Metody badania zbieżności/rozbieżności ciągów liczbowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody badania zbieżności/rozbieżności ciągów liczbowych"

Transkrypt

1 Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu zachowaia się jego ogoa. Przypomijmy, że przez tzw. ogo ciągu (a ) 1 rozumiemy wszystkie wyrazy o umerach o, dla pewego aturalego o.wtedyzachowaiesięogoa determiuje asymptotycze zachowaie się ciągu. Dalej przyjmiemy założeie, że rozważae ciągi będą albo zbieże, albo rozbieże, co ozacza, że z aalizy wykluczymy ciągi, które ie są ai zbieże, ai rozbieże. Niech C ozacza mogość takich ciągów. Możemy sformułować dwa podstawowe problemy, rozwiązaiem których zajmiemy się w dalszej części. Problem 1 Niech (a ) 1 C. Należy rozstrzygąć kwestię, czy day ciąg jest zbieży, czy jest rozbieży. Problem 2 Wiedząc, że (a ) 1 C jest zbieży ależy ustalić jego graicę. W przypadku jego rozbieżości ależy określić typ tej rozbieżości. Wydział Nauk Techiczych i Ekoomiczych Państwowej Wyższej Szkoły Zawodowej im. Witeloa w Legicy, e mail: rebowskir@pwsz-legica.eu 1

2 2 BADANIE CIĄGÓW ZBIEŻNYCH 2 Badaie ciągów zbieżych Przedstawimy trzy metody badaia zbieżości ciągów: twierdzeie o arytmetyce graic (TAG), twierdzeie o 3 ciągach (T3C) oraz twierdzeie o liczbie Eulera (TLE). Jak zobaczymy dalej, żade z tych twierdzeń ie jest a tyle uiwersale, aby mogło rozstrzygąć kwestię zbieżości każdego ciągu. Dlatego waża będzie dalej umiejętość doboru odpowiediego twierdzeia do badaego ciągu, a co zwrócimy szczególą uwagę. 2.1 TAG Zacziemy od defiicji wyjaśiającej pojęcie struktury arytmetyczej ciągu. Defiicja 1 Powiemy, że ciąg (a ) 1 posiada strukturę arytmetyczą, jeśli istieją dwa ciągi (b ) 1 i (c ) 1 takie, że (a ) 1 ma jedą z poiższych postaci: a = b + c, dla 1. (1) Wtedy powiemy, że jest o sumą ciągów (b ) 1 i (c ) 1, a = b c, dla 1. (2) Wtedy powiemy, że jest o różicą ciągów (b ) 1 i (c ) 1, a = b c, dla 1. (3) Wtedy powiemy, że jest o iloczyem ciągów (b ) 1 i (c ) 1, a = b, oiledla 1c 0. (4) c Wtedy powiemy, że jest o ilorazem ciągów (b ) 1 i (c ) 1, Przykład 1 Każdy z poiższych ciągów ma strukturę arytmetyczą: a = , 1, (5) a = , 3, (6) a =( 1) 1, 1, (7) 2

3 2.1 TAG 2 BADANIE CIĄGÓW ZBIEŻNYCH Przykład 2 Nie każdy ciąg ma strukturę arytmetyczą, p.: a =si 1, 1, (8) a = 2, 1, (9) a = 2 +5, 1, (10) ( ) , a = (11) Twierdzeie 1 (TAG) Niech ciąg (a ) 1 ma strukturę arytmetyczą typu (1) (3), gdzie ciągi (b ) 1 i (c ) 1 są zbieże. Wtedy (a ) 1 też jest zbieży. Co więcej, jeśli b b, c c, to odpowiedio a b + c, a b c, a bc. Jeśli dodatkowo c 0, to ciąg typu (4) też jest zbieży i a b c. Przykład 3 Zbadać charakter zbieżości ciągu daego wzorem (5). Rozwiązaie. Wiemy, że a = , 1 ma strukturę arytmetyczą jako iloraz dwóch ciągów b = oraz c =5 5 3, 1.Poieważb 5 dla 1 iciąg 5 ie jest ograiczoy z góry, ciąg (b ) 1 jest ieograiczoy i dlatego ie może być zbieży. Ozacza to, że pomimo dopuszczalej struktury, ie możemy zastosować TAG dla badaego ciągu. Z drugiej stroy, z oszacowaia = 5 6 a 5 25 =1, 1, 25 wyika, że baday ciąg jest ograiczoy. W takim razie, zgodie z umową zawartą we wstępie jest zbieży. Jak to uzasadić, skoro ie działa TAG. Odpowiedź jest tylko jeda ależy iaczej zapisać postać wyrazu a. Zauważmy, że 2 a = , 1. 4 Teraz TAG zadziała, bowiem ciąg ma strukturę typu (1) i (2) 3 5 oraz z własości ciągu α harmoiczego, =1. Podobie 3 5 dla = Dlatego z TAG a Czytelik powiie umieć uzasadić to oszacowaie. 2 Należy to uzasadić. 3

4 2.1 TAG 2 BADANIE CIĄGÓW ZBIEŻNYCH Przykład 4 Zbadać charakter zbieżości ciągu daego wzorem (6). Rozwiązaie. Z Przykładu 1 wiemy, że baday ciąg rówież posiada strukturę arytmetyczą. Poieważ jedak >, rówież w tym przypadku TAG ie może być zastosowae. Jedocześie mamy podobą sytuację do ciągu z przykładu powyżej badaych ciąg jest ograiczoy 3. W takim razie, jako elemet zbioru C jest zbieży. Wykażemy to dokoując przeformatowaia jego zapisu. Zauważmy, że ( )( ) a = , czyli 4 a = = Dalej będziemy potrzebowali pewego wspomagającego faktu. 5 Fakt 1 Przypuśćmy, że dla ciągu (d ) 1 wiadomo, że: wyrazy jego są ieujeme oraz d d. Wtedyd 0 oraz d d. Korzystając teraz z Faktu 1 oraz z TAG możemy apisać 5+0 a = Przykład 5 Zbadać charakter zbieżości ciągu daego wzorem (7). Rozwiązaie. Nie moża zastosować TAG, pomimo, że ciąg ma strukturę arytmetyczą. 6 Baday ciąg jest jedak ograiczoy, zatem przy obowiązującym założeiu jest zbieży. Tym razem jedak procedura wstępego przeformatowaia, z jaką spotkaliśmy się w przykładach 3 i 4 ie zadziała. Jak tym razem w takim razie uzasadić zbieżość badaego ciągu? Zauważmy, że 1 ( 1) = 1, co ozacza, że a 0. Dalej potrzebujemy kolejego faktu 7. 3 Czytelik powieie to umieć uzasadić! 4 Należy to uzasadić. 5 Czytelik powiie zapozać się z dowodem tego faktu. 6 Proszę uzasadić dlaczego. 7 Proszę zapozać się z dowodem. 4

5 2.2 T3C 2 BADANIE CIĄGÓW ZBIEŻNYCH Fakt 2 Dla każdego ciągu (a ) 1 astępujące waruki są rówoważe: a 0. a 0. Dlatego ( 1) Ćwiczeia Zadaie 1 Zbadać zbieżość ciągu a = , Zadaie 2 Zbadać zbieżość ciągu a = (20 +2) 3, 1. ( 3 +1) 20 Zadaie 3 Zbadać zbieżość ciągu a = 2 +4, T3C Przykład 2 pokazuje, że ie każdy ciąg posiada strukturę arytmetyczą. Z tego powodu zasięg zastosowaia TAG jest ograiczoy. Dla potrzeb badaia takich ciągów potrzebe są koleje metody. Jedą z ich jest zaprezetowaa poiżej metoda trzech ciągów. Przypuśćmy, że położeia ogoa badaego ciągu (a ) 1 możemy kotrolować pośredio używając do tego celu dwóch dodatkowych ciągów (łączie mamy zatem trzy ciągi) (b ) 1 i (c ) 1 w sposób astępujący o b a c. (12) Jeśli teraz ciągi (b ) 1 i (c ) 1 są zbieże, czyli b b i c c oraz b = c, to z waruku (12) wyika, że ogo ciągu (a ) 1 zajduje się w dowolym otoczeiu liczby a = b = c. Prowadzi to do astępującego twierdzeia. Twierdzeie 2 (T3C) Niech dla ciągu (a ) 1 istieją takie ciągi (b ) 1 i (c ) 1, dla których zachodzi waruek (12). Wtedy, jeśli b b i c c oraz b = c, tociąg(a ) 1 jest zbieży oraz a a = b = c. 5

6 2.2 T3C 2 BADANIE CIĄGÓW ZBIEŻNYCH Przykład 6 Zbadać zbieżość ciągu daego wzorem (8). Rozwiązaie. Z własości fukcji trygoometryczej si, ciągsi 1, 1 jest ograiczoy. Zatem, zgodie z założeiem ależy do klasy C, czyli jest zbieży. Do wyzaczeia jego graicy ie możemy zastosować TAG, bowiem ie posiada o struktury arytmetyczej. Graicę tę wyzaczymy metodą pośredią zastosujemy T3C. Z podstawowej własości fukcji si wiadomo, że si x x dla x 0 oraz dla kątów z przedziału x [0,π/2], si x 0. W takim razie dla badaego ciągu możemy apisać astępujące oszacowaie 0 si 1 1, dla 1, co a mocy T3C dowodzi, że si 1 0. Przykład 7 Zbadać charakter zbieżości ciągu 2, 1 z przykładu 2. Rozwiązaie. Z własości działaia pierwiastkowaia wyika, że każdego 1. W takim razie możemy apisać 2 1 dla 2=1+ε, gdzie ε 0 dla 1. Jeśli wykażemy, że zdefiioway powyżej ciąg (ε ) 1 jest zbieży do zera, to z TAG będzie wyikało, że 2 1. W tym celu skorzystamy z T3C. Zauważmy, że z defiicji (ε ) 1 możemy apisać 2=(1+ε ), dla 1. Dalej będziemy potrzebowali pewej ierówości. 8 Fakt 3 (Nierówość Beroulliego) Dla każdej liczby rzeczywistej a 1, liczby aturalej (1 + a) 1+a. (13) W takim razie dla ciągu (ε ) 1 mamy oszacowaie 9 skąd i z T3C wyika, że ε 0. 0 ε 1, 8 Proszę zapozać się z dowodem. 9 Należy to uzasadić. 6

7 2.3 TLE 2 BADANIE CIĄGÓW ZBIEŻNYCH Przykład 8 Zbadać charakter zbieżości ciągu daego wzorem (10). Rozwiązaie. Zauważymy, że baday ciąg jest ograiczoy, bowiem = 2 3 =3 2, oraz z przykładu 7 ciąg 2 jako zbieży jest ograiczoy. Poieważ 2 1, z T3C ostatie oszacowaie ozacza, że Ćwiczeia Zadaie 4 Zbadać zbieżość ciągu , 1. Zadaie 5 Wyzaczyć graice ciągu 2+( 1), Zadaie 6 Wyzaczyć graicę ciągu 2 +1, 1. Zadaie 7 Obliczyć graicę ciągu 2+si, 1. Zadaie 8 Zbadać zbieżość ciągu a, 1, gdziea> TLE Asymptotycze zachowaie się ciągu opisuje się za pomocą trzech własości: mootoiczości, ograiczoości i zbieżości (rozbieżości). Dobrze zae przykłady 10 pokazują, że ie ma związku pomiędzy mootoiczością a ograiczoością oraz pomiędzy zbieżością (rozbieżością) a mootoiczością. Jeśli jedak w odpowiedi sposób skompiluje się własość ograiczoości z mootoiczością, to otrzyma się efekt zbieżości lub rozbieżości ciągu. Na przykład: każdy ciąg iemalejący i ograiczoy z góry jest zbieży; 2. każdy ciąg malejący i ieograiczoy z dołu jest rozbieży. W szczególości, ozacza to, że każdy ciąg mootoiczy jest albo zbieży albo rozbieży, czyli ależy do zbioru ( C. Klasyczym przykładem jest tutaj tzw., ciąg Eulera (e ) 1, gdzie e = 1+ ) 1 który jest rosący i ograiczoy z góry. Feome tego ciągu polega a tym, że jego graicą ie jest liczba wymiera jest ią liczba iewymiera 12,tzw.liczba Eulera ozaczaa literą e. 10 Proszę je przypomieć. 11 Proszę sformułować pozostałe przypadki. 12 Jej przybliżoa wartość to 2,71. 7

8 2.3 TLE 2 BADANIE CIĄGÓW ZBIEŻNYCH Poiższe twierdzeie pokazuje, że istieje cała klasa ciągów, które zachowują się podobie do ciągu Eulera, czyli są zbieże do e. Twierdzeie 3 (TLE) Każdy ciąg postaci ( 1+ 1 α ) α, gdzie (α ) 1 jest dowolym ciągiem rozbieżym, jest zbieży do liczby Eulera. ( ) α, Dalej o ciągu 1+ 1 α 1 będziemy mówili, że ma strukturę ciągu Eulera. Przykład 9 Zbadać zbieżość ciągu daego wzorem (11). Rozwiązaie. Kwestią kluczową jest umiejętość dostrzeżeia w defiicji badaego ciągu struktury ciągu Eulera. W tym celu zajmiemy się ajpierw podstawą potęgi. Zauważmy, że = = = Defiiujemy ciąg (α ) 1, gdzie α = 1. Wtedy, poieważ = α 2 + 1, baday 2 ciąg ma strukturę ( ) ( = 1+ 1 ) 4α+2, 2 1 α co po przekształceiach daje ( ) = [(1+ 1 ) α ] 4 ( 1+ 1 ) α α Uzyskaa faktoryzacja badaego ciągu pozwala zastosować TLE. Pierwszy czyik a mocy TLE i TAG zbieży jest do e 4. Drugi czyik, a mocy TAG ma graicę rówą Dlatego a mocy TAG baday ciąg jest zbieży do e Ćwiczeia Zadaie 9 ( Obliczyć graicę ciągu Zadaie 10 Obliczyć graicę ciągu ) 6, 1. ( 1 1 ), 1. Zadaie 11 ( ) 2, Zbadać zbieżość ciągu = 2 13 Proszę to uzasadić. 8

9 3 BADANIE CIĄGÓW ROZBIEŻNYCH 3 Badaie ciągów rozbieżych Przykład 10 Weźmy szereg harmoiczy Σ 1, czyli ciąg S = 1 k=1, 2. k Zbadać zachowaie się jego ogoa. Rozwiązaie. Poieważ S +1 S = 1 +1, ciąg sum częściowych szeregu harmoiczego jest rosący. Moża pokazać, 14 że ie jest o ograiczoy z góry. W takim razie jest o rozbieży przez wartości dodatie, co możemy zapisać jako S + lub Σ 1 =+. Badaie rozbieżości ciągu sprowadza się do ustaleia położeia jego ogoa w otoczeiu tzw. ieskończoości, czyli albo dowolie daleko a prawo od zera, albo dowolie daleko a lewo od zera. Ozacza to, że do ustaleia takiego położeia, z puktu widzeia metody porówawczej wystarczy dyspoować tylko jedym (dodatkowym) ciągiem rozbieżym. Prowadzi to do tzw. twierdzeia o dwóch ciągach (T2C). Twierdzeie 4 (T2C) Jeśli dla ciągu (a ) 1 położeiejegoogoadajesięustalićjedązmetod: a b, dla o, albo c a, dla o, gdzie b,alboc +, to (a ) 1 jest rozbieży odpowiedio przez wartości ujeme albo dodatie. Przykład 11 Zbadać zachowaie się ogoa ciągu +5, 1. Rozwiązaie. Zauważmy, że +5 =, dla 1. Poieważ ciąg o wyrazie jest rozbieży przez wartości dodatie, z T2C, baday ciąg rówież. Ozacza to, że ogo badaego ciągu zajduje się w otoczeiu +. Przykład 12 Zbadać zachowaie się ciągu 5 +7, Rozwiązaie. Zauważmy, że dla 1 mamy oszacowaie = 1 ) 7. 2( 5 Ozacza to, że baday ciąg domiuje z góry ciąg geometryczy o ilorazie większym od jede. Z T2C baday ciąg jest rozbieży przez wartości dodatie. 14 Proszę to zrobić. 9

10 3.1 Ćwiczeia 3 BADANIE CIĄGÓW ROZBIEŻNYCH 3.1 Ćwiczeia Zadaie 12 Ustalić charakter rozbieżości ciągu (3 + ( 1) ), 1. Zadaie 13 Uzasadić, że astępujący ciąg (si 2) 2, 1jest rozbieży. Zadaie 14 Zbadać zachowaie się ogoa ciągu, 1. 10

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10.

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10. Czy istieje ciąg (a ) taki, że (podać przykład lub dowieść, że ie istieje) : 576. a > 1 dla ieskończeie wielu, a > 0, szereg a jest zbieży. N 577. a = 1 2 dla ieskończeie wielu, a = 10. 578. a 2 = 1 N,

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Szeregi liczbowe. 15 stycznia 2012

Szeregi liczbowe. 15 stycznia 2012 Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-)

Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-) Odpowiedzi do zadań z szeregów, cz I. Zauważoe błędy bardzo proszę zgłaszać mailem lub a ćwiczeiach. Z góry dziękuję :-. a +, wsk. skorzystać z rówości a b a b, astępie a+b wyciągąć ajwyższe potęgi z liczika

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333)) 46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ)

MATEMATYKA I SEMESTR ALK (PwZ) MATEMATYKA I SEMESTR ALK (PwZ) 1. Ciągi liczbowe 1.1. OKREŚLENIE Ciąg liczbowy = Dowola fukcja przypisująca liczby rzeczywiste pierwszym (ciąg skończoy), albo wszystkim (ciąg ieskończoy) liczbom aturalym.

Bardziej szczegółowo

+ ln = + ln n + 1 ln(n)

+ ln = + ln n + 1 ln(n) "Łatwo z domu rzeczywistości zajśd do lasu matematyki, ale ieliczi tylko umieją wrócid." Hugo Dyoizy Steihaus Niech (a ) będzie ieskooczoym ciągiem rzeczywistym. Def. Szeregiem = a azywamy parę ciągów

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje trygoometrycze Moduł - dział -temat Fukcje trygoometry cze dowolego kąta 1 kąt w układzie współrzędych fukcje trygoometrycze dowolego kąta zaki trygoometryczych wartości trygoometryczych iektórych

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17 585. Wskaż liczbę rzeczywistą k, dla której podaa graica istieje i jest dodatią liczbą rzeczywistą. Podaj wartość graicy dla tej wartości parametru k. Jeżeli odpowiedź jest liczbą wymierą, podaj ją w postaci

Bardziej szczegółowo

> 1), wi c na mocy kryterium porównawczego szereg sin(n n)

> 1), wi c na mocy kryterium porównawczego szereg sin(n n) .65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Materiały do ćwiczeń z Analizy Matematycznej I

Materiały do ćwiczeń z Analizy Matematycznej I Materiały do ćwiczeń z Aalizy Matematyczej I 08/09 Maria Frotczak Ludwika Kaczmarek Katarzya Klimczak Maria Michalska Beata Osińska-Ulrych Tomasz Rodak Adam Różycki Grzegorz Skalski Staisław Spodzieja

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Wykªad 2. Szeregi liczbowe.

Wykªad 2. Szeregi liczbowe. Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Maria Gewert Zbigiew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadaia Wydaie dwudzieste piąte uzupełioe GiS Oficya Wydawicza GiS Wrocław 07 Maria Gewert Wydział Matematyki Politechika

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Dydaktyka matematyki III-IV etap edukacyjny (wykłady)

Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Dydaktyka matematyki III-IV etap edukacyjy (wykłady) Wykład r 12: Fukcja wykładicza cd. Ciągłość fukcji. Pochoda fukcji Semestr zimowy 2018/2019 Fukcja wykładicza (cd.) propozycja Podobie jak w przykładach

Bardziej szczegółowo

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α,

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α, .. si Poiewa» si < 1; 1 >, wi c zbadajmy szereg zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu: () si = si, ale si < 0; 1 > Zatem si 1 () Po prawej stroie powy»szej ierówo±ci mamy szereg

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19 47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9

Bardziej szczegółowo

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Analiza matematyczna I. Pula jawnych zadań na kolokwia. Aaliza matematycza I. Pula jawych zadań a kolokwia. Wydział MIiM UW, 23/4 ostatie poprawki: 6 listopada 23 Szaowi Państwo, zgodie z zapowiedzią, a każdym kolokwium w pierwszym semestrze co ajmiej 2 zadaia

Bardziej szczegółowo

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Analiza matematyczna I. Pula jawnych zadań na kolokwia. Aaliza matematycza I. Pula jawych zadań a kolokwia. Wydział MIiM UW, 25/6 ostatie poprawki: 8 styczia 26 Szaowi Państwo, zgodie z zapowiedzią, a każdym kolokwium w pierwszym semestrze co ajmiej jeda trzecia

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Maria Gewert Zbigiew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadaia Wydaie dwudzieste szóste zmieioe Oficya Wydawicza GiS Wrocław 08 Maria Gewert Wydział Matematyki Politechika

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Techikum Nr 2 im. ge. Mieczysława Smorawińskiego w Zespole Szkół Ekoomiczych w Kaliszu Wymagaia edukacyje iezbęde do uzyskaia poszczególych śródroczych i roczych oce klasyfikacyjych z obowiązkowych zajęć

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011

Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011 Wykład 9 Matematyka 3, semestr zimowy 0/0 3 grudia 0 Zajmiemy się teraz rozwiięciem fukcji holomorficzej w szereg Taylora. Przypomijmy podstawowe fakty związae z szeregami potęgowymi o wyrazach rzeczywistych.

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

5. Szeregi liczbowe. A n = A = lim. a k = lim a k, a k = a 1 + a 2 + a

5. Szeregi liczbowe. A n = A = lim. a k = lim a k, a k = a 1 + a 2 + a 5. Szeregi liczbowe Niech będzie day iesończoy ciąg liczbowy {a }. Ciąg A = azywamy ciągiem sum częściowych ciągu {a }. Jeżeli ciąg {A } jest zbieży, mówimy, że ciąg {a } jest sumowaly, a graicę a A =

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 15. Liczby, Fukcje, Ciągi, Zbiory, Geometria Rozdział 12 12. Gęste podzbiory zbioru liczb rzeczywistych Adrzej Nowicki 16 kwietia 2013, http://www.mat.ui.toru.pl/~aow Spis

Bardziej szczegółowo

Wykład 0. W analizie matematycznej szeregiem liczbowym przyjęło się nazywać napis

Wykład 0. W analizie matematycznej szeregiem liczbowym przyjęło się nazywać napis Wykład 0. Matematyka, semestr leti 00/0 Program poprzediego semestru kończy się badaiem szeregów liczbowych. W tak zwaych dawych czasach ludziom sprawiało trudość zrozumieie, że suma ieskończoej liczby

Bardziej szczegółowo

Analiza matematyczna dla informatyków 4 Zajęcia 5

Analiza matematyczna dla informatyków 4 Zajęcia 5 Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14 Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli

Bardziej szczegółowo

Wykład III. Granice funkcji. f : R A R, A przedział. f określona w x. K M x. lim. lim. Granice niewłaściwe:

Wykład III. Granice funkcji. f : R A R, A przedział. f określona w x. K M x. lim. lim. Granice niewłaściwe: : R A R, A przedział A, Wykład III Graice ukcji określoa w, S \ Deiicja 3. (deiicja Caucy eo raicy ukcji) : D U,, ( ) : ot Iaczej: Uot D U K M U ot U ot K M Graice iewłaściwe: k K R D M K K R M R D De.

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia

Bardziej szczegółowo

8. Jednostajność. sin x sin y = 2 sin x y 2

8. Jednostajność. sin x sin y = 2 sin x y 2 8. Jedostajość Mówimy, że fukcja f : I R spełia waruek Lipschitza ze stałą C > 0, jeśli fx) fy) C x y, x, y I. 8.. Przykład. a) Taką fukcją jest p. si : R [, ]. Rzeczywiście, si x si y = 2 si x y 2 cos

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

Analiza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013

Analiza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 Aaliza Fukcjoala WPPT IIIr. semestr leti 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 NiechX ozaczaprzestrzeńbaacha,ax jejdual a(czyliprzestrzeńfukcjoa lów ograiczoych

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

III seria zadań domowych - Analiza I

III seria zadań domowych - Analiza I III seria zadań domowych - Aaliza I Różiczkowalość fukcji Zadaie Dla jakich wartości parametrów abc R fukcje a + gdy π si + b gdy > π a + b gdy 0 gdy > c a + b gdy c są różiczkowale. a + b gdy a 0 / arcsi

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Szeregi. a n = a 1 + a 2 + a 3 + (1) a k (2) s n = k=1. lim s n = S,

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Szeregi. a n = a 1 + a 2 + a 3 + (1) a k (2) s n = k=1. lim s n = S, Maciej Grzesiak Istytut Matematyki Politechiki Pozańskiej Szeregi. Szeregi liczbowe Defiicja. Szeregiem liczbowym azywamy wyrażeie a = a + a + a 3 + () Liczby a, =,,... azywamy wyrazami szeregu. Natomiast

Bardziej szczegółowo