liczbę N, że b > 3. N Wskazać taką liczbę N, że b 2 > 1/10. N b +2 < ε. 10/ε 198. Niech c = a +b, gdzie a i b są ciągami z poprzedich dwóch zadań. Dowieść, że wówczas ciąg c jest zbieży, gdyż c 5 < ε. ε>0.../ε W miejscu kropek powia się zaleźć odpowiedio dobraa liczba Niech d = a b, gdzie a i b są jak poprzedio. Dowieść, że wówczas ciąg d jest zbieży, gdyż d +14 < ε. ε>0... W miejscu kropek powio się zaleźć odpowiedio dobrae wyrażeie zależe od ε Niech e = 2a +3b. Dowieść, że wówczas ciąg e jest zbieży, gdyż e... < ε. ε>0.../ε W miejscu kropek powiy się zaleźć odpowiedio dobrae liczby. Kresy zbiorów. Ćwiczeia : zad Kolokwium r 6, : materiał z zad Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą waruek x Z x M Lista Stroy 18-41

9 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 azywamy ograiczeiem górym zbioru Z. Defiicja: Zbiór Z R azywamy ograiczoym z dołu, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą waruek x Z x M azywamy ograiczeiem dolym zbioru Z. Defiicja: Zbiór Z R azywamy ograiczoym, jeżeli jest jedocześie ograiczoy z dołu i z góry. Defiicja: Jeżeli iepusty zbiór Z R jest ograiczoy z góry, to kresem górym zbioru Z azywamy jego ajmiejsze ograiczeie góre i stosujemy ozaczeie supz. Istieie takiego ajmiejszego ograiczeia wyika z zasady ciągłości Dedekida. Jeżeli zbiór Z jest ieograiczoy z góry, przyjmujemy supz = +. Poadto przyjmujemy sup =. Aalogiczie określamy kres doly zbioru, ozaczay przez if Z. Wiosek: Jeżeli iepusty zbiór Z R jest ograiczoy z góry, to liczba G jest jego kresem górym wtedy i tylko wtedy, gdy oraz ε>0 x Z x Z x G x > G ε. Zadaia. Wyzaczyć kres góry i doly astępujących zbiorów. Zbadać, czy podae zbiory zawierają swoje kresy: 201. { x R : x 2 < 2 { : N! { m +1 : m, N 204. { x R : x 4 5 { m { m : m, N, m < mk 206. m k : m,,k 3 N Niech A i B będą iepustymi ograiczoymi zbiorami liczb rzeczywistych. Niech a 1 = ifa, a 2 = supa, b 1 = ifb, b 2 = supb. Co moża powiedzieć o astępujących kresach: 207. if{ a : a A 208. sup{a 2 : a A 209. if{a 2 : a A 210. sup{a b : a A, b B 211. sup{ab : a A, b B 212. if{ab : a A, b B Lista Stroy 18-41

10 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ Zbiory A i B są iepuste i ograiczoe. Zbiór B jest skończoy i wszystkie jego elemety są róże od 0. Czy zbiór { a : a A, b B musi być ograiczoy? Odpowiedź b uzasadić A jest takim iepustym zbiorem ograiczoym liczb rzeczywistych, że ifa = 3, supa = 2. Jakie wartości mogą przyjmować kresy zbioru { a : a A? Odpowiedź uzasadić przykładem lub dowodem Podać przykład takich zbiorów A, B, że ifa = 2, supa = 7, ifb = 3, supb = 10, ifa B = 4, supa B = 6, A N = B N =. Niepotrzebe skreślić. W każdej parze ramek tylko jeda zawiera sesowe uzupełieie tekstu matematyczego. Twierdzeie 216. Niech A i B będą iepustymi zbiorami ograiczoymi. Niech C = {a b : a A b B. Wtedy ifc = ifa supb supb ifa. Dowód: Niech d = ifa i g = supb. Wtedy z waruku d = ifa wyika, że 1 oraz 2 ε>0 ε>0 a d a d a < d+ε a > d ε. Podobie z waruku g = supb wyika 3 oraz b B b B b g b g 4 b < g +ε b > g ε. ε>0 ε>0 b B b B Chcemy wykazać, że ifc = e, gdzie e = d g g d, czyli, że 5 oraz c C c C c e c e 6 c < e+ε c > e ε. ε>0 ε>0 c C c C W dowodzie waruku 5 skorzystamy z 1 i 3. Zakładając 5 wykażemy prawdziwość waruków 1 i 3. Dowola Istieje liczba c C jest będąca postaci c = a b, gdzie a A i b B. Z ierówości a d a d i b g b g otrzymujemy a b e a b e, co dowodzi 5. Załóżmy Wykażemy teraz prawdziwość waruku 6. Niech ε będzie dowolą liczbą dodatią. Wtedy Zajdziemy taką liczbę dodatią ε, dla której Lista Stroy 18-41

11 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 istieje a A takie, że a > d ε a < d+ ε oraz b B takie, że 2 b < g +ε b > g ε. Zatem liczba c = a b spełia ierówość 2 c < e+ε c > e ε, co kończy dowód waruku 6. Wyzaczyć kres góry i doly astępujących zbiorów. Zbadać, czy podae zbiory zawierają swoje kresy: 217. { x 2 : x 4, 9 { : N { {! : N 220. : N 2009 { { m : m, N : N { 2 + : N 224. { 3 m 2 : m, N { { 7 m m : m, N : m, N m { m { 3m : m, N 228. : m, N m m 229. { 37 5 : N 230. { 37 6 : N 231. { 37 7 : N { m 233. m : m, N Kowersatorium 232. { 37 8 : N Przeczytaj poiższe waruki. Które z ich są rówoważe temu, że g = supa? 234. a < g +ε ε>0 ε>0 ε>0 ε>0 a g < ε a > g 2ε a > g ε 2 > g Na 1 Lista Stroy 18-41

12 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ a < g a 2 0 N 2 g a < 1 a g 2 < ε ε>0 ε>0 ε<g ε<g a g 2 < ε a > ε a > g ε a > g ε 0<ε<1 a g ε ε>0 a g ε ε 0 a > g ε ε 0 b g+a 2 b A a g a > g ε ε>0 b A b A b g+a 2 b g+a 2 Zadaia do samodzielego rozwiązaia. Jeśli uda się wygospodarować trochę czasu, wątpliwości związae z tymi zadaiami mogą być wyjaśioe a kowersatorium lub ćwiczeiach. Zawsze moża też skorzystać z kosultacji W każdym z zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru. Kres może być liczbą rzeczywistą lub może być rówy albo A = {x 2 : x 3, 2 ifa =... supa =... Lista Stroy 18-41

13 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Czy kres doly ależy do zbioru A... Czy kres góry ależy do zbioru A B = {x 3 : x 3, 2 ifb =... supb =... Czy kres doly ależy do zbioru B... Czy kres góry ależy do zbioru B... { C = 5 13 : N N = {1,2,3,4,5,... ifc =... supc =... Czy kres doly ależy do zbioru C... Czy kres góry ależy do zbioru C... { D = : N ifd =... supd =... Czy kres doly ależy do zbioru D... Czy kres góry ależy do zbioru D E = { 2 5 : N ife =... supe =... Czy kres doly ależy do zbioru E... Czy kres góry ależy do zbioru E... { F = : N! iff =... supf =... Czy kres doly ależy do zbioru F... Czy kres góry ależy do zbioru F... { G = 2 1 : N ifg =... supg =... Czy kres doly ależy do zbioru G... Czy kres góry ależy do zbioru G... { H = +1 1 m+2 : m, N ifh =... suph =... Czy kres doly{ ależy do zbioru H... Czy kres góry ależy do zbioru H... m I = : m, N 2m2 < 3 2 ifi =... supi =... Czy kres doly ależy { do zbioru I... Czy kres góry ależy do zbioru I... m J = : m, N 2m > 3 ifj =... supj =... Czy kres doly ależy { do zbioru J... Czy kres góry ależy do zbioru J... m K = m 2 +9 : m, 2 N ifk =... supk =... Czy kres doly ależy { do zbioru K... Czy kres góry ależy do zbioru K L = 7+! ! : N ifl =... supl =... Czy kres doly ależy do zbioru L... Czy kres góry ależy do zbioru L... Lista Stroy 18-41

14 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 { m M = : m,,p N m 2 > 2p 2 2 > 3p 2 p ifm =... supm =... Czy kres doly ależy do zbioru M... Czy kres góry ależy do zbioru M W każdym z zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru. Kres może być{ liczbą rzeczywistą lub może być rówy albo A = 5 m : m, 2 N N = {1,2,3,4,5,... ifa =... supa =... Czy kres doly{ ależy do zbioru A... Czy kres góry ależy do zbioru A B = 2 7 : N ifb =... supb =... Czy kres doly{ ależy do zbioru B... Czy kres góry ależy do zbioru B C = x : x 1 2, 1 N 5 ifc =... supc =... Czy kres doly ależy do zbioru C... Czy kres góry ależy do zbioru C D = { 2 +3 : N ifd =... supd =... Czy kres doly ależy do zbioru D... Czy kres góry ależy do zbioru D E = {log log 2 : N ife =... supe =... Czy kres doly{ ależy do zbioru E... Czy kres góry ależy do zbioru E F = 3+7 : N iff =... supf =... Czy kres doly{ ależy do zbioru F... Czy kres góry ależy do zbioru F G = 3 7 : N ifg =... supg =... Czy kres doly{ ależy do zbioru G... Czy kres góry ależy do zbioru G H = : N! ifh =... suph =... Czy kres doly{ ależy do zbioru H... Czy kres góry ależy do zbioru H I = 2! : N ifi =... supi =... Czy kres doly ależy { do zbioru I... Czy kres góry ależy do zbioru I... m J = m 2 + : m, 4 N Lista Stroy 18-41

15 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 ifj =... supj =... Czy kres doly ależy do zbioru J... Czy kres góry ależy do zbioru J K = { x+y x y : x,y R ifk =... supk =... Czy kres doly ależy do zbioru K... Czy kres góry ależy do zbioru K... { L = 5 3 : m, m N ifl =... supl =... Czy kres doly ależy do zbioru L... Czy kres góry ależy do zbioru L... { M = 1+ 1 : N ifm =... supm =... Czy kres doly ależy do zbioru M... Czy kres góry ależy do zbioru M... Szeregi liczbowe. Ćwiczeia : zad Kolokwium r 7, : materiał z zad Ćwiczeia : zad Kolokwium r 8, : materiał z zad Obliczyć S = a k, a astępie zaleźć S : 254. a k = 1 7 k 255. a k = 2k +5 k 10 k Dowieść, że 4 < < Dowieść, że szereg jest zbieży, a jego suma jest miejsza od Rozstrzygąć, czy astępujące szeregi są zbieże = !! ! 3 3! = ! Lista Stroy 18-41

16 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ ! π π +e Które z astępujących szeregów są bezwzględie zbieże, które warukowo zbieże, a które rozbieże: k 1 k k razy k k 1 k 1 2 k k razy 2 k = ! ! 299.!+1! / / Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że Uzasadić poprawość podaego przykładu. a = a Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że a = 5 Uzasadić poprawość podaego przykładu. oraz a 2 = Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że Lista Stroy 18-41

17 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 dla dowolej liczby aturalej k zachodzi rówość a k = 2 a. Uzasadić poprawość podaego przykładu. =k Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że a = 1 oraz a 2 = 1 4. Uzasadić poprawość podaego przykładu Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że a = 1, a 2 = 1 2 Uzasadić poprawość podaego przykładu. oraz a 4 = 1 5. Kryteria zbieżości szeregów - co każdy studet wiedzieć powiie. 1. Waruek koieczy zbieżości. Jeżeli szereg a jest zbieży, to a = 0. Iymi słowy, jeżeli ciąg a jest rozbieży lub zbieży do graicy różej od zera, to szereg a jest rozbieży. 2. Zbieżość szeregu ie zależy od pomiięcia lub zmiay skończeie wielu początkowych wyrazów. Oczywiście zmiaa lub pomiięcie tych wyrazów ma wpływ a sumę szeregu zbieżego. 3. Kryterium porówawcze. Niech a i b będą szeregami o wyrazach ieujemych, przy czym dla każdego N zachodzi ierówość a b. Jeżeli a =, to b =. Jeżeli b <, to a <. 4. Kilka szeregów. q jest zbieży dla q < 1, rozbieży dla pozostałych q. a jest zbieży dla a < 1, rozbieży dla pozostałych a. Lista Stroy 18-41

18 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 1 log =2 a podstawę większą od 1. jest zbieży dla a > 1, rozbieży dla pozostałych a. Logarytm ma dowolą 5. Kryterium d Alemberta. Jeżeli a jest ciągiem o wyrazach iezerowych oraz istieje graica a +1 = g < 1, a to szereg a jest zbieży. Jeżeli istieje graica to szereg a jest rozbieży. a +1 a = g > 1, 6. Zbieżość bezwzględa. Jeżeli a <, to szereg a jest zbieży. 7. Szeregi aprzemiee. Jeżeli a jest ciągiem ierosącym zbieżym do 0, to szereg a 1 +1 jest zbieży. Kowersatorium Czy istieje ciąg a taki, że podać przykład lub dowieść, że ie istieje : 306. a > 1 dla ieskończeie wielu, N a > 0, szereg 307. a = 1 2 dla ieskończeie wielu, a = a 2 = 1 N, a = 0. a jest zbieży a Z, a = dla 100, szereg a jest zbieży. N 310. a = 1 dla ieskończeie wielu, szereg a jest zbieży Szereg a jest zbieży, szeregi a 2 1 i a 2 są rozbieże Szereg a jest rozbieży, szereg a 2 1 +a 2 jest zbieży. Lista Stroy 18-41

19 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ Szereg a jest rozbieży, szereg a 2 1 +a 2 jest zbieży, a = Szereg a jest rozbieży, szereg a 2 +a a a jest zbieży, a = 0. = Szeregi a 2 1 +a 2 i a 1 + a 2 +a 2+1 są zbieże, ale mają róże sumy Szereg a jest zbieży, szereg a 2 jest rozbieży Szereg a jest rozbieży, szereg a 2 jest zbieży Szereg a jest zbieży, a jego suma jest rówa S. Czy stąd wyika, że zbieży jest ciąg a, jeżeli a S = 0 b 0 < S < 1 c S = 1 d S > Czy możemy stwierdzić, że szereg a jest rozbieży, jeżeli wiemy, że a a = 3 4 b a = 7 4 a +1 c = 1 a Podać sumę szeregu, jeżeli szereg jest zbieży a b c d Zbadać zbieżość szeregu 2! a a +1 d = 5 a 4 1 w zależości od parametru rzeczywistego dodatiego a. Dla jedej wartości a moża ie udzielić odpowiedzi Zbadać zbieżość szeregu Zbadać zbieżość szeregu Obliczyć sumę szeregu ! Lista Stroy 18-41

20 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Wyzaczyć kresy zbiorów { N : N N { =M 2 1 : M N 327. { N =M 1 : M,N N M < N 2 Zadaia do samodzielej powtórki. Jeśli uda się wygospodarować trochę czasu, wątpliwości związae z tymi zadaiami mogą być wyjaśioe a kowersatorium lub ćwiczeiach. Zawsze moża też skorzystać z kosultacji Rozstrzygąć zbieżość szeregu Rozstrzygąć zbieżość szeregu Rozstrzygąć zbieżość szeregu Rozstrzygąć zbieżość szeregu 3! a w zależości od parametru rzeczywistego dodatiego a. Dla jedej wartości a moża ie udzielić odpowiedzi a Udowodić zbieżość szeregu 1. 2 b Obliczyć jego sumę Obliczyć graicę 2 +k. k 335. Rozstrzygąć zbieżość szeregu! Lista Stroy 18-41

21 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ a Rozstrzygąć zbieżość szeregu w zależości od parametru rzeczywistego dodatiego p. p b Obliczyć sumę szeregu w podpukcie a dla jedej spośród tych wartości parametru p, dla których szereg jest zbieży W każdym z poiższych zdań w miejscu kropek postaw jedą z liter Z, R, N: Z - jest Zbieży tz. musi być zbieży R - jest Rozbieży tz. musi być rozbieży N - może być zbieży lub rozbieży tz. Nie wiadomo, czasem jest zbieży, a czasem rozbieży a Jeżeli szereg a jest zbieży, to szereg a... b Jeżeli szereg a jest rozbieży, to szereg a... c Jeżeli szereg a jest zbieży, to szereg 1 a... d Jeżeli szereg a jest rozbieży, to szereg 1 a... e Jeżeli szereg a jest zbieży, to szereg a 2... f Jeżeli szereg a jest rozbieży, to szereg a 2... g Jeżeli szereg a jest zbieży, to szereg 1 a 2... h Jeżeli szereg a jest rozbieży, to szereg 1 a 2... i Jeżeli szereg a jest zbieży, to szereg 1+a 2... j Jeżeli szereg a jest rozbieży, to szereg 1+a Dae są takie ciągi a i b, że a +5 < ε oraz b +3 < ε. ε>0 20/ε ε>0 30/ε Niech c = a 2b. Wskazać odpowiedią liczbę rzeczywistą r oraz liczbę aturalą P i udowodić, że ε>0 c +r < ε. P/ε 339. Obliczyć graicę Lista Stroy 18-41

22 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ W każdym z zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru.. Kres może być liczbą rzeczywistą lub może być rówy albo +. { A = m 3 : m, N N = {1,2,3,4,5,... ifa =... supa =... Czy kres doly ależy do zbioru A... Czy kres góry ależy do zbioru A B = {log 2 +7 log 2 : N ifb =... supb =... Czy kres doly ależy do zbioru B... Czy kres góry ależy do zbioru B... {! C = 2 : 5 N ifc =... supc =... Czy kres doly ależy do zbioru C... Czy kres góry ależy do zbioru C... { m D = : m, N m ifd =... supd =... Czy kres doly ależy do zbioru D... Czy kres góry ależy do zbioru D... { E = 2 +1 : N ife =... supe =... Czy kres doly ależy do zbioru E... Czy kres góry ależy do zbioru E W każdym z zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru. Kres może być liczbą rzeczywistą lub może być rówy albo +. { A = 2 22 : N N = {1,2,3,4,5,... ifa =... supa =... Czy kres doly ależy do zbioru A... Czy kres góry ależy do zbioru A... { B = 3+1 : N ifb =... supb =... Czy kres doly ależy do zbioru B... Czy kres góry ależy do zbioru B... Lista Stroy 18-41

23 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 { C = 3+2 : N ifc =... supc =... Czy kres doly ależy do zbioru C... Czy kres góry ależy do zbioru C D = {x 2y : x,y R 16 < x 28 3 < y 4 ifd =... supd =... Czy kres doly ależy do zbioru D... Czy kres góry ależy do zbioru D E = { x y : x,y R 16 < x 28 3 < y 4 ife =... supe =... Czy kres doly ależy do zbioru E... Czy kres góry ależy do zbioru E Podaj wartości graic. a = b =... c = d = e = f = g = h = /2010 i = j = Lista Stroy 18-41

24 Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/ W każdym z 5 poiższych zadań udziel czterech iezależych odpowiedzi: Z - jest Zbieży tz. musi być zbieży R - jest Rozbieży tz. musi być rozbieży N - może być zbieży lub rozbieży tz. Nie wiadomo, czasem jest zbieży, a czasem rozbieży Ciąg a liczb rzeczywistych dodatich jest zbieży do liczby rzeczywistej g. Co moża wywioskować o zbieżości szeregu a, jeżeli wiadomo, że a g = 0 b 0 < g < 1 c g = 1 d 1 < g a O ciągu a liczb rzeczywistych dodatich wiadomo, że ciąg jest zbieży do liczby rzeczywistej g. Co moża wywioskować o zbieżości szeregu jeżeli wiadomo, że a a, a g = 0 b 0 < g < 1 c g = 1 d 1 < g a O ciągu a liczb rzeczywistych dodatich wiadomo, że ciąg jest a +1 zbieży do liczby rzeczywistej g. Co moża wywioskować o zbieżości szeregu a, jeżeli wiadomo, że a g = 0 b 0 < g < 1 c g = 1 d 1 < g Ciąg a liczb rzeczywistych dodatich jest zbieży do liczby rzeczywistej g. a+1 Co moża wywioskować o zbieżości ciągu, jeżeli wiadomo, że a g = 0 b 0 < g < 1 c g = 1 d 1 < g O ciągu a liczb rzeczywistych wiadomo, że szereg a jest zbieży i jego sumą jest liczba rzeczywista g. Co moża wywioskować o zbieżości ciągu a, jeżeli wiadomo, że a g = 0 b 0 < g < 1 c g = 1 d 1 < g a Lista Stroy 18-41

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Rozmieszczenie liczb pierwszych

Rozmieszczenie liczb pierwszych Rozmieszczeie liczb pierwszych Euler Pierwszy owoczesy wyik pochodzi od Eulera: TWIERDZENIE: Szereg p primes p est rozbieży. Szkic dowodu: Dla s > zachodzi rówość ( ) = s = i= ( + p s i ) + p 2s i +....

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Analiza matematyczna I. Pula jawnych zadań na kolokwia. Aaliza matematycza I. Pula jawych zadań a kolokwia. Wydział MIiM UW, 25/6 ostatie poprawki: 8 styczia 26 Szaowi Państwo, zgodie z zapowiedzią, a każdym kolokwium w pierwszym semestrze co ajmiej jeda trzecia

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ)

MATEMATYKA I SEMESTR ALK (PwZ) MATEMATYKA I SEMESTR ALK (PwZ) 1. Ciągi liczbowe 1.1. OKREŚLENIE Ciąg liczbowy = Dowola fukcja przypisująca liczby rzeczywiste pierwszym (ciąg skończoy), albo wszystkim (ciąg ieskończoy) liczbom aturalym.

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Ciągi i szeregi liczbowe. Ciągi nieskończone.

Ciągi i szeregi liczbowe. Ciągi nieskończone. Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-)

Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-) Odpowiedzi do zadań z szeregów, cz I. Zauważoe błędy bardzo proszę zgłaszać mailem lub a ćwiczeiach. Z góry dziękuję :-. a +, wsk. skorzystać z rówości a b a b, astępie a+b wyciągąć ajwyższe potęgi z liczika

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości

Bardziej szczegółowo

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak Materiały do wykładu Matematyka Stosowaa Dariusz Chrobak 7 styczia 207 Spis treści Zbiory liczbowe i fukcje 2. Zbiór liczb wymierych Q...................... 2.2 Liczby iewymiere.........................

Bardziej szczegółowo

Materiał powtarzany w II etapie. II 4. Ciągi

Materiał powtarzany w II etapie. II 4. Ciągi Materiał powtarzay w II etapie II. Ciągi 3 1, dla parzystych 1. Wyzacz sześć początkowych wyrazów ciągu a = { +1, dla ieparzystych. Które wyrazy ciągu a = są rówe 1? 3. Pomiędzy liczby 7 i 5 wstaw 5 liczb

Bardziej szczegółowo

Ciąg geometryczny i jego własności

Ciąg geometryczny i jego własności Ciąg geometryczy Def: Ciągiem geometryczym (a) azywamy ciąg liczbowy co ajmiej trzywyrazowy, w którym każdy wyraz, począwszy od drugiego, powstaje z pomożeia wyrazu poprzediego przez stałą liczbę q, zwaą

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 15. Liczby, Fukcje, Ciągi, Zbiory, Geometria Rozdział 12 12. Gęste podzbiory zbioru liczb rzeczywistych Adrzej Nowicki 16 kwietia 2013, http://www.mat.ui.toru.pl/~aow Spis

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

Wykªad 2. Szeregi liczbowe.

Wykªad 2. Szeregi liczbowe. Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Wrocław, 2 lutego 205 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp 2 Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1

Zadania z Rachunku Prawdopodobieństwa I - 1 Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18 dr Aa Barbaszewska-Wiśiowska ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 17/18 1 Elemety logiki matematyczej Zdaia i formy zdaiowe fuktory zdaiotwórcze Tautologie Wartości logicze

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochode wyższych rzędów 1.1 Defiicja i przykłady Def. Drugą pochodą fukcji f azywamy pochodą pochodej tej fukcji. Trzecia pochoda jest pochodą drugiej pochodej; itd. Ogólie, -ta pochoda fukcji jest pochodą

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje trygoometrycze Moduł - dział -temat Fukcje trygoometry cze dowolego kąta 1 kąt w układzie współrzędych fukcje trygoometrycze dowolego kąta zaki trygoometryczych wartości trygoometryczych iektórych

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia

Bardziej szczegółowo

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, ) PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

Ciąg liczbowy. Granica ciągu

Ciąg liczbowy. Granica ciągu Temat wykładu: Ciąg liczbowy. Graica ciągu Kody kolorów: Ŝółty owe pojęcie pomarańczowy uwaga kursywa kometarz * materiał adobowiązkowy Aa Rajfura, Matematyka a kieruku Biologia w SGGW 1 Zagadieia 1. Przykłady

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

W. Guzicki Zadanie o sumach cyfr poziom rozszerzony 1

W. Guzicki Zadanie o sumach cyfr poziom rozszerzony 1 W. Guzicki Zadaie o sumach cyfr poziom rozszerzoy 1 Popatrzmy a astępujące trzy zadaia: Zadaie 1. Ile jest liczb dwudziestocyfrowych o sumie cyfr rówej 5? Zadaie. Oblicz, ile jest liczb dwudziestocyfrowych

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

Entropia w układach dynamicznych

Entropia w układach dynamicznych Etropia w układach dyamiczych Wstęp Środowiskowe studia doktorackie Uiwersytet Jagielloński Kraków, marzec-kwiecień 203 Tomasz Dowarowicz Część II Etropia topologicza i zasada wariacyja Zaczijmy od początku.

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Problem. Jak praktycznie badać jednostajną ciągłość funkcji?

Problem. Jak praktycznie badać jednostajną ciągłość funkcji? EAIiIB-Iormatya - Wyład 3- dr Adam Ćmiel miel@.agh.edu.pl Ciągłość uji w puie e. Fuję : azywamy iągłą w puie jeżeli Heie Cauhy Uwaga: Put ale ie musi być putem supieia zbioru. Jeżeli jest putem izolowaym

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo