( ) WŁASNOŚCI MACIERZY

Wielkość: px
Rozpocząć pokaz od strony:

Download "( ) WŁASNOŚCI MACIERZY"

Transkrypt

1 .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia, tz. ( C) C, ( )C C C, c) możeie macierzy ie jest przemiee, d),, o ile wymiary macierzy umożliwiają możeie, e) () T T T, f) ( )T T T, g) ( T ) T, h) (c) T c T, c - stała i) tr() tr(), tr( ) tr tr. Własości wyzaczika a) T b) jeśli macierz jest stopia, to dla dowolej stałej a mamy (a) a c) d) dla macierzy ieosobliwej mamy T >, e) jeśli w macierzy jest wiersz (koluma) złożoy z samych zer to, f) jeśli w macierzy są jedakowe wiersze (kolumy) to, g) jeśli wiersz (kolumę) macierzy pomożymy przez dowolą liczbę rzeczywistą to wyzaczik powstałej macierzy będzie rówy wyzaczikowi macierzy pomożoemu przez tę liczbę, h) jeśli w macierzy zamieimy miejscami dwa wiersze (kolumy) to wyzaczik powstałej macierzy będzie rówy -, i) wyzaczik macierzy ie ulegie zmiaie, jeśli do pewego wiersza (kolumy) dodamy iy wiersz (kolumę) pomożoy przez liczbę różą od zera. j) wyzaczik macierzy trójkątej (pod przekątą same zera) jest rówy iloczyowi elemetów a przekątej. Własości macierzy odwrotej a) macierzą odwrotą do macierzy jedostkowej jest ta sama macierz tz. -, b) ( diag ( a, a,..., a )) diag ( a ),( a ) ( a ),..., c) ( - ) -, d) ( - ) T ( T ) -, e) (c) - c - () -, c - stała f) () - () - () -,

2 .Kowalski własości macierzy g) ( - ) () -. h) macierz odwrota do ieosobliwej macierzy symetryczej jest symetrycza, i) macierz odwrota do ieosobliwej macierzy trójkątej jest trójkąta, Własości rzędu macierzy. a) Rząd macierzy jest rówy zero tylko dla macierzy zerowej, b) Rząd macierzy jedostkowej stopia jest rówy, c) Rząd macierzy T jest rówy rzędowi macierzy, d) Rząd macierzy ie może przekraczać żadego z wymiarów macierzy, e) Jeśli macierz kwadratowa jest ieosobliwa to jej rząd jest rówy stopiowi tej macierzy, f) Jeśli dowoly wiersz macierzy pomożymy przez stałą różą od zera i dodamy do iego wiersza to rząd macierzy ie ulegie zmiaie. Jeśli zamieimy dwa wiersze między sobą miejscami to rząd macierzy ie ulegie zmiaie. Podobe operacje moża wykoywać a kolumach macierzy. g) Jeśli wykreślimy wiersz (kolumę) złożoy z samych zer to rząd ie ulegie zmiaie. Potęga macierzy Jeśli jest macierzą kwadratową to Ślad macierzy Jeśli jest macierzą kwadratową to tr suma elemetów a przekątej. Macierz diagoala o daych elemetach: diag( a, a,..., a) Macierze blokowe Niekiedy wygodie jest podzielić macierz a bloki, czyli podmacierze które powstają z daej macierzy przez odrzuceie pewej liczby początkowych i końcowych wierszy i kolum. W aturaly sposób moża określić podział a bloki za pomocą liii poziomych i pioowych, p. macierz składa się z czterech bloków. Macierz kwadratowa jest blokowo diagoala gdy wszystkie bloki leżące poza główą przekątą są podmacierzami zerowymi, tz.

3 .Kowalski własości macierzy k a bloki a przekątej są kwadratowe. Dodawaie i możeie macierzy blokowych, jeżeli podział a bloki jest odpowiedi wykoujemy wg zwykłych zasad, traktując bloki jak elemety macierzy, p. ; ; Wtedy Wyzaczik macierzy blokowo-diagoalej jest rówy iloczyowi wyzaczików bloków zajdujących się a przekątej, tz. k k... Jeśli i macierze, są kwadratowe, to. Jeśli i macierze, są kwadratowe, ieosobliwe, to. Jeśli m i macierz jest dowola o wymiarach ( x m), to m. Wartości włase macierzy

4 .Kowalski własości macierzy - dowola macierz kwadratowa stopia r. Wielomiaem charakterystyczym tej macierzy azywamy wielomia λ ( ) Rówaie azywamy rówaiem charakterystyczym. Pierwiastki tego rówaia to wartości włase lub pierwiastki charakterystycze tej macierzy. Niech λ,..., λ k - wartości włase macierzy o krotościach α,..., α k (k r). Macierz ma rówaie charakterystycze i wartości włase: λ -, λ 5. Macierz λ 5 λ λ λ ma rówaie charakterystycze λ λ λ λ i wartości włase: λ, λ. i i Wektorem własym operatora f odpowiadającym wartości własej λ azywamy iezerowy wektor v spełiający waruek f(v) λv. Własość: a) suma wartości własych (z krotościami) jest rówa śladowi macierzy tz. sumie elemetów jej przekątej. b) macierz jest osobliwa wtedy i tylko wtedy gdy zero jest jej wartością własą, c) macierz jest pierwiastkiem własego rówaia charakterystyczego, d) macierz symetrycza ma tylko rzeczywiste wartości włase, e) jeśli λ jest wartością własą macierzy, to cλ jest wartością własą macierzy c, f) jeśli λ jest wartością własą macierzy, to /λ jest wartością własą mac. -, g) jeśli λ jest wartością własą macierzy, to λ m jest wartością własą mac. m, m N

5 .Kowalski własości macierzy h) jeśli λ jest wartością własą macierzy, to λ jest wartością własą macierzy T, i) jeśli λ jest wartością własą macierzy, to λ jest wartością własą macierzy S - S, dla dowolej macierzy ieosobliwej S tego samego stopia co. Własości macierzy stochastyczych. Własość Średia arytmetycza i iloczy dwóch macierzy stochastyczych tego samego stopia są także macierzami stochastyczymi. Własości macierzy stochastyczych: a) Wartością własą każdej macierzy stochastyczej jest λ (ozaczamy λ ), Dowód. Dodajemy wszystkie kolumy macierzy ( λ ) do pierwszej kolumy, sumy wierszy są rówe więc po dodaiu wszystkie elemety pierwszej kolumy są rówe λ - i moża tą wartość wyłączyć przed wyzaczik. b) Moduły wszystkich wartości własych dowolej macierzy stochastyczej są miejsze od, k c) (tw. Dooba ) istieje graica lim P, Macierz ma własość P P (macierz idempoteta), Macierz P ma rówaie charakterystycze k 5 i wartości włase: λ, λ. λ 7 λ λ λ 5.Kowalski,.. 5

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Podstawowe struktury algebraicze Defiicja 1. Działaiem dwuargumetowym(biarym) określoym a iepustym zbiorze X azywamy fukcję f, która każdej parze uporządkowaej(a, b) elemetów zbioru X przyporządkowuje

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

2. Macierze. Niech. m, n N. Zbiór zawierający m n liczb a ij n, zapisanych w postaci tablicy prostokątnej

2. Macierze. Niech. m, n N. Zbiór zawierający m n liczb a ij n, zapisanych w postaci tablicy prostokątnej Macierze Niech m, N Zbiór zaierający m liczb a R, gdzie i,, m, j,,, zapisaych postaci tablicy prostokątej a a K a a a K a K K K K am am K am azyamy macierzą o ymiarach m (macierzą o m ierszach i kolumach

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Planowanie doświadczeń - DPLD LMO Materiały pomocnicze

Planowanie doświadczeń - DPLD LMO Materiały pomocnicze Plaowaie doświadczeń - DPLD LMO Materiały pomocicze Układ bloków kompletie zradomizowaych Założeia: (a) Z jedostek doświadczalych tworzymy rówolicze grupy zwae blokami (b bloków) w taki sposób, aby jedostki

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 3.

Ekoenergetyka Matematyka 1. Wykład 3. Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

Funkcje tworzące - przypomnienie

Funkcje tworzące - przypomnienie Zadaia z ćwiczeń # (po. marca) Matematyka Dyskreta Fukcje tworzące - przypomieie Fukcje tworzące są początkowo trude do przełkięcia, ale stosuje się je dość automatyczie i potrafimy je policzyć dla praktyczie

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone Maciej Grzesiak Istytut Matematyki Politechiki Pozańskiej Liczby zespoloe 1. Określeie liczb zespoloych Rówaie kwadratowe ie ma pierwiastków rzeczywistych gdy < 0, bo wzory ogóle wymagają wtedy obliczeia

Bardziej szczegółowo

ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH.

ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH. AGEBRA MACIERZY. UKŁADY RÓWNAŃ INIOWYCH. MACIERZE Mcierzą o wymirch m (m ) zywmy prostokątą tblicę której elemetmi jest m liczb rzeczywistych mjącą m wierszy i kolum postci A m m kolumy wiersze m Stosujemy

Bardziej szczegółowo

Ciągi i szeregi liczbowe. Ciągi nieskończone.

Ciągi i szeregi liczbowe. Ciągi nieskończone. Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w

Bardziej szczegółowo

Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.

Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek. FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Funkcje tworz ce skrypt do zada«

Funkcje tworz ce skrypt do zada« Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW

7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW A. Kaici: warcia w sieciach eletroeergetyczych 7. OBCNA WKOŚC WARCOWCH A POOCĄ KOPUTRÓW 7.. astosowaie metody potecjałów węzłowych do obliczaia zwarć przy założeiu jedaowych sił eletromotoryczych geeratorów

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

O kilku zastosowaniach grup i pierścieni grupowych

O kilku zastosowaniach grup i pierścieni grupowych O kilku zastosowaiach grup i pierściei grupowych Czesław BAGIŃSKI, Edmud R. PUCZYŁOWSKI, Białystok Warszawa Nierzadko zdarza się, że rozwiązaie elemetarie brzmiącego zadaia, wymaga iestadardowych pomysłów.

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje trygoometrycze Moduł - dział -temat Fukcje trygoometry cze dowolego kąta 1 kąt w układzie współrzędych fukcje trygoometrycze dowolego kąta zaki trygoometryczych wartości trygoometryczych iektórych

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Metody numeryczne Laboratorium 5 Info

Metody numeryczne Laboratorium 5 Info Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku

Bardziej szczegółowo

Materiał powtarzany w II etapie. II 4. Ciągi

Materiał powtarzany w II etapie. II 4. Ciągi Materiał powtarzay w II etapie II. Ciągi 3 1, dla parzystych 1. Wyzacz sześć początkowych wyrazów ciągu a = { +1, dla ieparzystych. Które wyrazy ciągu a = są rówe 1? 3. Pomiędzy liczby 7 i 5 wstaw 5 liczb

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty

MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty MARIUSZ KAWECKI zbiór zadań dla zaiteresowaego matematyką licealisty Copyright by M. Kawecki 07 Spis treści Wstęp 3. Logika w praktyce 5. Liczby i działaia 0 3. Rówaia i układy rówań 6 4. Własości fukcji

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ)

MATEMATYKA I SEMESTR ALK (PwZ) MATEMATYKA I SEMESTR ALK (PwZ) 1. Ciągi liczbowe 1.1. OKREŚLENIE Ciąg liczbowy = Dowola fukcja przypisująca liczby rzeczywiste pierwszym (ciąg skończoy), albo wszystkim (ciąg ieskończoy) liczbom aturalym.

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 15. Liczby, Fukcje, Ciągi, Zbiory, Geometria Rozdział 12 12. Gęste podzbiory zbioru liczb rzeczywistych Adrzej Nowicki 16 kwietia 2013, http://www.mat.ui.toru.pl/~aow Spis

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+ MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Szybka transformacja Fouriera (FFT Fast Fourier Transform)

Szybka transformacja Fouriera (FFT Fast Fourier Transform) Szybka trasformacja Fouriera (FFT Fast Fourier Trasform) Pla wykładu: 1 Trasformacja Fouriera, iloczy skalary 2 DFT - dyskreta trasformacja Fouriera 3 FFT szybka trasformacja Fouriera a) algorytm PFA b)

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości

Bardziej szczegółowo