Fraktale - ciąg g dalszy

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fraktale - ciąg g dalszy"

Transkrypt

1 Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety ogóliejszej teorii wyjaśiaj iającej feome powstałego zbioru. 1. Koleja próba defiicji fraktala 1.1. Cechy określaj lające fraktal Beoit Madelbrot - The Fractal Geometry of Nature, Fraktal ma trzy własow asości. Nie jest bezpośredio określoy wzorem, lecz przy pomocy algorytmu rekurecyjego. Ma własow asość samopodobieństwa stwa (część faraktala przypomia całość ść. Wymiar fraktala ie jest liczbą całkowit kowitą Wymiar fraktaly Wiadomo, że pukt ma wymiar 0, odciek ma wymiar 1, kwadrat ma wymiar 2, sześcia ma wymiar 3 i tak dalej. Jaki wymiar mają,, zbiór Catora,, trójk jkąt t Sierpińskiego czy zbiór Madelbrota? Wydaje się dość sesowe uogólieie pojęcia wymiaru a liczby iecałkowite. 3 Defiicja wymiaru Hausdorffa (1919 Defiicja wymiaru Kołmogorowa (1958 Wymiar zbioru według Kołmogorowa (dla R 2 Pokrywa się zbiór r siatką figur geometryczych (p. kwadratów w o boku rówymr i oblicza liczbę d. - rozmiar oczka siatki N( - ajmiejsza liczba oczek,, potrzeba do pokrycia zbioru log N( d = lim 0 log( 1 4 1

2 Przykład 1 - trójk jkąt t Sierpińskiego Przykład 2 - trójk jkąt t rówoboczyr = 1, N( = 1 = 1/2, N( = 3 = 1, N( = 1 = 1/2, N( = 4 = 1/4, N( = 9 = (1/2, N( = 3 = 1/4, N( = 16 = (1/2, N( = 4 log N ( log( 3 d = lim = lim 0 log( 1 log( 2 log 3 = = 1, log 2 log N ( log( 4 d = lim = lim 0 log( 1 log( 2 log 4 2 log 2 = = = 2 log 2 log Wymiar fraktaly dla iektórych zbiorów: zbiór Catora d = log2/log3 = 0,630929, krzywa vo Kocha d = log4/log3 = 1,261869, trójk jkąt t Sierpińskiego d = log3/log3 = 1,584962, dywa Sierpińskiego d = log8/log3 = 1,892789, brzeg zbioru Madelbrota d =? Zastosowaie - filtracja fraktala obrazu pukt a obrazie obszar, w którym obliczay jest d pukt a obrazie d 0, 75 pukt usuwa się d > 0, 75 obszar, w którym obliczay jest d pukt pozostaje 7 2. Układy odwzorowań iterowaych (IFS IFS - Iterated Fuctio System 2.1. Odwzorowaia afiicze Rozważmy astępuj pujące odwzorowaie w R 2 (,y (,y ϕ : gdzie (, y y i (,y są puktami płaszczyzyp aszczyzy. Rozpatrywaa będzie b szczególa postać odwzorowaia, tak zwae odwzorowaie afiicze opisae wzorem = a + by + c ϕ : y = d + ey + f 8 2

3 Defiicja 1: Odwzorowaie afiicze azywamy zwęż ężającym, jeśli każdy odciek podday temu przekształceiu ulega skróceiu. Przykład 3 Niech będąb dae odwzorowaia afiicze 1, 2, 2, 4 o współczyikach zapisaych w tabeli 1 oraz liczby s i p Tabela 1 a b c d e f s p 1-0, ,00-0,18 0,81 10,0 0,8613 0, , ,00-0,10 0,40 0,0 0,6217 0, , ,00-0,10 0,40 0,0 0,6217 0, , ,00 0,44 0,44-2,0 0,6263 0,0440 s - długość odcika [0,1], poddaego odwzorowaiu i p - pole figury o polu 1,, poddaej odwzorowaiu i 9 lgorytm geeracji zbioru oparty a odwzorowaiach 1, 2, 2, 4 jest astępuj pujący: 1. Za pukt startowy procesu geeracji zbioru wybrać dowoly pukt płaszczyzy p R Ze zbioru czterech odwzorowań 1, 2, 2, 4 wylosować jedo, posługuj ugując c się geeratorem dyskretej zmieej losowej p. (p i =1/4; i=1, 2, 3, 4 3. UżywajU ywając c wylosowaego odwzorowaia wyliczyć współrz rzęde owego puktu płaszczyzyp R 2 4. Przyjąć wyliczoy pukt, jako owy pukt startowy i powtórzy rzyć krok Po wykoaiu iteracji obraz uzyskaego zbioru wygląda tak: a po wykoaiu iteracji tak:

4 Wiosek: Bardzo skomplikoway obiekt jest możliwy do opisaia przy pomocy stosukowo iewielkiego zbioru iformacji: 24 liczby ( współczyiki odwzorowań 1, 2, 3, 4, prosty algorytm obliczeiowy. Pytaie 1: Czy i jak otrzymay po dużej liczbie iteracji zbiór r zależy y od puktu startowego algorytmu i jakie sąs własości tego zbioru? Pytaie 2: Jaka jest rola czyika losowego występuj pującego w algorytmie? Czy możliwa jest geeracja zbioru przy pomocy algorytmu determiistyczego? 13 Przykład 4 Niech będzie dae astępujące odwzorowaie ϕ( = ϕ1( ϕ2( ϕ3( ϕ4( gdzie jest podzbiorem przestrzei R 2 a 1, 2, 2, 4 odwzorowaiami określoymi w tabeli 1. Zbiór choiki moża otrzymać przy pomocy algorytmu determiistyczego w astępujący sposób. 1. Za pukt startowy procesu geeracji obrać dowoly podzbiór 0 płaszczyzy R 2, w szczególości pukt. 2. Wygeerować podzbiór 1 = ( 1 ϕ Geerować koleje podzbiory według reguły czyli iaczej k + 1 = ϕ( k 0-1 pukt 1-4 pukty 2-16 puktów k - 4 k puktów W graicy powstaie te sam zbiór r co poprzedio Podstawy aalizy fukcjoalej Niech będzie b day zbiór r pewie zbiór X. Defiicja 2: Metryką w zbiorze X azywamy fukcję d : X X R spełiaj iającą astępuj pujące waruki: d (, = 0 = d( 1,2 = d( 2,1 d( 1,2 + d( 2,3 d( 1,3 Dla przykładu X=R 2 i tzw. metryka euklidesowa d 2 [(, y,(, y ] = ( + ( y y2 16 4

5 Defiicja 3: Przestrzeią metryczą azywamy parę (X, d. Defiicja 4: Ciąg { 1, 2,,, i, } elemetów w metryczej (X, d jest ciągiem Cauchy ego jeżeli eli d (, m 0 gdy przestrzei Defiicja 5: Jeżeli eli dla każdego ciągu Cauchy ego { i } istieje w przestrzei metryczej (X, d elemet taki, że d (, to przestrzeń (X, d d jest zupeła a Cauchy ego ego. 0 gdy azywa się graicą ciągu Defiicja 6: Operację f azywamy zwęż ężającą w przestrzei metryczej (X, d jeżeli eli dla dowolego X zachodzi f( X i jeżeli eli istieje taka liczba λ ( 0, 1,że, e dla dowolych 1, 2 X spełioy jest waruek Lipschitza w postaci Defiicja 7: Rozwiązaie zaie puktem stałym operacji f. [ f (, f ( ] d(, d 1 2 λ 1 2 rówaia r =f( azywae jest Twierdzeie (Baacha o odwzorowaiu zwęż ężającym W przestrzei metryczej zupełej (X, d operacja zwęż ężająca ma dokładie jede pukt stały Odległość pomiędzy zbiorami Niech (X, d będzie przestrzeią metryczą zupełą (p. R 2 z metryką euklidesową a H(X przestrzeią,, której elemetami sąs zwarte i iepuste podzbiory X. Pytaie : Jak określi lić metrykę w przestrzei H(X czyli odległość pomiędzy zbiorami? 0dległość zbioru od zbioru d(,b B d(b, d(,b = ma d( B, = ma y { d(,b : } { d( y, : y B} 0dległość puktu od zbioru d(,b B d(y, y d(,b = mi d( y, = mi y { d(,y : y B} { d(, y : } 0dległość pomiędzy zbiorami (metryka Hausdorffa h (,B = ma h(,, B spełia trzy waruki metryki. { d(,b, d( B, }

6 2.4. Wioski W zbiorze H(X określoo metrykę h,, czyli (H(X,(X, h jest przestrzeią metryczą. Dla choiki geerowaej według algorytmu z rysuku, moża pokazać, że e koleje zbiory j są elemetami H(X oraz, że e odwzorowaie ( jest zwęż ężające. 0-1 pukt pukty Spełioe sąs więc założeia twierdzeia Baacha, czyli choika w graicy jest zawsze taka sama i ie zależy y od tego jaki jest zbiór

Fraktale. Definicja ogólna. fraktala. w naturze. Samopodobieństwo. w naturze. Śnieżynka von Kocha

Fraktale. Definicja ogólna. fraktala. w naturze. Samopodobieństwo. w naturze. Śnieżynka von Kocha Defiicja ogóla fraktala Fraktale dr iż.. Piotr Steć Fraktalem azywamy obiekt, który wykazuje cechy dokładego lub statystyczego podobieństwa Fraktal jest obiektem, którego wymiar jest ułamkiem Słowo fraktal

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.

Bardziej szczegółowo

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Ekonomia matematyczna - 2.1

Ekonomia matematyczna - 2.1 Ekoomia matematycza - 2.1 Przestrzeń produkcyja Zakładamy,że w gospodarce występuje towarów, każdy jako akład ( surowiec ) lub wyik ( produkt ) w procesach produkcji. Kokrety proces produkcji jest reprezetoway

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak Materiały do wykładu Matematyka Stosowaa Dariusz Chrobak 7 styczia 207 Spis treści Zbiory liczbowe i fukcje 2. Zbiór liczb wymierych Q...................... 2.2 Liczby iewymiere.........................

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEOSTWA

RACHUNEK PRAWDOPODOBIEOSTWA RACHUNEK PRAWDOPODOBIEOSTWA Elemetarym pojęciem w rachuku prawdopodobieostwa jest zdarzeie elemetare tz. możliwy wyik pewego doświadczeia p. rzut moetą: wyrzuceie orła lub reszki arodziy człowieka: urodzeie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1. Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Entropia w układach dynamicznych

Entropia w układach dynamicznych Etropia w układach dyamiczych Wstęp Środowiskowe studia doktorackie Uiwersytet Jagielloński Kraków, marzec-kwiecień 203 Tomasz Dowarowicz Część II Etropia topologicza i zasada wariacyja Zaczijmy od początku.

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych.

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych. Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. A. V. Aho, J.E. Hopcroft, J. D. Ullma - Projektowaie i aaliza

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

1. Miara i całka Lebesgue a na R d

1. Miara i całka Lebesgue a na R d 1. Miara i całka Lebesgue a a R d 1. Miara. Mówimy, że rodzia podzbiorów S zbioru Ω jest σ-ciałem, jeśli wraz z każdym zbiorem zawiera oa jego dopełieie i jest zamkięta a sumowaie przeliczalych podrodzi.

Bardziej szczegółowo

Joanna JASZUŃSKA, Warszawa. Centrum Studiów Zaawansowanych, Politechnika Warszawska

Joanna JASZUŃSKA, Warszawa. Centrum Studiów Zaawansowanych, Politechnika Warszawska Artykuł związay jest z odczytem Nie)zależie od liczby wymiarów, wygłoszoym podczas L Szkoły Matematyki Poglądowej Nie)zależość w stycziu 2013 r w Nadarzyie Podziały Joaa JASZUŃSKA, Warszawa Cetrum Studiów

Bardziej szczegółowo

ZWĄIZEK REKURENCYJNY ORAZ ZALEŻNOŚCI I RÓWNANIE RÓŻNICZKOWE DLA WIELOMIANÓW LEGENDRE A

ZWĄIZEK REKURENCYJNY ORAZ ZALEŻNOŚCI I RÓWNANIE RÓŻNICZKOWE DLA WIELOMIANÓW LEGENDRE A Polska Problemy Nauk Stosowaych, 4, Tom, s. 59 68 Szczeci dr Adrzej Atoi CZAJKOWSKI Uiversity of Szczeci, Faculty of Mathematics ad Physics, Departmet of Iformatics ad Techical Educatio Uiwersytet Szczeciński,

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Symulacje komputerowe w fizyce Fraktale

Symulacje komputerowe w fizyce Fraktale Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 13 i 15/11/2017

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 15. Liczby, Fukcje, Ciągi, Zbiory, Geometria Rozdział 12 12. Gęste podzbiory zbioru liczb rzeczywistych Adrzej Nowicki 16 kwietia 2013, http://www.mat.ui.toru.pl/~aow Spis

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia

Bardziej szczegółowo

Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia. i ich zastosowań w przemyśle" POKL /10

Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia. i ich zastosowań w przemyśle POKL /10 Podstaw algortmów rekurejh mgr iż. Adam Kozak mgr iż. TomaszGłowaki tglowaki@s.put.poza.pl poza pl Zajęia fiasowae z projektu "Rozwój i doskoaleie kształeia a Politehie Pozańskiej w zakresie tehologii

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny odstawy iforatyki Wykład r 9 /44 odstawy iforatyki olitechika Białostocka - Wydział Elektryczy Elektrotechika, seestr II, studia stacjoare Rok akadeicki 006/007 la wykładu r 9 Obliczaie liczby π etodą

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Podstawowe struktury algebraicze Defiicja 1. Działaiem dwuargumetowym(biarym) określoym a iepustym zbiorze X azywamy fukcję f, która każdej parze uporządkowaej(a, b) elemetów zbioru X przyporządkowuje

Bardziej szczegółowo

Statystyka i rachunek prawdopodobieństwa

Statystyka i rachunek prawdopodobieństwa Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 06 Geometria fraktalna Jarosław Miszczak IITiS PAN Gliwice 20/10/2016 1 / 43 1 Określenie nieformalne 2 Zbiór Mandelbrota 3 Określenie nieformalne pudełkowy Inne definicje

Bardziej szczegółowo

Ciągi i szeregi liczbowe. Ciągi nieskończone.

Ciągi i szeregi liczbowe. Ciągi nieskończone. Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w

Bardziej szczegółowo

Wykład 2. Kombinacje. Twierdzenie. (Liczba k elementowych podzbiorów zbioru n-elementowego) C(n,k) =, gdzie symbol oznacza liczbę i n k.

Wykład 2. Kombinacje. Twierdzenie. (Liczba k elementowych podzbiorów zbioru n-elementowego) C(n,k) =, gdzie symbol oznacza liczbę i n k. Wykład 2. Krzyś wiedział a pewo, Ŝe to miejsce jest zaczarowae, bo igdy ikt ie mógł się doliczyć, ile rosło tam drzew, sześćdziesiąt trzy czy sześćdziesiąt cztery, awet kiedy po przeliczeiu przywiązywało

Bardziej szczegółowo

Wykład 4: Fraktale deterministyczne i stochastyczne

Wykład 4: Fraktale deterministyczne i stochastyczne Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone Maciej Grzesiak Istytut Matematyki Politechiki Pozańskiej Liczby zespoloe 1. Określeie liczb zespoloych Rówaie kwadratowe ie ma pierwiastków rzeczywistych gdy < 0, bo wzory ogóle wymagają wtedy obliczeia

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości

Bardziej szczegółowo

Symulacje komputerowe w fizyce Fraktale

Symulacje komputerowe w fizyce Fraktale Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 15/11/2016 Pasteura,

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Tytuł zajęć: Funkcja liniowa zajęcia dodatkowe dla gimnazjalistów Nauczyciel prowadzący: Beata Bąkała

Tytuł zajęć: Funkcja liniowa zajęcia dodatkowe dla gimnazjalistów Nauczyciel prowadzący: Beata Bąkała Szkoła Odkrywców Taletów Tytuł zajęć: Fukcja liiowa zajęcia dodatkowe dla gimazjalistów Nauczyciel prowadzący: Beata Bąkała Opis zajęć: Ucziowie w gimazjum dobrze pozają własości fukcji Ucziowie przygotowujący

Bardziej szczegółowo

Arytmetyka pierścienia liczb całkowitych (w tym podzielność)

Arytmetyka pierścienia liczb całkowitych (w tym podzielność) Arytmetyka pierścieia liczb całkowitych (w tym podzielość). Pojęcie pierścieia. Defiicja. Zbiór A z dwoma operacjami wewętrzymi o symbolach + i azywa się pierścieiem, jeżeli spełioe są waruki: ) A z operacją

Bardziej szczegółowo

Przeczytaj, zanim zaczniesz rozwiązywać

Przeczytaj, zanim zaczniesz rozwiązywać Przeczytaj, zaim zacziesz rozwiązywać Maturzysto! Zaim rozpocziesz rozwiązywaie zadań z aszych arkuszy: Przygotuj: u Arkusz I 5 kartek papieru podaiowego w kratkę a czystopis i a brudopis; Arkusz II 5

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

Nieliniowe kody z krzywych modularnych

Nieliniowe kody z krzywych modularnych Nieliiowe kody z krzywych modularych. Kody koryujące błędy. Kody liiowe. Wybrae oraiczeia 4. Kody Reed a-solomo a 5. Alebraiczo-eometrycze kody Goppy 6. Nowe kody Co to jest kod? Σ alfabet, W zbiór słów

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka +

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka + Fraktale wokół nas Leszek Rudak Uniwersytet Warszawski informatyka + 1 Podobieństwo figur informatyka + 2 Figury podobne Figury są podobne gdy proporcjonalnie zwiększając lub zmniejszając jedną z nich

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18 dr Aa Barbaszewska-Wiśiowska ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 17/18 1 Elemety logiki matematyczej Zdaia i formy zdaiowe fuktory zdaiotwórcze Tautologie Wartości logicze

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

8. Jednostajność. sin x sin y = 2 sin x y 2

8. Jednostajność. sin x sin y = 2 sin x y 2 8. Jedostajość Mówimy, że fukcja f : I R spełia waruek Lipschitza ze stałą C > 0, jeśli fx) fy) C x y, x, y I. 8.. Przykład. a) Taką fukcją jest p. si : R [, ]. Rzeczywiście, si x si y = 2 si x y 2 cos

Bardziej szczegółowo

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,

Bardziej szczegółowo

MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty

MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty MARIUSZ KAWECKI zbiór zadań dla zaiteresowaego matematyką licealisty Copyright by M. Kawecki 07 Spis treści Wstęp 3. Logika w praktyce 5. Liczby i działaia 0 3. Rówaia i układy rówań 6 4. Własości fukcji

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,

Bardziej szczegółowo

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika

Bardziej szczegółowo

Fraktale. i Rachunek Prawdopodobieństwa

Fraktale. i Rachunek Prawdopodobieństwa Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej

Bardziej szczegółowo