O liczbach naturalnych, których suma równa się iloczynowi

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "O liczbach naturalnych, których suma równa się iloczynowi"

Transkrypt

1 O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą własość mają liczby 1, 1, 2, 4: Spójrzmy a astępe przykłady: = = = = = Dla daej liczby aturalej 2 iteresować as będą ciągi (x 1,..., x ), liczb aturalych takich, że: x 1 + x x = x 1 x 2 x oraz x 1 x 2 x. Zbiór wszystkich takich ciągów ozaczać będziemy przez A(). Natomiast przez ozaczać będziemy moc zbioru A(), tz. liczbę wszystkich elemetów zbioru A(). Jedyym ciągiem ależącym do A(2) jest (2, 2); zatem a(2) = 1. Powyżej podaliśmy przykłady dla = 3, 4, 5. Wykażemy teraz, że są to wszystkie przykłady tego rodzaju. Twierdzeie 1. a(3) = 1, a(4) = 1, a(5) = 3. Dowód. Dla = 3 mamy: x 1 x 2 x 3 = x 1 + x 2 + x 3. Jest oczywiste, że liczby x 1, x 2, x 3 ie mogą być wszystkie rówe. Zatem x 1 x 2 x 3 = x 1 + x 2 + x 3 < 3x 3, skąd x 1 x 2 < 3. Para (x 1, x 2 ) jest więc jedą z par (1, 1), (1, 2). Szybko stwierdzamy, że możliwy jest tylko przypadek (x 1, x 2 ) = (1, 2) i w tym przypadku x 3 = 3. Do zbioru A(3) ależy więc tylko jede elemet (1, 2, 3). Niech = 4. Poieważ x 1 x 2 x 3 x 4 = x 1 + x 2 + x 3 + x 4 < 4x 4 (przypadek x 1 = x 2 = x 3 = x 4 jest oczywiście iemożliwy), więc x 1 x 2 x 3 3. Trójka (x 1, x 2, x 3 ) jest zatem jedą z trójek (1, 1, 1), (1, 1, 2), (1, 1, 3). Jedyie przypadek (x 1, x 2, x 3 ) = (1, 1, 2) ie prowadzi do sprzeczości. Do zbioru A(4) ależy tylko elemet (1, 1, 2, 4). Dla = 5 postępujemy podobie. Najpierw zauważamy, że x 1 x 2 x 3 x 4 4 i stą wioskujemy, że (x 1, x 2, x 3, x 4 ) może być jedyie jedą z czwórek (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 1, 4), (1, 1, 2, 2). Czwórki (1, 1, 1, 1) i (1, 1, 1, 4) ie są dobre. Dla ich ie zajdziemy odpowiediej liczby x 5. Z pozostałych trzech czwórek otrzymamy wszystkie elemety zbioru A(5): (1, 1, 1, 2, 5), (1, 1, 1, 3, 3) i (1, 1, 2, 2, 2). Ie dowody Twierdzeia 1 zajdziemy, a przykład, w książkach [2] str lub [3] str

2 Twierdzeie 2. Każdy zbiór postaci A() (gdzie 2) ma co ajmiej jede elemet. Dowód. Do zbioru A() ależy ciąg (x 1,..., x ), w którym x =, x 1 = 2 i pozostałe wyrazy x i są jedykami. Załóżmy, że (x 1,..., x ) A(). Wtedy x i x x 1 x 2... x = x 1 + x x x + x + x = x dla wszystkich i = 1,..., 1. Zatem liczby x 1,..., x 1 są miejsze lub rówe. Liczby te wyzaczają liczbę x. Przy daych x 1,..., x 1 wyraz x zajdziemy bowiem z rówości x 1 x = x x. Stąd wyika: Twierdzeie 3. Dla każdego 2 zbiór A() jest skończoy. Zaotujmy kilka zaych własości. Twierdzeie 4. Jeśli (x 1,..., x ) A() i 3, to x 1 x 2 x 1 1. Dowód. Zauważmy, że wszystkie liczby x 1,..., x ie mogą być rówe. Przypuśćmy bowiem, że x 1 = = x = x. Wtedy x = x i stąd x = 1. Ale 1 < 1 < 2 dla 3, więc mamy sprzeczość. Zatem i stąd wyika teza. x 1 x 2 x 1 x = x 1 + x x < x Twierdzeie 5 ([2] 175). Dla każdego s N istieje N takie, że > s. Dowód. Niech = 2 2s +1 i iech x 1 = x 2 = = x 2 = 1. Dla daego j = 0, 1, 2,..., s określamy: x 1 = 2 j + 1, x = 2 2s j + 1. Każdy otrzymay w te sposób ciąg (x 1,..., x ) ależy do zbioru A() i ciągów takich jest s + 1. Twierdzeie 6. Jeśli (x 1,..., x ) A(), 2, to x x 2 i przy tym rówość zachodzi tylko w przypadku ciągu (1, 1,..., 1, 2, ). Dowód. Niech b ozacza liczbę jedyek w ciągu (x 1,..., x ) A(). Ozaczmy przez k liczbę tych liczb w ciągu (x 1,..., x ), które są większe od jedyki. Liczby większe od jedyki ozaczmy odpowiedio przez y 1 + 1, y 2 + 1,..., y k + 1, gdzie 1 y 1 y 2 y k. Oczywiście k 2, b + k = oraz (1) (y 1 + 1)(y 2 + 1)... (y k + 1) = y 1 + y y k + k + b. Niech k = 2. Wtedy y 1 y 2 = 1 i stąd y 1 + y =, a zatem x x = + y 1 + y 2 2, przy czym rówość zachodzi tylko w przypadku, gdy y 1 = 1, y 2 = 1, tz. tylko wtedy, gdy (x 1,..., x ) = (1, 1,..., 1, 2, ). 2

3 Niech k 3. Wtedy z rówości (1) otrzymujemy: y y k y 1 y 2 + y 2 y y k y 1 < (y 1 + 1)(y 2 + 1)... (y k + 1) (y y k ) =. Zatem x x = y y k + < 2. Powyższe twierdzeie było zadaiem a zawodach drugiego stopia Olimpiady Matematyczej w roku szkolym 1989/1990. Iy dowód zajdziemy w [1] (stroa 44). Twierdzeie 7. Niech (x 1,..., x ) A(). Ozaczmy przez b liczbę jedyek występujących w ciągu (x 1,..., x ). Wtedy b 1 [log 2 ]. Rówość zachodzi a przykład wtedy, gdy jest liczbą postaci 2 s s (gdzie s 2) oraz (x 1,..., x ) = (1,..., 1, 2, 2,..., 2). }{{} s Dowód. Z twierdzeia 6 wyika, że: 2 b x 1 x = x x 2. Zatem b log 2 (2) = 1 + log 2 i stąd b 1 [log 2 ]. Pozostała część tego twierdzeia jest oczywista. Twierdzeie 8. Jeśli jest liczbą parzystą i (x 1,..., x ) A(), to liczba x x jest podziela przez 4. Dowód. Przypuśćmy, że wszystkie liczby x 1,..., x są ieparzyste. Mamy wówczas parzystą liczbę liczb ieparzystych. Suma x x jest wtedy liczbą parzystą, a iloczy x 1 x liczbą ieparzystą. Co ajmiej więc jeda z liczb x 1,..., x jest parzysta. Suma wszystkich liczb (jako, że jest rówa iloczyowi) jest zatem parzysta. Wśród liczb tych muszą więc być co ajmiej dwie liczby parzyste Tabelki, otrzymae przy pomocy komputerowego programu, przedstawiają liczby dla Odczytujemy z ich a przykład, że a(50) = 4, a(100) = 5. 3

4 Zbiór A(50) ma więc dokładie 4 elemety. Moża wykazać, że każdy ciąg (x 1,..., x 50 ), ależący do A(50) jest taki, że x 1 = x 2 = = x 47 = 1 oraz (x 48, x 49, x 50 ) jest jedym z ciągów: (1, 2, 50), (1, 8, 8), (2, 2, 17), (2, 5, 6). Zbiór A(100) ma dokładie 5 elemetów. Każdy z tych elemetów jest postaci (x 1,..., x 100 ), gdzie x 1 = x 2 = = x 95 = 1 oraz (x 96, x 97, x 98, x 99, x 100 ) jest jedym z ciągów: (1, 1, 1, 2, 100), (1, 1, 1, 4, 34), (1, 1, 1, 10, 12), (1, 1, 4, 4, 7), (2, 2, 3, 3, 3). Przy pomocy komputera moża wykazać, że a(1997) = 20, a(1998) = 8, a(1999) = 16, a(2000) = 10. Z tabelki odczytujemy, że 24 jest ajwiększą dwucyfrową liczbą taką, że = 1. Istieją dokładie 3 liczby aturale trzycyfrowe spełiające rówość = 1. Są to liczby 114, 174 oraz 444. Autorzy ie zają odpowiedzi a astąpujące pytaie. Czy istieje liczba aturala taka, że = 1 i > 444? Przedstawimy jeszcze kilka spostrzeżeń dotyczących przypadku = 1. Twierdzeie 9. Niech > 2. Jeśli = 1, to 1 jest liczbą pierwszą. Dowód. Przypuśćmy, że 1 ie jest liczbą pierwszą. Wtedy = ab + 1, gdzie a, b N, 2 a b i wtedy ciągi (1, 1,..., 1, 2, ), (1, 1,..., 1, a + 1, b + 1) są róże i ależą do zbioru A(). Stąd, w szczególości, otrzymujemy: Twierdzeie 10. Jeśli 4 i = 1, to 2. Wykażemy jeszcze: Twierdzeie 11. Jeśli 5 i = 1, to 3. Dowód. Z Twierdzeia 9 wyika, że ie może być postaci 3k + 1. Jeśli = 3k + 2, to oprócz ciągu (1,..., 1, 2, ) w zbiorze A() zajduje się ciąg (1, 1,..., 1, 2, 2, k + 1). Z powyższych dwóch twierdzeń otrzmujemy Twierdzeie 12. Jeśli = 1 i 5, to 6. Zaotujmy astępe fakty Twierdzeie 13. 7k + 6 (k 14). Jeśli = 1 i > 100, to jest postaci 7k lub 7k + 2 lub 7k + 3 lub Dowód. Do zbioru A() ależy zawsze ciąg (1,..., 1, 2, ). Jeśli = 7k + 1 lub 7k + 4 lub 7k + 5, to do zbioru A() rówież ależą odpowiedio ciągi (1, 1,..., 1, 8, k + 1), (1, 1,..., 1, 2, 4, k + 1), (1, 1,..., 2, 2, 2, k + 1). Twierdzeie 14. Jeśli = 1 i > 100, to jest postaci 30k lub 30k + 24 (k 3). 4

5 Dowód. Poieważ 6 (Twierdzeie 12), więc ma jedą z postaci 30k, 30k+6, 30k+12, 30k + 18 lub 30k Jeśli = 30k + 6, to 1 ie jest liczbą pierwszą; sprzeczość z twierdzeiem 9. Wiemy, że do zbioru A() ależy zawsze ciąg (1,..., 1, 2, ). W przypadku, gdy = 30k + 12 lub = 30k + 18, do zbioru A() ależą odpowiedio ciągi (1, 1,..., 1, 2, 2, 2, 2, 2k + 1), (1, 1,..., 1, 2, 3, 6k + 4). Z tych twierdzeń wyika, że jeśli > 100 ad = 1, to liczba ma jedą z postaci 210k, 210k + 24, 210k + 30, 210k + 84, 210k + 90, 210k + 114, 210k lub 210k Wykazaliśmy (patrz twierdzeie 14) że jesĺi = 1 i 5, to jest postaci 30k lub 30k + 24 (k 0). Sądzimy jedak, że przypadek = 30k ie zachodzi. Hipoteza 1. Jeśli 5 i = 1, to jest postaci 30k Hipoteza 2. Jeśli > 100 i = 1, to = 114 lub = 174 lub = 444. Literatura [1] XLI Olimpiada Matematycza 1989/90, Sprawozdaie Komitetu Główego, Warszawa [2] W. Sierpiński, Teoria Liczb, Część II, PWN, Warszawa [3] S. Straszewicz, Zadaia z Olimpiad Matematyczych, tom IV, 16-20, 64/65-68/69, PZWS, Warszawa,

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 15. Liczby, Fukcje, Ciągi, Zbiory, Geometria Rozdział 12 12. Gęste podzbiory zbioru liczb rzeczywistych Adrzej Nowicki 16 kwietia 2013, http://www.mat.ui.toru.pl/~aow Spis

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 04. Liczby Pierwsze Rozdział 1 1. Cyfry liczb pierwszych Adrzej Nowicki 19 marca 2012, http://www.mat.ui.toru.pl/~aow Spis treści 1 Cyfry liczb pierwszych 5 1.1 Początkowe

Bardziej szczegółowo

Liczby pierwsze o szczególnym. rozmieszczeniu cyfr:

Liczby pierwsze o szczególnym. rozmieszczeniu cyfr: Liczby pierwsze o szczególym rozmieszczeiu cyfr Adrzej Nowicki Wydział Matematyki i Iformatyki, Uiwersytetu M. Koperika w Toruiu. (aow @ mat.ui.toru.pl) 30 paździerika 1999 M. Szurek w książce [4] podaje

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Tytuł zajęć: Funkcja liniowa zajęcia dodatkowe dla gimnazjalistów Nauczyciel prowadzący: Beata Bąkała

Tytuł zajęć: Funkcja liniowa zajęcia dodatkowe dla gimnazjalistów Nauczyciel prowadzący: Beata Bąkała Szkoła Odkrywców Taletów Tytuł zajęć: Fukcja liiowa zajęcia dodatkowe dla gimazjalistów Nauczyciel prowadzący: Beata Bąkała Opis zajęć: Ucziowie w gimazjum dobrze pozają własości fukcji Ucziowie przygotowujący

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Ekonomia matematyczna - 2.1

Ekonomia matematyczna - 2.1 Ekoomia matematycza - 2.1 Przestrzeń produkcyja Zakładamy,że w gospodarce występuje towarów, każdy jako akład ( surowiec ) lub wyik ( produkt ) w procesach produkcji. Kokrety proces produkcji jest reprezetoway

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Rozmieszczenie liczb pierwszych

Rozmieszczenie liczb pierwszych Rozmieszczeie liczb pierwszych Euler Pierwszy owoczesy wyik pochodzi od Eulera: TWIERDZENIE: Szereg p primes p est rozbieży. Szkic dowodu: Dla s > zachodzi rówość ( ) = s = i= ( + p s i ) + p 2s i +....

Bardziej szczegółowo

W. Guzicki Zadanie o sumach cyfr poziom rozszerzony 1

W. Guzicki Zadanie o sumach cyfr poziom rozszerzony 1 W. Guzicki Zadaie o sumach cyfr poziom rozszerzoy 1 Popatrzmy a astępujące trzy zadaia: Zadaie 1. Ile jest liczb dwudziestocyfrowych o sumie cyfr rówej 5? Zadaie. Oblicz, ile jest liczb dwudziestocyfrowych

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Arytmetyka pierścienia liczb całkowitych (w tym podzielność)

Arytmetyka pierścienia liczb całkowitych (w tym podzielność) Arytmetyka pierścieia liczb całkowitych (w tym podzielość). Pojęcie pierścieia. Defiicja. Zbiór A z dwoma operacjami wewętrzymi o symbolach + i azywa się pierścieiem, jeżeli spełioe są waruki: ) A z operacją

Bardziej szczegółowo

I Wielkopolska Liga Matematyczna

I Wielkopolska Liga Matematyczna Wielkopolska Liga Matematycza Z A D A N I A I Wielkopolska Liga Matematycza A1. Ciąg (a) liczb całkowitych dodatich spełia dla każdego całkowitego dodatiego waruki Wykazać, że ciąg te jest ściśle rosący.

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Jarosław Wróblewski Matematyka dla Myślących 008/09 3. Wzory skrócoego możeia działaia a wielomiaach. Procety. Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala. 5 paździerika 008 r. 35. Uprościć wyrażeie

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Statystyka i rachunek prawdopodobieństwa

Statystyka i rachunek prawdopodobieństwa Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

1. Dany odcinek podzielić dwoma punktami na trzy części. Jakie jest prawdopodobieństwo, że z tych części da się zbudować trójkąt?

1. Dany odcinek podzielić dwoma punktami na trzy części. Jakie jest prawdopodobieństwo, że z tych części da się zbudować trójkąt? 1.5. Prawdopodoieństwo warukowe 15 Zadaia 1. Day odciek podzielić dwoma puktami a trzy części. Jakie jest prawdopodoieństwo, że z tych części da się zudować trójkąt? 2. Moetę o promieiu r rzucoo a parkiet

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

KOMBINATORYKA ZADANIA

KOMBINATORYKA ZADANIA KOMBINATORYKA ZADANIA Magdalea Rudź 25 marca 2017 1 Zadaie 1. a Ile istieje liczb aturalych sześciocyfrowych? b Ile istieje liczb aturalych sześciocyfrowych takich, w których cyfra setek to sześć? 1.1

Bardziej szczegółowo

Materiał powtarzany w II etapie. II 4. Ciągi

Materiał powtarzany w II etapie. II 4. Ciągi Materiał powtarzay w II etapie II. Ciągi 3 1, dla parzystych 1. Wyzacz sześć początkowych wyrazów ciągu a = { +1, dla ieparzystych. Które wyrazy ciągu a = są rówe 1? 3. Pomiędzy liczby 7 i 5 wstaw 5 liczb

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia

Bardziej szczegółowo

MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty

MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty MARIUSZ KAWECKI zbiór zadań dla zaiteresowaego matematyką licealisty Copyright by M. Kawecki 07 Spis treści Wstęp 3. Logika w praktyce 5. Liczby i działaia 0 3. Rówaia i układy rówań 6 4. Własości fukcji

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

Silnie i symbole Newtona

Silnie i symbole Newtona Podróże po Imperium Liczb Część Silie i symbole Newtoa Adrzej Nowici Wydaie drugie, uzupełioe i rozszerzoe Olszty, Toruń, 202 SSN - 33(080-2.05.202 Spis treści Wstęp Silie 5. Iformacje o cyfrach................................

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak Materiały do wykładu Matematyka Stosowaa Dariusz Chrobak 7 styczia 207 Spis treści Zbiory liczbowe i fukcje 2. Zbiór liczb wymierych Q...................... 2.2 Liczby iewymiere.........................

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

O kilku zastosowaniach grup i pierścieni grupowych

O kilku zastosowaniach grup i pierścieni grupowych O kilku zastosowaiach grup i pierściei grupowych Czesław BAGIŃSKI, Edmud R. PUCZYŁOWSKI, Białystok Warszawa Nierzadko zdarza się, że rozwiązaie elemetarie brzmiącego zadaia, wymaga iestadardowych pomysłów.

Bardziej szczegółowo

ZASTOSOWANIE METODY STOLIKÓW EKSPERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ

ZASTOSOWANIE METODY STOLIKÓW EKSPERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ ZASTOSOWANIE METODY STOLIKÓW EKSERCKICH NA LEKCJACH MATEMATYKI SCENARIUSZE ZAJĘĆ Opracowała: mgr Ewa Atropik Koiecza Świebodzi 005 r Zastosowaie metody stolików eksperckich a lekcjach matematyki Wstęp

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochode wyższych rzędów 1.1 Defiicja i przykłady Def. Drugą pochodą fukcji f azywamy pochodą pochodej tej fukcji. Trzecia pochoda jest pochodą drugiej pochodej; itd. Ogólie, -ta pochoda fukcji jest pochodą

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska Prace domowe z matematyki Semestr zimowy 2010/2011 Zoa Zieli«ska-Kolasi«ska 5 pa¹dzierika 2010 Rozdziaª 0 Uwagi Prace domowe ie s obowi zkowe aczkolwiek zach cam gor co do ich robieia i oddawaia mi a kartkach.

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Podstawowe struktury algebraicze Defiicja 1. Działaiem dwuargumetowym(biarym) określoym a iepustym zbiorze X azywamy fukcję f, która każdej parze uporządkowaej(a, b) elemetów zbioru X przyporządkowuje

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

INDUKCJA MATEMATYCZNA

INDUKCJA MATEMATYCZNA MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia

Bardziej szczegółowo

KOMBINATORYKA 1 WYK LAD 11 Kombinatoryczna teoria zbiorów

KOMBINATORYKA 1 WYK LAD 11 Kombinatoryczna teoria zbiorów KOMBINATORYKA 1 WYK LAD 11 Kombiatorycza teoria zbiorów 23 maja 2012 Wyk lad poświe coy jest w lasościom rodzi podzbiorów skończoego zbioru. Rozpoczya go poje cie systemu różych reprezetatów wraz ze s

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Zadania szkolne dla studentów chemii

Zadania szkolne dla studentów chemii Zadaia szkole dla studetów chemii Podstawowe ozaczeia R zbiór wszystkich liczb rzeczywistych N zbiór wszystkich liczb aturalych, tj. liczb 0,,,,... ; N dodatich, tj. liczb,,... Z zbiór wszystkich liczb

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

Ciąg geometryczny i jego własności

Ciąg geometryczny i jego własności Ciąg geometryczy Def: Ciągiem geometryczym (a) azywamy ciąg liczbowy co ajmiej trzywyrazowy, w którym każdy wyraz, począwszy od drugiego, powstaje z pomożeia wyrazu poprzediego przez stałą liczbę q, zwaą

Bardziej szczegółowo